人教版数学九年级下册全册第29章投影与视图全章学案
- 格式:doc
- 大小:1.58 MB
- 文档页数:17
人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。
内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。
通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。
但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。
三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。
2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。
3.能够运用所学知识解决实际问题。
四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。
2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。
3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。
六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。
2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。
3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。
教师在此过程中进行指导,帮助学生解决问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。
7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。
第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
人教版九年级数学《投影与视图》全章导学案第1课时投影的概念和分类知识点1:平行投影【例1】下列光线所形成的是平行投影的是( A )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线,1. 把一个正六棱柱如图1-29-90-1摆放,光线由上向下照射此正六棱柱时的正投影是( A )图1-29-90-1知识点2:中心投影【例2】如图1-29-90-2,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B )图1-29-90-2A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长,2. 如图1-29-90-3,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )图1-29-90-3A. 越长B. 越短C. 一样长D. 随时间变化而变化知识点3:运用投影的知识解决相关问题【例3】如图1-29-90-4,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m,同一时刻测得DE的影长为4.5 m,则DE=6m.图1-29-90-4,3. 如图1-29-90-5,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是1.8m.图1-29-90-5A组4. 下列现象不属于投影的是( B )A. 皮影B. 素描画C. 手影D. 树影,5. 一个人离开灯光的过程中人的影长( A )A. 变长B. 变短C. 不变D. 不确定6. 正方形的正投影不可能是( D )A. 线段B. 矩形C. 正方形D. 梯形,7. 在阳光的照射下,一个矩形框的影子的形状不可能是( C )A. 线段B. 平行四边形C. 等腰梯形D. 矩形B组8. 在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律,9. 小红和小花在路灯下的影子一样长,则她们的身高关系是( D )A. 小红比小花高B. 小红比小花矮C. 小红和小花一样高D. 不确定10. 下列图中是在太阳光下形成的影子的是( A ),11. 如图1-29-90-6是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( B )图1-29-90-6A. 1234B. 4312C. 3421D. 4231C组12. 如图1-29-90-7,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为3m.图1-29-90-7,13. 如图1-29-90-8,圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图的圆环形阴影. 已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( D )图1-29-90-8A. 0.324πm2B. 0.288πm2C. 1.08πm2D. 0.72πm2第2课时简单物体的三视图知识点1:简单几何体的三视图【例1】如图1-29-91-1的圆柱体从正面看得到的图形可能是( B )图1-29-91-1,1. 如图1-29-91-2是一个正六棱柱的茶叶盒,其俯视图为( B )图1-29-91-2知识点2:简单组合体的三视图【例2】如图1-29-91-3是由几个相同的正方体搭成的一个几何体,从上面看得到的平面图形是( B )图1-29-91-3,2. 如图1-29-91-4是由一个正方体和一个正四棱锥组成的立体图形,它的俯视图是( C )图1-29-91-4知识点3:三视图的特征及画法【例3】如图1-29-91-5,画出这个几何体的三视图.图1-29-91-5解:如答图29-91-1.答图29-91-1,3. 图1-29-91-6是由大小相同的小立方块搭成的几何体,请在图中的方格纸中画出该几何体的三视图.解:如答图29-91-2.答图29-91-24. 由4个相同的小立方体搭成的几何体如图1-29-91-7,则它的俯视图是( D )图1-29-91-75. 如图1-29-91-8的立体图形,从左面看可能是( A )图1-29-91-86. 如图1-29-91-9的几何体从左面看到的图形是( A )图1-29-91-97. 如图1-29-91-10的几何体的主视图是( B )图1-29-91-10B组8. 在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( B ),9. 如图1-29-91-11的四个几何体中,主视图与左视图相同的几何体有( D )图1-29-91-11A. 1个B. 2个C. 3个D. 4个C组10. 画出图1-29-91-12的空间几何体的三视图.图1-29-91-12答图29-91-3解:如答图29-91-3.,11. 如图1-29-91-13,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体. 请画出这个几何体的三视图.解:如答图29-91-4.第3课时由三视图确定物体的形状【例1】如图1-29-92-1是某个几何体的主视图、左视图、俯视图,该则几何体是( C )图1-29-92-1A. 圆柱B. 球C. 圆锥D. 棱锥,1. 某几何体的三视图如图1-29-92-2,则这个几何体是( D )图1-29-92-2A. 圆柱B. 长方体C. 三棱锥D. 三棱柱知识点2:根据三视图描述物体原来的形状——简单组合体【例2】如图1-29-92-3是由三个相同的小正方体组成的几何体的主视图,那么这个几何体可以是( A )图1-29-92-3,2. 如图1-29-92-4是一个几何体的三视图,则这个几何体是( B )图1-29-92-4知识点3:由三视图确定小正方体的个数【例3】由一些大小相同的小正方体组成的几何体的三视图如图1-29-92-5,那么,组成这个几何体的小正方体有( B )图1-29-92-5A. 6块B. 5块C. 4块D. 3块,3. 如图1-29-92-6是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( D )图1-29-92-6A. 7个B. 8个C. 9个D. 10个知识点4:利用三视图计算几何体的表面积和体积【例4】如图1-29-92-7是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据数据计算这个几何体的表面积.图1-29-92-7解:(1)由三视图得几何体为圆锥.(2)圆锥的表面积是16π. ,4. 如图1-29-92-8是一个包装盒的三视图.(1)写出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)图1-29-92-8解:(1)这个几何体是圆柱.(2)体积是2 000π.A组5. 某几何体的三种视图是全等的,这个几何体可能是( C )A. 圆柱B. 圆锥C. 球D. 三棱柱,6. 如图1-29-92-9是某几何体的三视图,那么该几何体是( D )图1-29-92-9A. 球B. 正方体C. 圆锥D. 圆柱B组7. 已知某物体的三视图如图1-29-92-10,那么与它对应的物体是( B )图1-29-92-10,8. 某几何体的左视图如图1-29-92-11,则该几何体不可能是( D )图1-29-92-119. 如图1-29-92-12,这是一个几何体的三视图,根据图中数据计算这个几何体的侧面积.图1-29-92-12解:几何体的侧面积为10π.,10. 如图1-29-92-13是一个几何体的三视图,其中俯视图是等边三角形. (1)请写出这个几何体的名称; (2)求这个几何体的表面积.图1-29-92-13解:(1)这个几何体为三棱柱.(2)这个几何体的表面积为44 33(cm 2).C 组11. 某一几何体的三视图均如图1-29-92-14,则搭成该几何体的小立方体的个数为( C )图1-29-92-14A. 9B. 5C. 4D. 3,12. 几个相同的小正方体所搭成的几何体的俯视图和左视图如图1-29-92-15,则小正方体的个数最多是( B )图1-29-92-15A. 5个B. 7个C. 8个D. 9个第4课时投影与视图单元复习课知识点1:投影的定义及分类【例1】人往路灯下行走的影子变化情况是( A )A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长,1. 在阳光照射下的升旗广场的旗杆从上午十点到十二点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律知识点2:三视图【例2】下列几何体中,主视图、俯视图、左视图都相同的是( B )2. 如图1-29-93-1是某几何体的三视图,该几何体是( B )图1-29-93-1A. 三棱柱B. 长方体C. 圆锥D. 圆柱知识点3:三视图的相关计算【例3】已知圆锥的三视图如图1-29-93-2,则这个圆锥的侧面展开图的面积为( B )图1-29-93-2A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2,3. 如图1-29-93-3是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )图1-29-93-3A. 200 cm2B. 600 cm2C. 100πcm2D. 200πcm2知识点4:画三视图【例4】画出如图1-29-93-4的几何体的主视图、左视图和俯视图.图1-29-93-4答图29-93-1解:如答图29-93-1.4. 如图1-29-93-5的几何体是由棱长为1的正方体摆放成的形状. 请画出这个几何体的三视图.图1-29-93-5解:如答图29-93-2.答图29-93-2A组5. 在阳光下摆弄一个矩形,它的影子不可能是( C )A. 线段B. 矩形C. 等腰梯形D. 平行四边形,6. 下图的四幅图中,灯光与影子的位置合理的是( B )7. 如图1-29-93-6是一个几何体的主视图和俯视图,则这个几何体是( A )图1-29-93-6A. 三棱柱B. 正方体C. 三棱锥D. 长方体,8. 如图1-29-93-7的正六棱柱的主视图是( A )图1-29-93-7B组9. 用5个棱长为1的正方体组成如图1-29-93-8的几何体. 请在方格纸中用实线画出它的三个视图.图1-29-93-8解:如答图29-93-3.答图29-93-310. 某几何体从正面、左面、上面看到的平面图形如图1-29-93-9,其中从正面看到的图形和从左面看到的图形完全一样.(1)求该几何体的侧面面积(结果保留π);(2)求该几何体的体积(结果保留π).图1-29-93-9解:(1)该几何体的侧面面积为π·6×8=48π.(2)此圆柱体的体积为72π.C组11. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图1-29-93-10,则搭成该几何体的小正方体最多是7个.图1-29-93-1012. 如图1-29-93-11是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).图1-29-93-11答图29-93-4解:如答图29-93-4.。
人教版数学九年级下册第29章《投影与视图》课堂教学设计一. 教材分析人教版数学九年级下册第29章《投影与视图》是本册教材中的一个重要章节,主要介绍投影的概念、分类以及投影的基本性质。
通过本章的学习,使学生了解投影在数学、物理、艺术等领域的应用,培养学生的空间想象能力和抽象思维能力。
本章内容主要包括以下几个部分:1.投影的概念和分类2.正投影和斜投影3.投影的基本性质4.平行投影5.中心投影6.投影变换二. 学情分析学生在学习本章内容前,已经掌握了平面几何、立体几何的基本知识,具备了一定的空间想象能力和抽象思维能力。
但投影概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动形象的实例,引导学生直观地理解投影的概念,并通过大量的练习,使学生熟练掌握投影的性质和变换。
三. 教学目标1.了解投影的概念、分类和基本性质。
2.掌握正投影和斜投影的特点。
3.能够运用投影性质解决实际问题。
4.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.投影的概念和分类。
2.投影的基本性质。
3.投影变换。
五. 教学方法1.采用直观演示法,通过实物模型和多媒体动画,引导学生直观地理解投影的概念和性质。
2.运用讲解法,详细讲解投影的分类、基本性质和变换规律。
3.采用练习法,让学生在实践中巩固投影知识。
4.运用小组讨论法,培养学生合作学习的能力。
六. 教学准备1.投影仪、实物模型、多媒体动画。
2.投影习题、测验题。
3.投影实验材料。
七. 教学过程1.导入(5分钟)利用实物模型和多媒体动画,引导学生直观地了解投影的概念。
例如,用一个三角形模型在灯光下投影,让学生观察投影的特点。
2.呈现(10分钟)讲解投影的分类,包括正投影和斜投影。
通过示例,使学生了解正投影和斜投影的特点。
3.操练(10分钟)让学生进行投影练习,掌握投影的基本性质。
例如,让学生根据给定的物体,画出其正投影和斜投影。
4.巩固(10分钟)讲解投影变换,包括平行投影和中心投影。
人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
29.1投影(1)导学案【学习目标】1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别;3、学会关注生活中有关投影的数学问题,提高数学的应用意识.【学习重点】理解平行投影和中心投影的特征【学习难点】在投影面上画出平面图形的平行投影或中心投影【导学过程】一、合作学习,探究新知自学提纲:1、投影的定义:一般地,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2、投影的分类(1)平行投影①平行投影的定义:是平行投影.如物体在太阳光的照射下形成影子(简称日影)就是平行投影.②太阳光与影子的关系:物体在太阳光照射的不同时刻,不但影子的大小在变化,而且影子的方向也在变化.(2)中心投影①中心投影的定义:叫做中心投影.如物体在灯泡发出的光线照射下形成影子就是中心投影.②产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.(3)如何判断平行投影与中心投影:分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.二、教师点拨:例1:王丽和赵亮两个小朋友晚上在广场的一盏灯下玩,如图1,AB 的长表示王丽的身高,BM 表示她的影子,CD 的长表示赵亮的身高,DN 表示他的影子,请画出这盏灯的位置.例2:某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是【 】例3:如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度【 】A .增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米三、针对练习:1.探照灯、手电筒、路灯等的光线可以看成是从______个点发出的,像这样的光线所形成的投影称为________.2.投影可分为_____和_____;一个立体图形,共有_______种视图.图13.在太阳光的照射下,矩形窗框在地面上的影子常常是______形,在不同时刻,这些形状一般不一样.4.下列物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是()A.①②B.①③C.①②③D.①②⑤5.太阳发出的光照在物体上是______,车灯发出的光照在物体上是_____()A.中心投影,平行投影B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影6.下图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A、③④②①B、②④③①C、③④①②D、③①②④图17.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B 到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()A、4.8mB、6.4mC、8mD、10m8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A 、小明的影子比小强的影子长B 、小明的影子比小强的影子短C 、小明的影子和小强的影子一样长D 、无法判断谁的影子长9.某数学课外实验小组想利用树影测量树高.他们在同一时刻测得一身高为1.5m 的同学影长为1.35m ,因为大树靠近一幢建筑物,影子不会在地面上(如下图),他们测得地面部分的影长BC =3.6m ,墙上影长CD =1.8m ,则树高AB为 .10.张明同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米.当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约 米.11.如下图,晚上,小亮在广场上乘凉.图2中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯(P )照射下的影子;(2)如果灯杆高PO =12m ,小亮的身高AB =1.6m ,小亮与灯杆的距离BO =13m ,请求出小亮影子的长度.AB C DE12.一位同学身高1.6米,晚上站在路灯下,他身体在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,求路灯的高度.13.如图,现有m、n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被则两个同学发现(画图用阴影表示).14.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.29.1 投影(2)导学案【学习目标】1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影3、培养动手实践能力,发展空间想象能力。
【学习目标】(一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。
2、了解平行投影和中心投影的区别。
3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。
(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。
【学习重点】了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。
【学习准备】手电筒、三角尺、作图工具等。
【学习过程】【巩固练习】一、填空题1.物体在光线照射下,在地面或墙壁上留下的影子叫做它的_________.2.手电筒、路灯的光线可以看成是从_________发出的,它们所形成的投影是_________投影,而太阳光线所形成的投影是_________投影.3.将一个三角形放在太阳光下,它所形成的投影的形状是__________________.二、选择题4.小明从正面观察下图所示的两个物体,看到的是( )5.物体的影子在正北方,则太阳在物体的( )A.正北B.正南C.正西D.正东6.小明在操场上练习双杠时,发现两横杠在地上的影子( )A.相交B.平行C.垂直D.无法确定7.一只小狗在平面镜前欣赏自己(如图所示),它所看到的全身像是( )8.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.二、选择题10.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A.先变短后变长B.先变长后变短 C.逐渐变短D.逐渐变长11.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( ) A.③④②①B.②④③①C.③④①②D.③①②④12.如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径是1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积是( )A.0.36πm2B.0.81πm2C.2πm2D.3.24πm229.1投影(第二课时)【学习目标】1、进一步了解投影的有关概念。
第29章投影与视图单元复习导学案课题:第29章单元复习课型:复习执笔人:鞠盈崇使用时间:2011年3.7 审核人:教导主任签字:一、知识梳理学习目标:1. 了解投影的含义和种类,知道正投影概念,了解三视图的形成,,能画出简单组合体的三视图。
2. 能确定物体的平行投影和中心投影.会判断三视图。
重点:投影与视图含义和种类,并能进行判断。
难点:理解并掌握三视图的投影规律及平行投影和中心投影的判别。
学法指导:具体实物、小组讨论。
一.知识梳理(1)主视图:1.三视图(2)左视图:(3)俯视图:2.画三视图原则:长(),高(),宽();画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。
三个图的位置展示:(1)平行投影:平行光线照射形成的投影(如太阳光线)。
当平行光线垂直投影面时3.投影叫正投影。
三视图都是正投影。
2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)4.圆柱体的侧面展开图是矩形,这个矩形的长等于圆柱体的()这个矩形的宽(高)是圆柱体的(),圆柱体的主视图和左视图也是矩形,这个矩形的长等于圆柱体的(),这个矩形的宽(高)等于圆柱体的()。
2.圆锥体的侧面展开图是扇形,这个扇形的半径是圆锥体的(),这个扇形的弧长是圆锥体的(),圆锥体的主视图和左视图是(等腰三角形),这个等腰三角形的腰长等于圆锥体的(),这个等腰三角形的高等于圆锥体的()。
二、知识应用(一.)选择题1.下列各几何体三视图都是圆的是()A 球体B 圆锥C 圆柱D 圆台12.下图中是在太阳光线下形成的影子是()A B C D3.)ABCD4.)ACD5. 如右图由多块同样大小的正方体搭成的几何体的俯视图,则该几何体的主视图是( )A C D6. 如图分别由多块同样大小的正方体搭成的几何体的主视图和俯视图,则该几何体最少有( )块小正方体搭成的?A 5B 4C 3D 27.一个圆柱体的主视图是一个面积为12的矩形,则该圆柱体的侧面积为( )A 12B 12πC 6D 6π8. .如图一个几何体的主视图和左视图都是边长为1 的正三角形,俯视图是一个圆,那么这个几何体的全面积是( )A2π B π412+ C π422+ D43π2(二.)解答题9.两根竹竿AB CD 和他们在地面上的影子EB FD ,请在图中画出光源P 的位置。
第二十九章投影与视图29.1 投影第1课时平行投影与中心投影一、导学1.课题导入情景:放映电影《小兵张嘎》片段——小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏.问题:皮影戏里蕴含了一个什么数学原理呢?这就是我们这节课要研究的问题.(板书课题)2.学习目标(1)知道投影、投影面、平行投影和中心投影的概念.(2)能说出平行投影和中心投影的区别.3.学习重、难点重点:理解平行投影和中心投影的特征.难点:在投影面上画出平面图形的平行投影或中心投影.4.自学指导(1)自学内容:教材P87~P88练习上面的内容.(2)自学时间:5分钟.(3)自学方法:观察,阅读,思考.(4)自学参考提纲:①一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.②由平行光线形成的投影叫做平行投影,如太阳光是一组互相平行的射线,物体在它的照射下形成的影子,就是平行投影.③由同一点(点光源)发出的光线形成的投影叫做中心投影.④平行投影的光源一般有探照灯,其光线是平行的;中心投影的光源有灯泡,其光线相交于一点.⑤有两根木棒AB、CD在同一平面上直立着,其中木棒AB在太阳光下的影子为BE(如图所示),请你在图中画出这时木棒CD的影子.解:如图所示,DF为木棒CD的影子.⑥确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.⑦下列现象中是投影现象的有CD(填序号)A.电视上的画面B.电影屏幕上的画面C.地上旗杆的影子D.墙上的树影E.水中的月亮⑧下列光源发出的光线形成的投影是平行投影的是(B)A.车头灯B.太阳C.蜡烛D.路灯⑨把下列物体与它们的投影用线连接起来.⑩小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是小华在下午拍摄的?第三幅照片.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否区分平行投影和中心投影.(2)差异指导:根据学情进行个别或分类指导.2.生助生:生生互动、交流、研讨、订正错误.四、强化1.平行投影和中心投影的概念及其联系和区别.2.展示自学参考提纲第⑤、⑥题的答案并讲解,点学生口答自学参考提纲第⑦~⑩题并点评.五、评价1.学生学习的自我评价:这节课你学到了哪些知识?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、效果及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,增强学生的抽象概括能力.对于空间观念不强的学生,可借助太阳光线进行投影实例帮助理解,这样不仅直观而且富有真实感,也能激发学生的学习兴趣.一、基础巩固(70分)1.(10分)皮影戏中的皮影是由中心投影得到的.2.(10分)下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是(C)A.abcdB.dbcaC.cdabD.acbd3.(10分)小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是(A)A B C D4.(20分)下面两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由.解:第(1)幅图为平行投影,因为其投影线互相平行;第(2)幅图为中心投影,因为其投影线相交于一点.5.(20分)小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,在某时刻标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一条直线上),量得ED=2米,DB=4米,CD=1.5米,求电线杆AB的高度.解:∵CD∥AB,∴△ECD∽△EAB,∴CD ED AB EB=,即.AB=1526.解得AB=4.5(米).∴电线杆AB的高度是4.5米.二、综合应用(20分)6.(20分)如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?解:影子的长度变短了.∵CA∥PO,∴△MCA∽△MPO,∴CA MA PO MO=,即.MAMA=+16820,解得MA=5(米).同理DB BN PO ON=,即.BNBN=+16820,解得BN=1.5(米).5-1.5=3.5(米).所以变短了3.5米.三、拓展延伸(10分)7.(10分)某校墙边有两根木杆.(1)某一时刻甲木杆在阳光下的影子如图1所示,你能画出乙木杆的影子吗?(用线段表示影子)(2)当乙木杆移动到什么位置时,其影子刚好不落在墙上? 在图2中画出木杆移动后的位置及其影子.29.1 投影第2课时正投影一、新课导入1.课题导入下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影?哪个是中心投影? 图(2) (3)的投影线与投影面的位置关系有什么区别?像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.这节课我们研究正投影.(板书课题)2.学习目标(1)知道什么是正投影.(2)能画出简单物体的正投影.3.学习重、难点重点:正投影的概念及性质.难点:正确画出简单物体的正投影.二、分层学习1.自学指导(1)自学内容:教材P88~P90归纳.(2)自学时间:8分钟.(3)自学方法:观察、归纳.(4)探究提纲:①投影线垂直于投影面产生的投影叫做正投影.②如图所示:当AB平行于投影面P时,AB=A1B1;当AB倾斜于投影面P时,AB>A2B2;当AB垂直于投影面P时,它的正投影是一个点.③如图所示:当纸板P平行于投影面Q时,P的正投影与P的形状、大小一样;当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小不完全一样;当纸板P垂直于投影面Q时,P的正投影成为一条线段.④物体的正投影的形状、大小与它相对于投影面的位置有关.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:观察学生探究提纲的完成情况和是否理解正投影的性质.②差异指导:根据学情进行相应指导,条件许可时,还可通过实验验证.(2)生助生:小组相互交流、研讨.4.强化:正投影的性质.1.自学指导(1)自学内容:教材P90~P92.(2)自学时间:10分钟.(3)自学方法:仔细阅读例题的分析和解题过程,体会画正投影的操作要点.(4)自学参考提纲:①教材P90例题第(1)问中,面ABCD和与它平行的面的正投影重合,投影都是正方形A′B′C′D′,其余四个面都与投影面垂直,所以它们的正投影分别是线段A′B′,B′C′,C′D′,A′D′.②例题第(2)问中,面ABCD和面CDEH的正投影重合,投影都是矩形A′B′C′D′,面ABGF和面GHEF的正投影重合,投影都是矩形A′B′G′F′,面ADEF的正投影是线段D′F′,面BCHG的正投影是线段C′G′;棱AB 和棱HE的正投影重合,投影都是线段A′B′,棱GF的正投影是线段G′F′,棱CD的正投影是线段C′D′.③如图,投影线的方向如箭头所示,画出圆柱体的正投影.2.自学:学生参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:观察学生能否画出简单物体的正投影.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:物体正投影的画法.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?掌握了哪些解题技能?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时是在上一课时的基础上进一步学习投影的有关知识.教学时要注意让学生自己动手操作,学生在经历观察、探究、思考、归纳的过程中,掌握正投影的特征.教师在教学过程中应注意让学生在实际操作中发现问题,教师对于学生的疑问要进行收集并及时解答,另外还要充分提升学生的空间想象力.一、基础巩固(70分)1.(10分) 如图,投影线的方向如箭头所示,则图中圆柱体的投影是(B)A.圆B.矩形C.梯形D.圆柱2.(10分)一条线段在阳光下的投影可能是(D)①线段②射线③直线④点A.①③B.②③C.①②D.①④3.(10分)三角形的正投影是(D)A.三角形B.线段C.直线或三角形D.线段或三角形4.(10分)当棱长为20 cm正方体的某个面平行于投影面时,这个正方体的正投影的面积为(C)A.20 cm2B.300 cm2C.400 cm2D.600 cm25.(10分)有一个窗户是田字形,阳光倾斜的照进窗户,地面便现出它的影子,你认为可能为窗户的影子的是(D)①②③④A.④B.②④C.①②D.①③6.(20分)水平面上放置的球、正三棱锥、竖直放置的圆锥和水平放置的圆柱在水平面上的正投影分别是圆、正三角形、圆、矩形.二、综合应用(20分)7.(10分)如图是由上到下的光线照射一个正五棱柱的正投影,请你指出这时正五棱柱的各个面的正投影分别是什么.解:上下表面的正投影相同,是正五边形;五个侧面的正投影都是一条线段.8.(10分)一个圆锥的轴截面平行于投影面,它的正投影是边长为3的等边三角形.求圆锥的体积和表面积.解:圆锥的体积:ππ⎛⎫⨯⨯⨯= ⎪⎝⎭21339333228;圆锥的表面积:πππ⎛⎫⨯+⨯⨯= ⎪⎝⎭2312733224.三、拓展延伸(10分)9.(10分)画出如图摆放的正六棱柱的正投影: (1)投影线由物体前方照射到后方; (2)投影线由物体左方照射到右方; (3)投影线由物体下方照射到上方. 解:29.2三视图第1课时三视图一、新课导入1.课题导入情景:展示图片,如图是从三个方向看我国海军115导弹驱逐舰的图象,你能根据这三个图象,想象出该舰的大致形状吗?这三个图象就是该舰的三视图.(板书课题)2.学习目标(1)了解视图、三视图的概念.(2)能说出三视图与正投影的关系及三视图中的位置、大小关系.3.学习重、难点重点:三视图的概念.难点:三个视图之间的关系.二、分层学习1.自学指导(1)自学内容:教材P94~P96例1上面的内容.(2)自学时间:5分钟.(3)自学方法:阅读、观察、理解、想象.(4)自学参考提纲:①当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图.②一个物体在三个互相垂直的投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.③三视图的摆放:主视图要放在左上方,它的正下方应是俯视图,它的正右方应是左视图.④主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.⑤画三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.⑥将图中的几何体与其对应的三视图用线连起来.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否弄清三视图的含义及其画法要求.②差异指导:根据学情确定指导对象和内容.(2)生助生:小组内相互交流、研讨.4.强化:点一名学生口答自学参考提纲第⑥题并点评.1.自学指导(1)自学内容:教材P96~P97.(2)自学时间:8分钟.(3)自学方法:阅读、理解例题中分析部分的内容.(4)自学参考提纲:①画三视图的方法:第一步,确定主视图的位置,画出主视图;第二步,在主视图正下方画出俯视图,注意与主视图长对正;第三步,在主视图正右方画出左视图,注意与主视图高平齐,与俯视图宽相等.②为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线表示对称轴.③画出如图所示的正三棱柱、圆锥和半球的三视图.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否能按画三视图的要求准确地画出三视图.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内相互交流、研讨.4.强化(1)画三视图的方法.(2)点3名学生板演自学参考提纲第③题并点评.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?还存在什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时的教学应在教师的指导下由学生自己动手作图,观察、发现并归纳三视图的基本要点,明确主视图反映的是物体的长和高,俯视图反映的是物体的长和宽,左视图反映的是物体的宽和高.“长对正,高平齐,宽相等”是画三视图必须遵从的规律.一、基础巩固(70分)1.(10分)下列几何体中,主视图、左视图和俯视图是全等形的几何体是(B )A.圆柱B.正方体C.棱柱D.圆锥2.(10分)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D )3.(10分)如图是小亮送给他外婆的礼品盒,礼品盒的主视图是(A )4.(10分)某长方体的主视图和左视图如图所示(单位:cm),则其俯视图是面积为6cm2的长方形.5.(30分)画出下列几何体的三视图:解:二、综合应用(20分)6.(20分)分别画出图中由7个小正方体组合而成的几何体的三视图.解:三、拓展延伸(10分)7.(10分)分别画出下面组合体的三视图. 解:29.2 三视图第2课时由三视图确定几何体一、导学1.课题导入情景:根据下图中的椅子的视图,工人就能制造出符合设计要求的椅子.你能说明其中的数学道理吗?由于三视图不仅反映了物体的形状,还反映了各个方向的尺寸大小,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等,因此三视图在许多行业有着广泛的应用.这节课我们研究由三视图想象几何体的问题.(板书课题)2.学习目标能由三视图描述几何体的基本形状或实物原型.3.学习重、难点根据物体的三视图描述出几何体的基本形状或实物原型.4.自学指导(1)自学内容:教材P98~P99例3和例4.(2)自学时间:8分钟.(3)自学方法:阅读、观察、归纳.(4)自学参考提纲:①由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.②教材P98例4中,由主视图知,物体的正面是正五边形;由俯视图知,由上向下看物体有两个面的视图是矩形,它们的交线是一条棱,可见到,另有两条棱被遮挡;由左视图知,物体的左侧有两个面的视图是矩形,它们的交线是一条棱,可见到.综合各视图可知,该物体是正五棱柱形状的.③由三视图想象实物形状:④根据三视图描述物体的形状:这是一个由半圆柱(上部)和长方体(下部)组合而成的几何体.⑤下图是由几个小立方体所搭成的几何体的主视图和俯视图,小正方形中的数字表示该位置上的小立方体的个数.确定x、y的值;完成这个几何体的左视图.x=3,y=2;这个几何体的左视图如图所示.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否根据三视图发挥自己的想象得到相应的实物原型.(2)差异指导:根据学情对学困生进行个别或分类指导.2.生助生:小组内相互交流、研讨、订正.四、强化1.解题要领.2.点4名学生展示自学参考提纲第③题,然后老师给出点评;点2名学生口答自学参考提纲第④、⑤题并点评.五、评价1.学生学习的自我评价:这节课你有哪些收获?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时教学要充分发挥学生的空间想象能力和动手能力,对于一些较复杂的立体图形,可借助多媒体进行展示,使图形变得更加直观.根据物体的三视图想象物体的形状,可由俯视图确定物体在平面上的形状,然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.鼓励学生多想、多练,提高自己的空间想象能力.一、基础巩固(70分)1.(10分)一个立体图形的三视图是一个正方形和两个长方形,则这个图形是(B )A.正方体B.长方体C.四面体D.四棱锥2.(10分)若一个物体的俯视图是圆,则这个物体可能的形状是(D)①球②圆柱③圆锥A.①B.②C.①②D.①②③3.(10分)在下面的四个几何体中,它们各自的左视图与主视图不一样的是(B)A B C D4.(10分)如图是一个几何体的三视图,则该几何体的形状为正六棱柱.第4题图第5题图5.(10分)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是 4 .6.(10分)如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的有a、b、c、e、f .图①图②7.(10分)某几何体的三视图如图所示,画出该几何体.解:如图所示.二、综合应用(20分)8.(10分)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,俯视图如图所示,则此工件的左视图是(A)9.(10分)右图表示一个由相同小立方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方体的个数,则该几何体的主视图是(C)三、拓展延伸(10分)10.(10分)由5个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体有几种搭法?解:一共有3种搭法.29.2 三视图第3课时由三视图确定几何体的表面积或体积一、导学1.课题导入问题:某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).这节课我们研究根据物体的三视图求其平面展开图形的面积问题.2.学习目标能由三视图想象立体图形,由立体图形想象其平面展开图并计算图形面积.3.学习重、难点重点:根据三视图描述基本几何体或实物原型.难点:知识的综合运用.4.自学指导(1)自学内容:教材P99~P100例5.(2)自学时间:10分钟.(3)自学方法:阅读、理解例题中的分析部分.(4)自学参考提纲:①如图所示是一个立体图形的三视图,则该立体图形是圆锥.②一张桌子摆放若干碟子,其三视图如图所示,则这张桌子上共有12 个碟子.③某几何体的三视图如图所示,那么这个几何体可能是(B)A.长方体B.圆柱C.圆锥D.球④某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm,底面正六边形的直径100 mm,边长为50 mm.画出它的展开图:由展开图可知,制作一个密封罐所需钢板的面积为6个侧面与2个底面的面积和,即:6×50×50+2×6×12×50×50sin60°=6×502×(1+32)≈27990(mm2)⑤某工厂加工一批无底帐篷,设计者给出了帐篷的三视图,请你按照三视图确定每顶帐篷的表面积(图中尺寸单位:cm).(结果保留π)300×π×200+12×240×300×π=96000π(cm2).二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生自学参考提纲的答题情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化总结交流解决例题的思路:(1)由三视图想象实物形状;(2)由实物图再结合三视图分析出实物图中各已知量,并画出其平面展开图;(3)根据平面展开图计算表面积.五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课由学生日常生活中的实例引入,让学生在认识三视图、探索由三视图求物体表面积或体积的过程中,深切体会到数学知识来源于生活、运用于生活.教师引导学生进行合理的探索,培养学生的空间想象能力和整体思维能力.一、基础巩固(70分)1.(10分)右图是一个多面体的表面展开图,那么这个多面体是(C)A.四棱柱B.四棱锥C.三棱柱D.三棱锥2.(10分)一个几何体的三视图如图所示,那么这个几何体的侧面积是(B )A.4π cm2B.6π cm2C.8π cm2D.12π cm2第2题图第3题图3.(10分)如图是一个包装盒的三视图,则这个包装盒的体积是(C)A.1923cm3B.11523cm3C.2883cm3D.3843cm34.(20分)根据展开图,画出这个物体的三视图,并求出这个物体的体积和表面积(图中尺寸单位:cm,结果保留π).解:体积:20×π×(102)2=500π(cm3).表面积:2×π×(102)2+20×10×π=50π+200π=250π(cm2).第4题图第5题图5.(20分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积.解:4×π×6×12+π×(42)2=12π+4π=16π(cm2).二、综合应用(20分)6.(20分)根据三视图,画出这个几何体的展开图,并求几何体的表面积.解:20×10×π+12×10×π×(2255)+π×(102)2=225π+252π=(225+252)π.三、拓展延伸(10分)7.(10分)如图是一个几何体的三视图,根据所示数据,求该几何体的侧面积和体积.解:侧面积:32×20×π+(40×30+40×25)×2=(640π+4400)(cm2).体积:32×π×(202)2+40×30×25=(3200π+30000)(cm3).29.3 课题学习制作立体模型一、导学1.课题导入问题:怎样由视图转化为立体图形?这节课我们通过动手实践来体会这个过程.2.学习目标(1)体验平面图形向立体图形转化的过程.(2)体会用三视图表示立体图形的作用.(3)进一步感受平面图形与立体图形之间的关系.3.学习重、难点重点:根据三视图制作立体模型.难点:具体操作.4.自学指导(1)自学内容:教材P105~P106.(2)自学时间:30分钟.(3)自学方法:准备刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯等参与活动.(4)课题活动参考提纲:①以硬纸板为主要材料,分别做出下面的两组三视图所表示的立体模型.图1 图2②按照下面给出的两组三视图,用马铃薯做出相应的实物模型.图3 图4③下面每组平面图形都是由四个等边三角形组成.a.其中哪些可以折叠成多面体,把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;b.画出由上面图形能折叠成的多面体的三视图,并指出图中是怎样体现“长对正,高平齐,宽相等”的;c.如果上图中小三角形的边长都是1,那么对应的多面体的表面积是多少?(3cm2)④下面的图形由一个扇形和一个圆组成.a.把上面的图形描在纸上,剪下来,围成一个圆锥.b.画出由上面图形围成的圆锥的三视图.c.如果上图中扇形的半径为13 cm,圆的半径为5 cm,那么对应的圆锥的体积是多少?1 3×π×52×221353).⑤结合具体实例,写一篇介绍三视图、展开图的应用的短文.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生具体操作中的情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化1.由三视图想象实物形状.2.由展开图折叠立体图形,再制作模型. 五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思).本节课的核心是学生动手实践,通过动手完成立体模型的制作过程,体验平面图形如何向立体图形转化和用三视图表示立体图形的作用,进一步感受平面图形与立体图形之间的联系.明白知识来源于实践、观察是得到知识的重要途径的道理.通过创设问题情境,让学生主动参与,激发学生的学习热情和兴趣,激活学生的思维.一、基础巩固(70分)1.(10分)某几何体的三视图如图所示,则这个几何体是(A )2.(10分)下列平面展开图是由5个大小相同的正方形组成的,其中沿正方形的边不能折成无盖小方盒的是(B )A B C D3.(10分)如图,在长方形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,求y与x 的函数式是y x π⎛⎫=+ ⎪⎝⎭122.。
第二十九章投影与视图本章的主要内容包括:1.投影的基础知识,包括投影、平行投影、中心投影、正投影等概念以及正投影的成像规律.2.视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形(包括相应的表面展开图)与它的三视图的相互转化.全章共包括三节:29.1投影;29.2三视图;29.3课题学习制作立体模型.第一节首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同的位置关系时的正投影.可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的.第二节讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化.这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系.第三节安排了观察、想象、制作相结合的实践活动——“课题学习制作立体模型”,这是结合实际,动脑与动手并重的学习内容,进行这个课题学习既可以采用独立完成的形式,也可以采用合作学习的方式.应该把这个课题学习看作是对前面学习的内容是否切实理解并掌握以及能否灵活运用的一次联系实际的检验.本章内容与其他章有较为明显的区别,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算.1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质.2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力.3.通过制作立体模型的课题学习,在实际动手的过程中进一步加深对投影和视图知识的认识,加强在实践活动中手脑结合的能力.本章教学约需5课时,具体分配如下:29.1 投影2课时29.2 三视图2课时29.3 课题学习制作立体模型1课时29.1投影第1课时投影(1)知识与技能1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.了解平行投影和中心投影的区别.过程与方法使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.情感、态度与价值观理解现实生活中影子的现象,学会用数学知识解答.重点理解平行投影和中心投影的特征.难点在投影面上画出平面图形的平行投影或中心投影.一、问题引入你看过皮影戏吗?皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.你知道皮影戏所用的原理吗?二、新课教授问题1.如图所示的图片是物体在生活中的几个图片,请同学们考虑它们是怎样得到的.教师出示图片,引导学生观察图片的形成,让学生感受在日常生活中的一些投影现象.师生共同总结,一起感受.物体在日光或灯光的照射下,会在地面、墙壁等处形成影子,它既与物体的形状有关,也与光线的照射方式有关.问题2.通过观察和自己的认识,你是怎样理解图片的含义的?师生共同总结:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.问题3.请同学们观察下图的投影过程,它们的投影过程有什么不同?师生活动:教师引导学生从两个方面考虑,第一,观察光线的特点;第二,观察照射的方式.结论:图(1)中的投影线集中于一点,由同一点(点光源)发出的光线形成的投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.图(2)、(3)中,投影线是互相平行的射线,由平行光线形成的投影是平行投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.问题4.请观察问题3中的图,说说平行投影和中心投影有什么相同点与不同点?教师出示表格,要求学生完成.平行投影与中心投影的区别与联系:区别光线物体与投影面平行时的投影联系平行投影平行的投影线全等中心投影从一点发出的投影线放大都是物体在光线的照射下,在某个平面内形成的影子.(即都是投影)三、例题讲解例(1)地面上直立一根标杆AB,如图,杆长为2 cm.①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?画出投影示意图.(2)一个正方形纸板ABCD和投影面平行(如图),投影线和投影面垂直,点C在投影面的对应点为C′,请画出正方形纸板的投影示意图.(3)下面两幅图表示两根标杆在同一时刻的投影,请在图中画出形成投影的光线.它们是平行投影还是中心投影?说明理由.解:(1)①一点②线段(图略)(2)图略(3)分别连接标杆的顶端与投影上的对应点,很明显,图(1)的投影线互相平行,是平行投影.图(2)的投影线相交于一点,是中心投影.四、巩固练习1.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.线段D.以上都有可能答案D2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长答案D五、课堂小结1.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影.2.由同一点(点光源)发出的光线形成的投影叫做中心投影.3.太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.4.物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变.本节课我让学生通过实践、观察、探索了解平行投影、中心投影的含义,学会辨别光源是太阳光线还是灯光光线,学会进行中心投影条件下的物体与其投影之间的相互转化,感悟灯光与影子在现实生活中的应用价值.第2课时投影(2)知识与技能了解正投影的概念;能根据正投影的性质画出简单的平面图形的正投影.过程与方法培养动手实践能力及空间想象能力.情感、态度与价值观学会观察,理解原理,增强自信心.重点理解正投影的含义并能根据正投影的性质画出简单的平面图形的正投影.难点归纳出正投影的性质,正确画出简单平面图形的正投影.一、复习引入1.回忆复习平行投影、中心投影的概念.由同一点(点光源)发出的光线形成的投影叫做中心投影;太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.2.下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图(1)中的投影线集中于一点,形成中心投影;图(2)、(3)中,投影线互相平行,形成平行投影.二、新课教授问题1.图(2)、(3)的投影线与投影面的位置关系有什么区别? 教师出示图片,引导学生观察图片的特征.结论:图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影;如果投射线不垂直于投影面,那么这种投影就称为斜投影.问题2.通过学习,我们对投影应如何分类?物体――→光照投影⎩⎨⎧――→点光源中心投影――→平行光线平行投影⎩⎪⎨⎪⎧正投影斜投影 探究1.如图,把一根直的细铁丝(记为线段AB)放在三个不同的位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点). 三种情形下,铁丝的正投影各是什么形状?通过观察,我们可以发现:(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段与它的投影的大小关系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段与它的投影的大小关系为AB>A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点A 3. 探究2.如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面.结论:(1)当纸板P 平行于投影面Q 时,P 的正投影与P 的形状、大小一样; (2)当纸板P 倾斜于投影面Q 时,P 的正投影与P 的形状、大小发生变化;(3)当纸板P垂直于投影面Q时,P的正投影成为一条线段.归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.三、例题讲解例画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P,如图(1);(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P,如图(2).解:(1)如图,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系;(2)如图,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线的长,矩形的宽等于正方体的棱长.矩形上、下两边中点的连线A′B′是正方体侧棱即它所对的另一条侧棱AB的投影.四、巩固练习1.(1)在一天中,从早晨到傍晚物体的影子由正西向________、________、________和正东方向移动;(2)如图是小明在学校时上午、下午看到的学校操场上的旗杆的影子的俯视图,将它们按时间顺序进行排列为________.答案(1)西北正北东北(2)C,D,B,A2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )答案D五、课堂小结1.在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影;如果投射线不垂直于投影面,那么这种投影就称为斜投影.2.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3.投影的分类:物体――→光照投影⎩⎨⎧――→点光源中心投影――→平行光线平行投影⎩⎪⎨⎪⎧正投影斜投影本节课首先探究正投影的概念,然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律.最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影.可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的.29.2 三视图第1课时 三视图(1)知识与技能会从投影的角度理解视图的概念,进一步明确正投影与三视图的关系. 过程与方法培养动手实践能力及空间想象能力. 情感、态度与价值观经历探索简单立体图形的三视图的画法的过程,能识别物体的三视图.重点简单立体图形的三视图的画法. 难点三视图中三个位置关系的理解.一、问题引入如图所示,直三棱柱的侧棱与水平投影面垂直,请与同伴一起探讨下面的问题:1.以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形? 2.画出直三棱柱在水平投影面上的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?这个水平投影能完全反映这个物体的形状和大小吗?如果不能,那么还需哪些投影面? (物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影.)二、新课教授 如图(1),我们用三个互相垂直的平面作为投影面,其中正对着我们的面叫做正面,正面下方的面叫做水平面,右边的面叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图、俯视图和左视图组成).三视图中的各视图,分别从不同方向表示物体,三者结合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正、主视图与左视图的高平齐、左视图与俯视图的宽相等.师:通过以上的学习,你有什么发现?物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图.三、例题讲解例1 画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图.2.在主视图正下方画出俯视图,注意与主视图“长对正”.3.在主视图正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.解:例2 画出如图所示的支架(一种小零件)的三视图.解:如图是支架的三视图:四、巩固练习一个正六棱柱高2 cm,底面是边长为1.5 cm的正六边形,先说说它在正面、水平面、侧面三个方向的正投影分别是什么图形,然后画出它的三视图.答案五、课堂小结1.画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰.2.在画三视图时,三个视图不要随意乱放,应做到俯视图在主视图的下方、左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等.本节课的教学设计,力求突出具体、生动、直观,因此,学生多以操作、观察实物模型和图片等活动为主,比如正方体在不同位置时的正投影.归纳出物体三视图的概念,并能根据此规律画出简单的立体几何图形的三视图.在介绍三视图时,若条件允许,可采用试验的方法进行实例的观察,这样不仅直观而且富有真实感.第2课时三视图(2)知识与技能学会根据物体的三视图描述出几何体的基本形状或实物原型.过程与方法经历探索简单的几何体的三视图的还原过程,进一步发展空间想象能力.情感、态度与价值观了解将三视图转换成立体图在生活中的作用,使学生体会到所学的知识有重要的实用价值.重点根据三视图描述基本几何体和实物原型及三视图在生活中的作用.难点根据物体的三视图描述出几何体的基本形状或实物原型.一、问题引入1.画一个立体图形的三视图时要注意什么?(三个视图要放在正确的位置,并且使主视图与俯视图的长对正、主视图与左视图的高平齐、左视图与俯视图的宽相等.)2.做一做:画出下面几何体的三视图.二、新课教授例1 根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.解:(1)从三个方向看立体图形,图像都是矩形,可以想象出:整体是长方体,如图(a)所示;(2)从正面、侧面看立体图形,图像都是等腰三角形;从上面看,图像是圆,可以想象出:整体是圆锥,如图(b)所示.例2 根据物体的三视图(如图)描述物体的形状.分析:由主视图可知,物体的正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到,两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的,且有一条棱(中间的实线)可见到,综合各视图可知,物体是五棱柱形状的.解:物体是五棱柱形状的,如下图所示.例 3 某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形,即展开图.在实际的生产中,三视图和展开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图,从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱.(如图(左)).密封罐的高为50 mm ,底面正六边形的直径为100 mm ,边长为50 mm ,右图是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50×32=6×502×(1+32) ≈27 990(mm 2).三、巩固练习如图所示的图形是一个多面体的三视图,请根据视图说出该多面体的具体名称.答案正四棱锥四、课堂小结1.一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.2.一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性.例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.3.对于较复杂的物体,由三视图想象出物体的原型,应理解并掌握三个视图之间的前后、左右、上下的对应关系.本节课的教学,以课程标准为指南,结合学生的已有知识和经验而设计.重点讲解由三视图判断几何体的结构特征,也就是画三视图时尺寸不作严格要求.教学设计时使用了大量的图片,建议在实际应用时尽量使用信息技术,如画法几何,让学生从动态过程中获得三视图的感性认识,以便从整体上把握三视图的画法.29.3课题学习制作立体模型知识与技能1.通过实际动手进一步加深对投影和视图知识的认识.2.加强在实践活动中手脑结合的能力.3.体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.过程与方法1.通过创设情境让学生自主探索立体图形的制作过程.2.通过自主探索、合作研究讨论使学生加深对投影和视图的认识.3.制作模型,体会由平面图形转化为立体图形的过程与乐趣.情感、态度与价值观1.通过创设问题情境使学生感受平面图形与立体图形的关系.2.通过参与数学实践培养合作探索的精神和尊重理解他人想法的学习品质.3.通过动手实践活动培养学生的创新意识与创造发明的意识.重点让学生亲自经历规律的发现、深入研究、应用的过程.难点学生通过手工制作实现理论与实践的结合;在探索解决实际问题的过程中,养成科学的研究态度.一、问题引入请学生回答下列两个问题:1.主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.答案长高长宽宽高2.下面是一个立体图形的三视图,请在括号内填上立体图形的名称( )答案圆柱体二、新课教授活动一:根据三视图制作原实物.师:以硬纸板为主要原材料,分别做出下面的两组视图所表示的立体模型.师:用硬纸板制作各面,围成立体图形.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发他们继续学习的兴趣.活动二:根据三视图制作实物模型.师:按照下面给出的两组视图,用马铃薯(或萝卜)制作相应的实物模型.生:学生动手制作,实际动手制作立体物品有利于培养学生的空间想象能力.师:(1)是圆锥,(2)是直五棱柱,它的底面五边形中有三个直角.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发学习的兴趣.活动三:根据平面图形制作相应的实物图.师:下面的每一组平面图形都是由四个等边三角形组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面的图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?(1) (2) (3)师:(1)和(3)可折叠成正四面体,正四面体的体积为212,表面积为 3.活动四:课题拓广.三视图和展开图都是与立体图形有关的平面图形,利用课余时间去观察了解或者上网查询了解,结合我们的生活实际和具体的事例,写一篇短文介绍三视图及展开图的应用以及你的感受.三、巩固练习1.小明从正面观察下图所示的两个物体,看到的是( )答案C2.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )答案B3.如图是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是( )A.北B.京C.欢D.迎答案C四、课堂小结从技能上说,认识平面图形与立体图形的联系,有助于根据需要实现它们之间的相互转化,即学会画三视图和由三视图得出立体图形.从能力上说,认识平面图形与立体图形的联系,对于培养空间想象能力是非常重要的.本节是结合实际问题动手与动脑并重的学习内容.“观察、想象、制作、交流”相结合是本节中的主要实践活动.设计这个课题学习的目的是:(1)在具体问题中,对是否切实理解掌握前面学习的三视图的内容以及能否灵活运用知识的一次检验;(2)是采用独立完成与合作学习相结合的方式,使同学之间相互讨论、互助互学,增强协作能力,增进感情.。
人教版九年级数学下册《第二十九章投影与视图》教学设计一. 教材分析人教版九年级数学下册《第二十九章投影与视图》是学生在学习了平面几何、立体几何等相关知识后,对三维空间进行进一步探索的一章。
本章主要内容有:三视图、斜二测画法、简单几何体的直观图等。
通过本章的学习,使学生掌握投影的基本原理,提高学生的空间想象能力,培养学生运用几何知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何、立体几何有一定的了解。
但学生在空间想象力方面存在差异,部分学生对三维空间的认知仍较为困难。
此外,学生在学习过程中,往往对理论知识较感兴趣,但对实际操作、动手能力培养方面略显不足。
三. 教学目标1.理解投影的概念,掌握正投影、斜投影的性质及作法。
2.学会用三视图观察几何体,提高空间想象力。
3.掌握斜二测画法,能运用斜二测画法画出简单几何体的直观图。
4.能运用投影与视图的知识解决实际问题。
四. 教学重难点1.投影的基本原理及正投影、斜投影的性质。
2.三视图的作法及应用。
3.斜二测画法的原理及应用。
五. 教学方法1.采用讲授法,讲解投影的基本原理,正投影、斜投影的性质。
2.采用示范法,展示三视图的作法,引导学生动手实践。
3.采用案例分析法,分析实际问题,培养学生运用投影与视图知识解决问题的能力。
4.采用小组讨论法,分组探讨,提高学生的合作能力。
六. 教学准备1.准备投影仪、几何模型等教具。
2.制作多媒体课件,包括投影原理、三视图作法等教学内容。
3.准备实际问题案例,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用投影仪展示几何模型,引导学生观察,提出问题:“请大家思考,这个几何体在投影过程中,会呈现出哪些特点?”从而引出投影的概念。
2.呈现(10分钟)讲解正投影、斜投影的性质,通过多媒体课件展示各种几何体在正投影、斜投影下的图像,让学生直观地理解投影的性质。
3.操练(10分钟)讲解三视图的作法,引导学生动手实践,尝试绘制简单几何体的三视图。
27复习学案【学习目标】2.培养空间想象能力.【重点难点】重点:利用相似三角形的知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、投影:(1)定义:一般地,用光线照射物体,在某个平面上得到的__________叫做物体的投影.(2)平行投影:由__________形成的投影.中心投影:由__________发出的光线形成的投影.(3)正投影:投影线__________投影面时产生的投影.2、三视图:在正面内得到的由前向后观察物体的视图,叫做_________.在水平面内得到的由上向下观察物体的视图,叫做_________.在侧面内得到的由左向右观察物体的视图,叫做_________.大小关系:长_________,宽_________,高_________3、面积公式:(1)圆锥:侧面积_________,全面积_________.体积_________.(2)圆柱:侧面积_________,全面积_________.体积_________.(3)边长为a正六边形的面积_________.【综合运用】1.已知两棵小树在同一时刻的影子,你如何确定影子是在太阳光线下还是在灯光的光线下形成的:第1题图2.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )第2题图3.如图是某一几何体的三视图,则该几何体是( )第3题图4.某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为( )第4题图【矫正补偿】1.如图1,CD是木杆在阳光下的影子如图2,点P是影子的光源,EF就是人在光源下的影子第1题图2.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积是多少?第2题图【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?29复习学案答案综合运用:1.略2.D3. 圆柱4.6π矫正补偿:1.略2. 32。
第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。
2、空间观念的形成是一个长期的过程。
本章是第七章内容的继续和发展。
二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。
2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。
3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。
4、能由三视图想象简单几何体。
难点:几何体与其投影的关系及由三视图想象几何体。
三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。
2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。
3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。
4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。
5、通过三视图的学习,培养学生识图、画图的基本技能。
6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。
四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。
很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。
在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。
(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。
第二十九章投影与视图教材简析本章的主要内容有:(1)平行投影、中心投影的概念和简单应用以及正投影的成像规律;(2)三视图的概念、画法以及根据三视图描述基本几何体或实物原型;(3)直棱柱、圆锥的侧面展开图,以及根据平面展开图判断和制作立体模型.本章内容在数学学习中起着承上启下的作用,学生已经学习过“图形的初步知识”“图形和变换”等几何知识,在此基础上本章继续研究“投影与视图”,它是反映空间观念的重要内容,也为高中学习立体几何作了铺垫.教学指导【本章重点】1.掌握平行投影和中心投影的简单应用.2.会画简单图形的三视图.3.能根据三视图描述基本几何体或实物的原型.【本章难点】根据三视图描述基本几何体或实物原型,理解基本几何体与其三视图、展开图之间的联系,通过典型实例知道这种关系在现实生活中的应用.【本章思想方法】1.体会转化思想.在本章的学习中,把立体图形的问题通过三视图转化为平面图形的问题,实物的投影也是立体图形与平面图形的相互转化,这都体现了转化思想.同时还要注重空间想象力的培养.2.体会方程思想.在根据平行投影或中心投影的性质,结合三角形建立比例式构造方程进行相关计算时,体现了方程思想的应用.课时计划29.1投影2课时29.2三视图3课时29.3课题学习制作立体模型1课时29.1投影第1课时投影教学目标一、基本目标【知识与技能】1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.【过程与方法】通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.【情感态度与价值观】使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.二、重难点目标【教学重点】理解平行投影和中心投影的特征.【教学难点】在投影面上画出平面图形的平行投影或中心投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P87~P88的内容,完成下面练习.【3 min反馈】1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.皮影戏是利用平行投影(填“平行投影”或“中心投影”)的一种表演艺术.4.如图,在灯光下,四个选项中,灯光与物体的影子最合理的是(A)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【互动探索】(引发学生思考)灯光的照射属于中心投影还是平行投影?其投影有什么特征?【分析】晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.【答案】B【互动总结】(学生总结,老师点评)中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.【例2】如图所示,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.【互动探索】(引发学生思考)阳光下的投影属于中心投影还是平行投影?其投影有什么特征?【解答】(1)如图所示,连结AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴ABDE=BCEF,即5DE=36,∴DE=10 m.【互动总结】(学生总结,老师点评)在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.活动2 巩固练习(学生独学) 1.下列结论正确的有( B )①同一时刻物体在阳光照射下影子的方向是相同的; ②物体在任何光线照射下影子的方向都是相同的; ③物体在路灯照射下,影子的方向与路灯的位置有关; ④物体在光线照射下,影子的长短仅与物体的长短有关. A .1个 B .2个 C .3个D .4个2.如图所示,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,则AB 与CD 之间的距离是1.8m.3.李航想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD =1.2 m ,CE =0.6 m ,CA =30 m(点A 、E 、C 在同一直线上).已知李航的身高EF 是1.6 m ,请你帮李航求出楼高A B.解:如图,过点D 作DN ⊥AB ,垂足为N ,交EF 于点M ,则四边形CDME 、ACDN 是矩形.∴AN =ME =CD =1.2 m ,DN =AC =30 m ,DM =CE =0.6 m , ∴MF =EF -ME =1.6-1.2=0.4(m). ∵EF ∥AB , ∴△DFM ∽△DBN , ∴DM DN =MF BN ,即0.630=0.4BN, ∴BN =20 m ,∴AB =BN +AN =20+1.2=21.2(m).即楼高为21.2 m.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影.2.⎩⎪⎨⎪⎧平行投影:由平行光线形成的投影中心投影:由同一点(点光源)发出的光线形 成的投影练习设计请完成本课时对应练习!第2课时正投影教学目标一、基本目标【知识与技能】1.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.2.掌握线段、正方形、正方体的正投影的特征.【过程与方法】1.通过动手操作画图形的正投影,培养学生动手实践能力,发展空间想象能力.2.通过探究生活中有关正投影的数学问题,体会数学与实际生活的紧密联系,提高学生的数学应用意识.【情感态度与价值观】感受日常生活中的一些投影现象,体会数学与生活实际密不可分,激发学生学习数学的兴趣.二、重难点目标【教学重点】1.正投影的概念.2.能根据正投影的性质画出简单的平面图形的正投影.【教学难点】归纳正投影的性质,正确画出简单平面图形的正投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P91的内容,完成下面练习.【3 min反馈】1.(1)投影线垂直于投影面产生的投影叫做正投影.(2)正投影是一种特殊的平行投影,它区别于一般的平行投影的不同之处是投影线垂直于投影面.(3)平行投影与中心投影的主要区别是光线是平行还是交于一点.(4)平行投影有两种情况:一种是投影线倾斜着照射投影面;另一种是投影线垂直照射投影面,这种投影就是正投影.教师点拨:注意区分正投影与平行投影之间的区别与联系,掌握正投影是特殊的平行投影,是光线垂直于投影面的特殊情况.2.线段的正投影是(D)A.直线B.线段C.射线D.线段或点环节2合作探究,解决问题活动1小组讨论(师生互学)(一)关于线段的正投影【例1】如图,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情况下铁丝的正投影各是什么形状?【互动探索】(引发学生思考)(1)铁丝平行于投影面时,它的正投影的形状跟大小与它本身完全相等;(2)铁丝倾斜于投影面,它的正投影仍然是一条线段,但长度变短了;(3)铁丝垂直于投影面,它的正投影变成了一个点.【解答】(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1.(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2.(3)当线段AB垂直于投影面P时,它的正投影是一个点A3.【教师点拨】以上的规律可以通过用铅笔作投影试验得出.(二)关于平面的正投影【例2】如图,把一块正方形硬纸板Q(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情况下纸板的正投影各是什么形状?【互动探索】(引发学生思考)(1)纸板Q平行于投影面P时,Q的正投影与Q形状、大小一样(即全等);(2)纸板Q倾斜于投影面P时,Q的正投影与Q的形状、大小发生变化(面积变小);(3)纸板Q垂直于投影面P时,Q的正投影成为一条线段.【教师点拨】用作业本做一个投影试验就可得出结论.【互动总结】(学生总结,老师点评)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(三)有关立体图形的正投影【例3】画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面,如图1;(2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影面,并且上底面的对角线AE垂直于投影面,如图2.【互动探索】详细见教材P90~P91分析.【解答】(1)如图1,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如图2,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB 及它所对的另一条侧棱EH的投影.【互动总结】(学生总结,老师点评)因为影子是光线被物体遮挡所形成的,所以要考虑到面与面,线与线的遮挡问题.【例4】如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()【互动探索】(引发学生思考)依题意,光线是垂直照下的,故只有D符合.【答案】D【互动总结】(学生总结,老师点评)当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形;若投影面不是平面,则投影形状要复杂得多.活动2巩固练习(学生独学)1.把一个正五棱柱按如图所示的方式摆放,当投影线由正前方射到后方时,它的正投影是如图所示的(B)2.若木棒长1.2米,则它的正投影的长一定(D)A.大于1.2米B.小于1.2米C.等于1.2米D.小于或等于1.2米活动3拓展延伸(学生对学)【例5】在长、宽都为4 m,高为3 m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8 cm,灯泡离地面2 m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)【互动探索】根据题意可知,AN=0.08 m,AM=2 m,由房间的地面为边长为4 m的正方形可算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.【解答】如图,光线恰好照在墙角D、E处.由题意可知,AN=0.08 m,AM=2 m.∵房间的地面为边长为4 m的正方形,∴DE=4 2 m.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ANAM,即BC42=0.082,∴BC≈0.23 m.即灯罩的直径BC约为0.23 m.【互动总结】(学生总结,老师点评)解此题的关键是画出图形,合理使用相似的知识进行有关计算,计算时注意单位要统一.环节3课堂小结,当堂达标(学生总结,老师点评)1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.练习设计请完成本课时对应练习!29.2三视图第1课时几何体的三视图教学目标一、基本目标【知识与技能】1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念,明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.【过程与方法】通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.【情感态度与价值观】通过探究物体的三视图,学会多角度看问题,激发学生学习数学的热情.二、重难点目标【教学重点】从投影的角度理解三视图的概念,会画简单的三视图.【教学难点】对三视图概念理解的升华及正确画出三棱柱的三视图.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P94~P97的内容,完成下面练习.【3 min反馈】1.当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个视图,也可以看作物体在某一角度的光线下的投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在主视图下方,左视图在主视图的右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出如图所示一些基本几何体的三视图.【互动探索】(引发学生思考)根据三视图的定义解决问题.【解答】如图所示:【互动总结】(学生总结,老师点评)画这些基本几何体的三视图时,要注意从三个方面观察它们,具体画法如下:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.【例2】画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【互动探索】(引发学生思考)支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置.【解答】如图是支架的三视图.【互动总结】(学生总结,老师点评)对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.活动2巩固练习(学生独学)1.如图所示的物体的主视图为(B)2.下列几何体中,左视图是圆的是(D)3.在下列几何体:①长方体;②球;③圆锥;④竖放的圆柱;⑤竖放的正三棱柱中,其主视图、左视图、俯视图都完全相同的是②.(填序号)4.如图所示的是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体的主视图改变,左视图不变,俯视图改变.(填“改变”或“不变”)活动3拓展延伸(学生对学)【例3】如图是一根钢管的直观图,画出它的三视图.【互动探索】钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反映立体图形的形状,画图时规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.【解答】如图是钢管的三视图,其中的虚线表示钢管的内壁.【互动总结】(学生总结,老师点评)画三视图的步骤如下:(1)确定主视图位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见部分的轮廓线画成虚线.环节3课堂小结,当堂达标(学生总结,老师点评)1.主视图、俯视图和左视图的概念.2.三视图的画法.练习设计请完成本课时对应练习!第2课时由三视图确定几何体教学目标一、基本目标【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象力.【情感态度与价值观】通过对三视图的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.二、重难点目标【教学重点】根据物体的三视图描述出几何体的基本形状或实物原型.【教学难点】根据物体的三视图想象几何体的形状.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P98~P99的内容,完成下面练习.【3 min反馈】1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形的前面、上面、侧面,然后再结合起来考虑整体图形.2.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥3.如图所给的三视图表示的几何体是(B)A.长方体B.圆柱C.圆锥D.圆台环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】分别根据三视图(1)(2)说出立体图形的名称.【互动探索】(引发学生思考)由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整个图形.【解答】详细内容见教材P98例3.【例2】见教材P98~P99例4.【例3】一个物体的三视图如下图所示,请描述该物体的形状.【互动探索】(引发学生思考)由一个物体的三视图描述该物体的形状,关键是能想象出三视图和立体图形之间的联系,从而描述该物体的形状.【解答】该物体是一个圆柱体被左右两侧平面及水平平面切成缺口面形成的几何图形,它的形状如图所示.【互动总结】(学生总结,老师点评)根据主视图、俯视图和左视图想象几何体的正面、上面和左面的形状以及几何体的长、宽、高;从实线和虚线想象几何体看得见的部分和看不见的部分的轮廓线.活动2巩固练习(学生独学)1.由下列三视图想象出实物形状.解:A是四棱锥,B是球,C是三棱柱.2.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱,如图.活动3拓展延伸(学生对学)【例4】某几何体的主视图和俯视图如图.(1)请你画出符合如图所示的几何体的两种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.【互动探索】(1)由俯视图可得该几何体有2行,则左视图应有2列.由主视图可得该几何体共有3层,那么其中一列必有3个正方体,另一列最少是1个,最多是3个;(2)由俯视图可得该几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得该几何体从左边数第2列第2层最少有1个正方体,最多有2个正方体,第3列第2层最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成该几何体的最少个数及最多个数,即可得到n的可能值.【解答】(1)如图所示:(2)∵俯视图有5个正方形,∴最底层有5个正方体.由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;或第2层最多有4个正方体,第3层最多有2个正方体,∴该几何体最少有5+2+1=8(个)正方体,最多有5+4+2=11(个)正方体,∴n可能为8或9或10或11.【互动总结】(学生总结,老师点评)解决本题要明确俯视图中正方形的个数是几何体最底层正方体的个数.环节3课堂小结,当堂达标(学生总结,老师点评)由三视图确定几何体的步骤:(1)根据主视图、俯视图和左视图想象几何体的正面、上面和左面以及几何体的长、宽、高;(2)从实线和虚线想象几何体看得见的部分和看不见部分的轮廓线.练习设计请完成本课时对应练习!第3课时由三视图确定几何体的表面积教学目标一、基本目标【知识与技能】1.根据三视图求几何体的侧面积、表面积和体积等.2.解决实际生活中的面积、体积方面的用料问题.【过程与方法】通过探究由物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系,提高学生的空间想象力.【情感态度与价值观】培养学生自主学习与合作交流的学习方式,加强学生从生活中发现数学的能力.二、重难点目标【教学重点】根据三视图求几何体的侧面积、表面积和体积.【教学难点】解决实际生活中的面积、体积方面的用料问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P99~P100的内容,完成下面练习.【3 min反馈】1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)【温馨提示】详细解答过程见教材P99~P100例5.【例2】如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.【互动探索】(引发学生思考)先由三视图得到两个长方体的长、宽、高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.【解答】根据三视图,得上面的长方体长6 mm、高6 mm、宽3 mm,下面的长方体长10 mm、宽8 mm、高3 mm,∴这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=376( mm2).【互动总结】(学生总结,老师点评)由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律——“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.另外,求组合体的表面积时重叠部分不应计算在内.活动2巩固练习(学生独学)1.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图所示(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是20 000π mm2.2.如图所示的是一个几何体的三视图,其中主视图、左视图都是腰长为13 cm,底边长为10 cm的等腰三角形,则这个几何体的侧面积是65π cm2.3.如图所示的是一个几何体的三视图,则这个几何体的表面积是 5π+3π.4.已知某几何体的三视图如图所示,求该几何体的表面积.解:由三视图可知,该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S 表面积=4×2×4+4×4+4×12×4×22=48+16 2.活动3 拓展延伸(学生对学)【例3】杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8 g/cm 3,1 kg 防锈漆可以涂4 m 2的铁器面,三视图单位为cm)?。
第二十九章投影与视图测试1 投影学习要求了解投影的含义和种类,能确定物体的平行投影和中心投影.课堂学习检测一、填空题1.物体在光线照射下,在地面或墙壁上留下的影子叫做它的_________.2.手电筒、路灯的光线可以看成是从_________发出的,它们所形成的投影是_________投影,而太阳光线所形成的投影是_________投影.3.将一个三角形放在太阳光下,它所形成的投影的形状是__________________.二、选择题4.小明从正面观察下图所示的两个物体,看到的是( )5.物体的影子在正北方,则太阳在物体的( )A.正北B.正南C.正西D.正东6.小明在操场上练习双杠时,发现两横杠在地上的影子( )A.相交B.平行C.垂直D.无法确定7.一只小狗在平面镜前欣赏自己(如图所示),它所看到的全身像是( )三、解答题8.分别画出下列几个几何体从正面和上面看的正投影.9.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.综合、运用、诊断一、填空题10.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是____________ (填“背向太阳”或“面向太阳”),小宁比小勇(填“高”、“矮”、或“一样高”).11.一根竿子高1.5m,影长1m,同一时刻,某塔影长是20m,则塔的高度是______m.二、选择题12.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( ) A.先变短后变长 B.先变长后变短C.逐渐变短D.逐渐变长13.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( )A.③④②①B.②④③①C.③④①②D.③①②④14.如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径是1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积是( )A.0.36πm2B.0.81πm2C.2πm2D.3.24πm2三、解答题15.平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴于D,C(3,1),求:(1)CD在x轴上的影长;(2)点C的影子的坐标.16.如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻.小明竖起1m 高的直杆,量得其影长为0.5m,此时,他又量得电线杆AB落在地上的影子BD长3m,落在墙上的影子CD的高为2m,小明用这些数据很快算出了电线杆AB的高.你知道小明是如何计算出来的吗?拓展、探究、思考17.太阳光线与地面成45°角,一棵倾斜的树与地面的夹角为60°,若树高10m,则树影的长为______.18.如图所示,现有m、n两堵墙,两个同学分别站在A和B处,请问在哪个区域内活动才不会被两个同学发现(用阴影表示该区域).测试2 三视图(一)学习要求1.会画基本几何体的三视图,会判断简单物体的三视图.2.能根据三视图描述基本几何体或实物原型.课堂学习检测一、填空题1.我们常说的三种视图分别是指______、______、______.2.请将六棱柱的三视图名称填在相应的横线上.3.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);其中错误的是哪个视图?答:是__________________.4.如下图为一个几何体的三视图,那么这个几何体是____________.二、选择题5.有一实物如图,那么它的主视图是( )6.下图中①表示的是组合在一起的模块,那么这个模块的俯视图的是( )A.②B.③C.④D.⑤7.两个物体的主视图都是圆,则这两个物体可能是( )A.圆柱体、圆锥体B.圆柱体、正方体C.圆柱体、球D.圆锥体、球三、解答题8.画出下列几何体的三视图.(1) (2)综合、运用、诊断一、填空题9.写出一个俯视图是圆的几何体:______.10.一个透明的玻璃正方体内镶嵌了一条铁丝(如图所示的粗线),请指出右边的两个图分别是正方体的哪个视图:11.下图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是______.二、选择题12.角□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )13.如下图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )三、解答题14.一种机器上有一个进行传动的零件叫燕尾槽(如图),为了准确车出这个零件,请画出它的三视图.拓展、探究、思考15.如图,将图中扇形BOC部分剪掉,用剩余部分围成一个几何体的侧面,使AB、DC重合,则所围成的几何体的俯视图是( )16.如图所示,根据不同观察方向,画出物体的三视图.测试3 三视图(二)学习要求1.了解基本几何体的侧面展开图,能根据展开图判断和制作立体图形.2.进一步理解立体图形和平面图形之间的联系.课堂学习检测一、填空题1.一几何体的三视图如图,那么这个几何体是______.第1题图2.如图的几个物体中,哪两个几何体是一样的?答:______(填序号).第2题图二、选择题3.如图所示的正四棱锥的俯视图是( )4.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体其中有三个几何体的某一种视图都是同一种几何图形,则别外一个几何体是( )5.小丽制作了一个如下右图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )6.如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )A.奥B.运C.圣D.火图1 图2三、解答题7.如图,粗线表示嵌在玻璃正方体内的一根铁丝,请画出该正方体的三视图.8.如图所示的积木是16块棱长为2cm的正方体堆积而成的,求出它的表面积.综合、运用、诊断一、选择题9.在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是( )10.将一正方体纸盒沿如图所示的线剪开,则其平面展开图的形状为( )二、填空题11.由十个棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是______cm2.第11题图12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如右上图所示,这个几何体最多可以由______个这样的正方体组成.第12题图三、解答题13.某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图的尺寸计算其表面积和体积.14.将一个无盖正方体的纸盒沿某些棱剪开,能展成哪些平面图形?拓展、探究、思考15.思考下列问题:(1)根据图①,你能画出该物体的大致形状吗?图①(2)根据图②和图③呢?图②图③(3)由(1)(2),你能得到什么结论?16.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)a=____________,b=_________,c=____________.(2)这个几何体最少由________个小立方体搭成,最多由_______个小立方体搭成.(3)当d=2,e=1,f=2时,画出这个儿何体的左视图.答案与提示第二十九章 投影与视图测试11.投影. 2.一点;中心;平行. 3.三角形或一条线段.4.C . 5.B . 6.B . 7.A .8.从正面看依次为: 从上面看依次为:9.如图:10.面向太阳;矮. 11.30. 12.A . 13.C . 14.B .15.如图,(1)CD 在x 轴上的影长DE =0.75;(2)C 的影子为E (3.75,0).16.过C 作CD ⊥AB 于E ,则AE 的影子为CE .由,35.01AE=得AE =6,∴AB =AE +BE =8(m).17.)535(+米或)535(-米.18.如图,阴影区域为所求.测试21.主视图、左视图、俯视图.2.俯视图;主视图;左视图.3.左视图.4.圆锥.5.B.6.A.7.C.8.如图:(1)(2)9.答案不唯一,如球、圆柱….10.俯视图;主视图.11.5个.12.B.13.D.14.如图:15.C.16.如图:(1) (2) (3)测试31.空心圆柱.2.(1)和(3).3.D.4.C.5.A.6.D.7.如图:8.表面积为22×50=200(cm 2). 9.A 10.B . 11.36. 12.13. 13.表面积为);cm (π9013π1355π222=⋅+⨯ 体积为).π(cm 100125π3132=⨯⨯ 14.下面为可能展开的平面图形,其中阴影部分为纸盒的底部.15.(1)不能唯一确定.(2)不能唯一确定;能确定是圆锥.(3)两种视图不能完整地反映物体的形状,三种视图能完整地反映物体的形状. 16.(1)a =3,b =1,c =1;(2)最少9个,最多11个; (3)左视图为第二十九章 投影与视图全章测试一、选择题1.平行投影中的光线是( ) A .平行的 B .聚成一点的 C .不平行的 D .向四面八方发散 2.正方形在太阳光下的投影不可能是( ) A .正方形 B .一条线段 C .矩形 D .三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.55.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。