【芝罘区数学】锐角三角函数
- 格式:doc
- 大小:244.17 KB
- 文档页数:5
锐角三角函数教案1. 引言三角函数是高中数学中的重要概念,锐角三角函数是其中的一种特殊类型。
本教案旨在详细介绍锐角三角函数的定义、性质和应用,以帮助学生全面理解和掌握该知识。
2. 基本概念2.1 什么是锐角锐角是指小于90度的角度,在数学中经常出现的一种角度范围。
在直角三角形中,锐角可以是除了直角以外的任意角度。
2.2 锐角三角函数的定义锐角三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan),它们是通过直角三角形中的两边比值来定义的。
- 正弦函数:定义为对边与斜边的比值,即sinθ = 对边/斜边。
- 余弦函数:定义为邻边与斜边的比值,即cosθ = 邻边/斜边。
- 正切函数:定义为对边与邻边的比值,即tanθ = 对边/邻边。
3. 性质3.1 基本性质锐角三角函数具有一些基本性质:- 周期性:正弦函数和余弦函数的周期均为2π,正切函数的周期为π。
- 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 定义域:锐角三角函数的定义域为所有实数。
3.2 关系式锐角三角函数之间存在一些重要的关系式,这些关系式可以帮助我们在计算中进行转化和简化:- 三角恒等式:包括和差公式、倍角公式、半角公式等,能够将一个角度的三角函数转化为其他角度的三角函数来计算。
- 三角函数的倒数关系:正弦函数和余弦函数的倒数关系为sinθ =1/cscθ,cosθ = 1/secθ,正切函数和余切函数的倒数关系为tanθ = 1/cotθ。
4. 应用锐角三角函数在几何学、物理学、工程学等领域中有广泛的应用:- 几何学:利用锐角三角函数可以计算不规则图形的面积和周长,解决与三角形、多边形等几何图形相关的问题。
- 物理学:在力学、波动学等方面的问题中,锐角三角函数可以帮助求解物体的运动轨迹、振动频率等。
- 工程学:在建筑设计、航空航天等工程领域,锐角三角函数可以用于计算角度、距离、力的分解等。
5. 总结通过本教案的学习,我们对锐角三角函数有了全面的了解。
《锐角三角函数》讲义知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA=;∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 2、取值范围<sinA< cosA<tanA>例1.如图所示,在Rt △ABC 中,∠C =90°.第1题图①=______, =______;②=______, =______; ③=______, =______.例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .典型例题:类型一:直角三角形求值1.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2.如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求AB 及OC 的长.3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ;(2)求cos ∠AOC 及tan ∠AOC .4. 已知A ∠是锐角,,求A cos ,A tan 的值对应训练:1.在Rt △ABC 中,∠C =90°,若BC =1,AB =5,则tan A 的值为A.55B .255 C .12D .2 2.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ).A .35B .45C .34D . 43类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,及x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12B .3C .35D .453.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则sin α=.4.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,,则这个菱形的面积=cm 2.5.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是()A .23B .32 C .34 D .436. 如图6,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )D C B A Oy x第8题图A.34 B.43C.35 D.457. 如图7,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若 ,则AD 的长为( )A .2B .2C .1D .22 8. 如图8,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =求∠B 的度数及边BC 、AB 的长.类型三. 化斜三角形为直角三角形例1如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例2.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练 1.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .3. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是A.23 cm 2 .43 cm 2C.63 cm 2D.12 cm 2类型四:利用网格构造直角三角形例1 如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值() A .12 B .55 C .1010 D .255对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.2.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为 A.41 B. 31 C.21D.13.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是()A . 5 5 B. 2 5 5 C.12D. 2特殊角的三角函数值当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而 例1.求下列各式的值.1).计算:︒-︒+︒60tan 45sin 230cos 2. 2)计算:︒-︒+︒30cos 245sin 60tan 2. 3)计算:3-1+(2π-1)0-33tan30°-tan45° 锐角α 30° 45° 60° sin α cos αtan αCBA ABO4.计算:30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+. 5.计算:;例2.求适合下列条件的锐角α .(1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α(5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3.已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4.如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.5.如图,△ABC 中,∠A=30°,,43AC =AB 的长.解直角三角形1.在解直角三角形的过程中,一般要用的主要关系如下: 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边及角之间的关系:==B A cos sin ______;==B A sin cos _______; _____;______.④直角三角形中成比例的线段.在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;(3)已知:,6=c ,求a 、b ;(4)已知:求a 、c ;DCBAACB(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长.例4.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长.类型二:解直角三角形的实际应用 仰角及俯角:例1.如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A . 200米B . 200米C . 220米D . 100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3.如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.例4.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都及地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.类型四. 坡度及坡角例.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是()A .100mB .1003mC .150mD .503m类型五. 方位角1.已知:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,及灯塔M 之间的最短距离是多少?(精确到0.1海里,732.13≈)综合题:三角函数及四边形:1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan ∠BDC= 6. (1)求BD 的长; (2)求AD 的长.2.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F . (1)求证:∠BAE =∠DAF ; (2)若AE =4,AF =245,,求CF 的长.A BCD ECB A三角函数及圆:1.已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 及⊙O 交于点D, (1) 求证:∠AOD=2∠C (2) 若AD=8,tanC=34,求⊙O 的半径。
知识必备09锐角三角函数(公式、定理、结论图表)考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边. 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.要点诠释: (1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、. (3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值 利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释: (1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角. (2)仔细研究表中数值的规律会发现: 、、、、的值依次为0、、、、1,而、、、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时, ①正弦、正切值随锐角度数的增大(或减小)而增大(或减小) ②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,; (2)平方关系:; (3)倒数关系:或; (4)商数关系:. 要点诠释: 锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h 为斜边上的高.要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤两直角边(a ,b)由求∠A ,∠B=90°-∠A ,两边斜边,一直角边(如c,a)由求∠A ,∠B=90°-∠A ,锐角、邻边(如∠A ,b)∠B=90°-∠A ,,一直角边和一锐角锐角、对边(如∠A ,a)∠B=90°-∠A ,,Rt △ABC一边一角斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°. (4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释: 1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如: 3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,,.(4)如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC面积,得ab=ch.(5)如图所示,若CD是直角三角形ABC中斜边上的中线,则①CD=AD=BD=AB;②点D是Rt△ABC的外心,外接圆半径R=AB.(6)如图所示,若r是直角三角形ABC的内切圆半径,则.直角三角形的面积:①如图所示,.(h为斜边上的高)②如图所示,.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为( )A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。
烟台市初中数学锐角三角函数的知识点总复习有解析一、选择题1.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB =4,则光盘表示的圆的直径是( )A .4B .83C .6D .43【答案】B【解析】【分析】 设三角板与圆的切点为C ,连接OA 、OB ,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知,AB =AC =3,AO 平分∠BAC ,∴∠OAB =60°,在Rt △ABO 中,OB =AB tan ∠OAB 3∴光盘的直径为3故选:B .【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75B .15或30C .75或15D .15或45【答案】C【解析】【分析】根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:32AE .sin ∠AOD=32,∴∠AOD=60°; sin ∠AOE=22,∴∠AOE=45°; ∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C .【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.3.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.4.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )A 83B 43C .8D .83【答案】A【解析】【分析】根据折叠性质可得BE=12AB ,A′B=AB=4,∠BA ′M=∠A=90°,∠ABM=∠MBA ′,可得∠EA ′B=30°,根据直角三角形两锐角互余可得∠EBA ′=60°,进而可得∠ABM=30°,在Rt △ABM 中,利用∠ABM 的余弦求出BM 的长即可.∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,解得:BM=83,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.5.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.31)π【答案】C【解析】【分析】3为2,据此即可得出表面积.【详解】3的正三角形.∴正三角形的边长32 ==.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为12222ππ⨯⨯=,∵底面积为2r ππ=, ∴全面积是3π.故选:C .【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6.如图,在矩形ABCD 中,BC =2,AE ⊥BD ,垂足为E ,∠BAE =30°,则tan ∠DEC 的值是( )A .1B .12C .32D .33【答案】C【解析】【分析】 先根据题意过点C 作CF ⊥BD 与点F 可求得△AEB ≌△CFD (AAS ),得到AE =CF =1,EF =323-33【详解】过点C 作CF ⊥BD 与点F .∵∠BAE =30°,∴∠DBC =30°,∵BC =2,∴CF =1,BF 3 ,易证△AEB ≌△CFD (AAS )∴AE =CF =1,∵∠BAE =∠DBC =30°,∴BE =33 AE =33, ∴EF =BF ﹣BE 3 3233, 在Rt △CFE 中,tan ∠DEC =323CF EF ==,故选C .【点睛】此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等7.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .31)mB .31)mC .31)mD .31)m 【答案】A【解析】设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MN AN , ∴tan30∘=16x x+ =3√3, 解得:3,则建筑物MN 的高度等于3 +1)m ;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.8.如图,在矩形ABCD 中E 是CD 的中点,EA 平分,BED PE AE ∠⊥交BC 于点P ,连接PA ,以下四个结论:①EB 平分AEC ∠;②PA BE ⊥;③3AD AB =;④2PB PC =.其中结论正确的个数是( )A.4个B.3个C.2个D.1个【答案】A【解析】【分析】根据矩形的性质结合全等三角形的判定与性质得出△ADE≌△BCE(SAS),进而求出△ABE 是等边三角形,再求出△AEP≌△ABP(SSS),进而得出∠EAP=∠PAB=30°,再分别得出AD与AB,PB与PC的数量关系即可.【详解】解:∵在矩形ABCD中,点E是CD的中点,∴DE=CE,又∵AD=BC,∠D=∠C,∴△ADE≌△BCE(SAS),∴AE=BE,∠DEA=∠CEB,∵EA平分∠BED,∴∠AED=∠AEB,∴∠AED=∠AEB=∠CEB=60°,故:①EB平分∠AEC,正确;∴△ABE是等边三角形,∴∠DAE=∠EBC=30°,AE=AB,∵PE⊥AE,∴∠DEA+∠CEP=90°,则∠CEP=30°,故∠PEB=∠EBP=30°,则EP=BP,又∵AE=AB,AP=AP,∴△AEP≌△ABP(SSS),∴∠EAP=∠PAB=30°,∴AP⊥BE,故②正确;∵∠DAE=30°,∴tan∠DAE=DEAD=tan30°=33,∴AD =3DE ,即32AD CD =, ∵AB =CD ,∴③3AD AB =正确; ∵∠CEP =30°,∴CP =12EP , ∵EP =BP , ∴CP =12BP , ∴④PB =2PC 正确.综上所述:正确的共有4个.故选:A .【点睛】此题主要考查了四边形综合,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形性质以及三角函数等知识,证明△ABE 是等边三角形是解题关键.9.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55m oB .500cos55m oC .500tan55m oD .500cos55m o【答案】B【解析】【分析】根据已知利用∠D 的余弦函数表示即可.【详解】 在Rt △BDE 中,cosD=DE BD, ∴DE=BD •cosD=500cos55°.故选B .【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.10.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C .2D .3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可. 【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒3 由翻折变换的性质可知,3∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.把Rt ABC ∆三边的长度都扩大为原来的3倍,则锐角A 的余弦值( )A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变 【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A 的大小不变,∴锐角A 的余弦值不变,故选:D .【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( )A 3B .233C .3D .3【答案】B【解析】【分析】证明△OBE 是等边三角形,然后解直角三角形即可.【详解】∵四边形ABCD 是菱形,∴OD =OB ,CD =BC .∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB .∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°.∵∠DEB =90°,∴BD =23sin60DE =︒. 故选B .【点睛】本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.利用量角器可以制作“锐角余弦值速查卡”.制作方法如下:如图,设1OA =,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,利用“锐角余弦值速查卡”可以读出相应锐角余弦的近似值.例如:cos300.87︒≈,cos450.71︒=.下列角度中余弦值最接近0.94的是( )A.30°B.50︒C.40︒D.20︒【答案】D【解析】【分析】根据“锐角余弦值速查卡”解答即可.【详解】从“锐角余弦值速查卡”可以读出cos20︒≈0.94,∴余弦值最接近0.94的是20︒,故选:D.【点睛】此题考查“锐角余弦值速查卡”,正确读出“锐角余弦值速查卡”是解题的关键.14.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、BCD=,则扇形AOB的面积为()重合),C、D分别是弦AP,BP的中点.若33A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C 、D 分别是弦AP 、BP 的中点.∴CD 是△APB 的中位线,∴AB =2CD =63, ∵OH⊥AB ,∴BH =AH =33, ∵OA =OB ,∠AOB =120°,∴∠AOH =∠BOH =60°,在Rt △AOH 中,sin ∠AOH =AH AO, ∴AO =336sin 3AH AOH ==∠, ∴扇形AOB 的面积为:2120612360ππ=g g , 故选:A .【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )A .asinα+asinβB .acosα+acosβC .atanα+atanβD .tan tan a a αβ+ 【答案】C【解析】【分析】在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.【详解】在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,∴CD =BC+BD =atanα+atanβ,故选C .【点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.16.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(403523,32D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =+=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.17.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A 的正对记作sadA ,即sadA =底边:腰.如图,在ABC ∆中,AB AC =,2A B ∠=∠.则sin B sadA ⋅=( )A .12B .2C .1D .2【答案】C【解析】【分析】证明△ABC 是等腰直角三角形即可解决问题.【详解】解:∵AB=AC ,∴∠B=∠C ,∵∠A=2∠B ,∴∠B=∠C=45°,∠A=90°,∴在Rt △ABC 中,BC=sin AC B ∠=2AC , ∴sin ∠B •sadA=1AC BC BC AC=g , 故选:C .【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(23)2--B .33(2222---C .3(3,22--D .(3,3)- 【答案】D 【解析】 【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3a,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.5.6 B.6.9 C.11.4 D.13.9【答案】C【解析】【分析】根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.【详解】解:如图,延长DC、AB交于点E,,由斜坡轨道BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=xm,CE=2xm.在Rt△BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12)2,解得x=12,BE=12m,CE=24m,DE=DC+CE=8+24=32m,由tan36°≈0.73,得=0.73,解得AB=0.73×32=23.36m.由线段的和差,得AB=AE﹣BE=23.36﹣12=11.36≈11.4m,故选:C.【点睛】本题考查解直角三角形的应用,利用勾股定理得出CE,BE的长是解题关键,又利用了正切函数,线段的和差.。
初中数学锐角三角函数知识点锐角三角函数是数学中的一个重要部分,是解决许多三角学问题的基础。
在初中数学课程中,我们学习了正弦函数、余弦函数和正切函数,它们都是锐角三角函数的一种形式。
下面将详细介绍锐角三角函数的相关知识点。
1. 正弦函数(sin函数):正弦函数是一个周期函数,它的定义域是整个实数集,值域是[-1,1]。
正弦函数的图像是一个波形,在一个周期内,函数的最大值是1,最小值是-1,中心对称于原点。
正弦函数的性质:- sin(0)=0,sin(90°)=1,sin(180°)=0,sin(270°)=-1,sin(360°)=0- sin(-θ)=-sin(θ),sin(θ±360°)=sin(θ)- sin(180°±θ)=-sin(θ),sin(90°±θ)=cos(θ),sin(θ+90°)=cos(θ)- sin(α±β)=sinαcosβ±cosαsinβ2. 余弦函数(cos函数):余弦函数也是一个周期函数,它的定义域是整个实数集,值域是[-1,1]。
余弦函数的图像也是一个波形,与正弦函数的图像是相似的,但是它们的相位有所不同。
余弦函数的性质:- cos(0)=1,cos(90°)=0,cos(180°)=-1,cos(270°)=0,cos(360°)=1- cos(-θ)=cos(θ),cos(θ±360°)=cos(θ)- cos(180°±θ)=-cos(θ),cos(90°±θ)=-sin(θ),cos(θ+90°)=-sin(θ)- cos(α±β)=cosαcosβ±sinαsinβ3. 正切函数(tan函数):正切函数是一个定义域是除去所有奇数π/2的实数集,值域是整个实数集的函数。
锐角三角函数1.图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE =1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?2.九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)DCOCDBA 北60°30°4. 如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建1.732 1.414)6.如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60 ,目高1.5米,试求该塔的高度 1.7).1.5C 60A1.5答案1. 解:(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt△DOE 中, ∵sin∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE 5. ∴将水排干需:5÷0.5=10(小时).2. 解:此方案能够测得该公园的湖心亭A 处到南岸的距离. 过点A 作南岸所在直线的垂线,垂足是点D ,AD 的长即为所求.在Rt ADC △中,∵9045ADC DAC ∠=∠=°,°,∴DC AD =在Rt BDC △中,∵9030BDC DBC ∠=∠=°,°,∴BD =由题意得:10AB BD AD AD ==--,解得13.7AD = 答:该公园的湖心亭A 处到南岸的距离约是13.7米.3. 由题意得306030CAB CBD ACB ∠=∠=∴∠=°,°,°, BCA CAB ∴∠=∠,20240BC AB ∴==⨯=. 90sin CDCDB CBD BC∠=∴∠=°,.sin 60CD BC ∴==°40CD BC ∴===.∴此时轮船与灯塔C 的距离为4. 解:由已知,得306090ECA FCB CD ∠=∠==°,°,,EF AB CD AB ⊥∥,于点D .3060A ECA B FCB ∴∠=∠=∠=∠=°,°. 在Rt ACD △中,90tan CDCDA A AD∠=°,=,90tanCDADA∴====在Rt BCD△中,90tanCDCDB BBD∠=°,=,tanCDDBB∴===AB AD BD∴=+==.答:建筑物A B、间的距离为5.解:过点P作PC AB⊥,C是垂足,则30APC∠=°,45BPC∠=°,tan30AC PC= °,tan45BC PC= °,AC BC AB+=,tan30tan45100PC PC∴+=°°,11003PC⎛⎫∴+=⎪⎪⎝⎭,50(350(3 1.732)63.450PC∴=⨯->≈≈,答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.6. 解:如图,CD=20,∠ACD=60°,在Rt△ACD中,tan ACD∠=ADCD∴=20AD∴AD=又∵BD=1.5∴塔高AB=34 1.535.5+=(米)A BFEPC。
锐角三角函数—知识讲解责编:康红梅【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.Cab要点二、特殊角的三角函数值要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A.2 B .C .D .【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=,cosA=,sinB=,cosB=.【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.Cab类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟) sin60°﹣4cos 230°+sin45°•tan60°;(3)(2015•宝山区一模) +tan60°﹣.【答案与解析】 解:(1)原式==12(2) 原式=×﹣4×()2+×=﹣3+3;(3) 原式=+﹣=2+﹣=3﹣2+2【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在Rt ΔABC 中,∠C =90°,若∠A=45°,则∠B = ,sinA = , cosA = ,sinB = , cosB = .【答案】∠B =45°,sinA =2, cosA =2,sinB =2, cosB =2. 类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC 中的∠A 与∠B 满足(1﹣tanA )2+|sinB ﹣|=0(1)试判断△ABC 的形状.(2)求(1+sinA )2﹣2﹣(3+tanC )0的值. 【答案与解析】解:(1)∵|1﹣tanA )2+|sinB ﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC 是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键. 类型四、锐角三角函数的拓展探究与应用4.如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P , 若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a ,∴ 4AC a ==,∴ CD =5a-4a =a ,BD ==,∴ sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。
锐角三角函数
一、选择题
1. 4sin tan 5
ααα=若为锐角,且,则为 ( ) 933425543
A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )
A .sinA = sin
B B .cosA=sinB
C .sinA=cosB
D .∠A+∠B=90°
3.直角三角形的两边长分别是6,8,则第三边的长为( )
A .10
B ..10或.无法确定
4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )
A .c =
sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A 5、 45cos 45sin +的值等于( )
A. 2
B. 213+
C. 3
D. 1
6.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( )
A. 3
B. 300
C. 503
D. 15 7.当锐角α>30°时,则cos α的值是( )
A .大于12
B .小于12
C 8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )
A .1米
B
C .9.如图,在四边形ABC
D 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )
(A )4 (B )5 (C )(D
10.已知Rt △ABC 中,∠C=90°,tanA=
43,BC=8,则AC 等于( ) A .6 B .
323
C .10
D .12 二、填空题 11.计算2sin30°+2cos60°+3tan45°=_______.
12.若sin28°=cos α,则α=________.
13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.
14.某坡面的坡度为1_______度.
15.在△ABC 中,∠C =90°,AB =10cm ,sinA =5
,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为
A.82米
B.163米
C.52米
D.70米
17.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)
(16题) (17题)
三、解答题
18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:
(1)已知a=4,b=8, (2)已知b=10,∠B=60°.
(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°
19.计算下列各题.
(1)s in 230°+cos 2
45°°·tan45°; (2)22cos 30cos 60tan 60tan 30︒+︒︒⨯︒+ sin45°
(
四、解下列各题
20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,•第一次是当阳光与地面成
45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?
21.如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,•为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C
处连接两岸的最短的桥长多少?(精确到0.1)
22. 如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o ,∠ACB=30o
,问此公路是否会穿过该森林公园?请通过计算进行说明。
B H C
答案:
1.D 2.A 3.C [点拨]长为8的边即可能为直角边,也可能为斜边.4.A [点拨]sinA=a c ,所以c=sin a A
. 5.A 6.D 7.D [点拨]余弦值随着角度的增大而减小,α>30°,cos30°
. 8.A 9.B 10.A [点拨]tanA=BC AC ,AC=84
tan 3
BC A ==6. 11
.点拨]原式=2×12
+2×2
+3×
12. 62° 13. 125
[
点拨
,tanA=BC AC =125. 14. 30° [点拨]坡角α的正切tan α
=,所以α=30°. 15. 8 16. 82米 17. (63+1)m
18.解:(1)
=
(2)B b a ABC Rt tan =∆中,在=060tan b =3310310=,
c=10sin sin 60b B ===︒ , ∠A=90°-∠B=90°-60°=30°
(3)a = c ×
sinA=20×
2b=c ×cos60°=10×12=5.∠B=90°-∠A=90°-60°=30° 19.解:(1)原式=(12)2+
(2
)2
2×1=14+12
+23
4+2 (2)原式
221()+
2=1+2 20.第一次观察到的影子长为5×cot45°=5(米);第二次观察到的影子长为5•×cot30
°
两次观察到的影子长的差是米.
21.过点C 作CD ⊥
AB 于点D .
CD 就是连接两岸最短的桥.设CD=x 米.
在直角三角形BCD 中,∠BCD=45°,所以BD=CD=x .
在直角三角形ACD 中,∠ACD=30°,所以AD=CD ×tan ∠ACD=x ·tan30°.
因为AD+DB=AB ,所以x+3x=3,x=92
≈1.9(米) 22. 解:。