第3课纳什均衡
- 格式:doc
- 大小:84.00 KB
- 文档页数:8
简述纳什均衡的完整定义纳什均衡是经济学中一种非常重要的概念,它可以帮助研究者更好地理解和分析商业市场中的结构和行为,从而制定更有效和合理的市场规则和监管政策。
纳什均衡是由美国经济学家纳什在1952年提出的,它是一种经济系统中发现的一种特殊状态,在该状态下每一方都达到了自我利益的最优化,也即互利共赢的状态。
完整的定义:纳什均衡是一种经济系统中的元素之间的特殊状态,在该状态下参与者均衡主体之间的行为,使他们能够达到自身利益最大化的最佳状态,也即互利共赢的状态。
纳什均衡可以用于研究各种市场状况下的抉择决策,其中每一方都在实现自身利益的同时,也有利于其他参与者获取最大利益。
在具体的经济学中,纳什均衡的概念有着十分重要的地位,它是研究市场结构及其行为的基础。
纳什均衡的概念可以用来分析商业市场的作用、判断行为的合理性以及指导政府有效地实施市场监管政策。
从宏观层面来讲,纳什均衡是一种很有效的解决问题的方法,因为它可以使所有参与者都能实现利益最大化;而从微观层面来讲,纳什均衡可以帮助研究者了解市场结构中某一方可能采取的行为态度,以及市场如何做出反应。
纳什均衡的分析模型包含了三个基本假设:第一,存在多个参与者,每一方都希望达到最大的利益;第二,这些参与者都具有完备的信息;第三,参与者之间可以自由协商。
这三个基本假设能够帮助研究者更好地理解市场行为的决定因素。
另外,纳什均衡独特的结构特性也是其重要的特点之一。
它可以通过对各种不同的定价策略和其他参数,来模拟不同类型的商业市场,从而帮助研究者更好地理解市场中的不同类型行为。
此外,纳什均衡也被用于评估政府政策的影响,以及制定公平、合理的市场规则。
它可以帮助研究者更好地分析政府改革举措的影响,以及确定最有效的市场监管政策。
总之,纳什均衡是一个概念非常重要的概念,它不仅可以帮助研究者更好地理解和分析商业市场中的结构和行为,而且可以帮助研究者更好地分析政府改革举措和市场监管政策的影响。
完全理性:理性指一种行为方式,它适合实现指定目标,而且在给定条件和约束的限度之内。
在不同的学科领域,理性所涵盖的内容存在着差异完全理性的内涵具有完全理性的行为人是个无所不知的超人,他具有纵向和横向方面完备的知识。
在纵向方面,他可以预测未来;在横向方面,他通晓资源、交易伙伴和环境等情况。
具体而言,行为人的完全理性包括以下隐含内容。
(1)不存在不确定性,即使存在不确定性,也可以预知不确定性的概率分布。
也就是说,对于具有完全理性的行为人来说,一切信息都是确定的。
(2)行为人具有可以确定的效用函数(消费者的效用函数和厂商的利润函数可以统称为效用函数),同时行为人具有同质性以及一致性的偏好体系。
(3)选择结果具有描述不变性、程序不变性和前后关系独立性。
描述不变性要求行为人选择的先后顺序不应依赖于所描述或显示的选项,也就是说如果行为人经过再三思考,将两种描述视为同一问题的同义表达,那么它们必定导致相同的选择——即这种思考不存在异处;程序不变性要求不同方式的等价学说揭露相同的偏好次序;前后关系独立性指一项选择与其他替代方案互为独立的原则,它要求在给定Z而不提供有关X或Y 的新的信息的情况下,X与Y的优先权顺序不应该依赖于Z是否有效。
(4)行为人具备完备的计算和推理能力,可以像计算机一样在数秒内从事无穷尽的计算步骤,同时也不存在感性因素对选择的干扰。
(5)选择意味着在各种方案或选择集中进行比较和挑选,因此完全理性的行为人可以设计出所有的被选方案,以及各项方案所产生的全部后果。
(6)一个确定的报酬函数,即行为人可以确定地赋予每项行动结果一个具体的量化价值或效用。
(7)确定性的结果,也就是行为人町以实现效用最大化或最优目标(消费者效用最大化和企业利润最大化)。
在上述条件下,建立在完全理性假设的基础上的主流经济学的方法论,即行为人的选择或决策意味着在资源约束的条件下实现效用最大化或利润最大化。
行为人在选择过程中,可以遵循确定性原则、极大极小法则、边际原理以及概率法则(也就是主观期望原则)。
纳什均衡理论“纳什均衡”:在经济学中,我们都知道市场是一只看不见的手在配置资源,个人追求利益最大化,构成纳什均衡,但并非能达到整体最优。
市场可以说是在供求关系博弈中实现纳什均衡,众所周知市场仍有一定的缺陷,是否意味着纳什均衡无法达到最优呢?如今,纳什均衡已成为经济学中的新课题。
一、纳什均衡定义纳什均衡是一种策略组合,使得每个参与人的策略是对其他参与人策略的最优反应。
假设有n个局中人参与博弈,如果某情况下无一参与者可以独自行动而增加收益(即为了自身利益的最大化,没有任何单独的一方愿意改变其策略的),则此策略组合被称为纳什均衡。
所有局中人策略构成一个策略组合。
从实质上说,纳什均衡是一种非合作博弈状态。
纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。
纳什均衡也不意味着博弈双方达到了一个整体的最优状态,个人最优状态未必达到整体最优。
从经济学角度来看,所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。
换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。
以两家公司的价格大战为例,纳什均衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。
于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是纳什均衡。
类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局等。
二、纳什均衡分类纳什均衡可以分成两类:“纯战略纳什均衡”和“混合战略纳什均衡”。
要说明纯战略纳什均衡和混合战略纳什均衡,要先说明纯战略和混合战略。
所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。
特别地是,纯战略决定在任何一种情况下要做的移动。
战略集合是由玩家能够施行的纯战略所组成的集合。
纳什均衡的概念纳什均衡是博弈论中的重要概念,指的是在一个博弈中,所有参与者都选择了自己的最佳策略,不存在更好的选择,即达到了一种均衡状态。
纳什均衡是在参与者之间相互博弈的情况下,每个参与者都选择了自己的最佳策略,并且其他参与者也同时选择了最佳策略,从而实现了一种平衡状态。
纳什均衡最早由约翰·纳什提出,他于1950年发表了研究博弈论的著名论文《非合作博弈》。
在该论文中,纳什定义了纳什均衡,并利用数学方法证明了简单博弈的纳什均衡存在性。
由于纳什均衡的提出和研究,他获得了1994年的诺贝尔经济学奖。
纳什均衡的理论适用范围非常广泛,涵盖了众多社会科学领域,如经济学、政治学、社会学等。
在经济学领域,纳什均衡被广泛运用于市场竞争、价格确定、产出决策等方面的分析。
在政治学领域,纳什均衡被应用于国际关系、选举竞争等问题的研究。
在社会学领域,纳什均衡被用于解析社会合作、集体行动的机制等等。
为了更好地理解纳什均衡的概念,我们可以通过一个具体的博弈案例来说明。
假设有两个企业A和B在某个市场上销售相同的产品,它们可以选择两种不同的定价策略:高价策略和低价策略。
企业A和B都知道,如果它们选择相同的策略,市场将会处于均衡状态;如果它们选择不同的策略,市场将会出现不稳定的情况。
在这个博弈中,我们可以使用一个博弈表来表示两个企业的策略和回报。
假设高价策略带来的利润分别为5和2,低价策略带来的利润分别为3和4。
根据这个博弈表,我们可以得到以下结论:如果企业A选择高价策略,那么企业B选择高价策略可以带来较高的利润,所以企业B将会选择高价策略。
如果企业A选择低价策略,那么企业B选择低价策略可以带来较高的利润,所以企业B同样会选择低价策略。
综上所述,无论企业A选择高价策略还是低价策略,企业B都会选择低价策略,从而形成了一个纳什均衡。
在这种均衡状态下,企业A的最佳策略是低价策略,而企业B的最佳策略也是低价策略,两个企业都无法通过改变自己的策略来获得更高的利润。
每日一词:纳什均衡1、术语解释️纳什均衡Nash Equilibrium,是指非合作博弈中,所有的博弈当事人都维持自己的支配性策略的均衡状态。
值得说明的是,支配性策略是参与方各自的最优策略,但不一定是总体的最佳策略。
相关概念解释:合作博弈cooperative game:博弈双方达成一致意见,双方基于互相信任的前提下,按照事先约定的策略来做决策。
非合作博弈non-cooperative game:只考虑自己的利益,而不和别人串谋的情况下进行博弈。
支配性策略dominant strategy:对任何一个博弈参与方,无论对手方采取什么策略,自己都维持不变的策略。
支配性策略是参与方的占优策略。
(如备考,不管科目难易,都得认真学习,认真学习就是考生的支配性策略)纳什均衡的几个注意点:•是非合作博弈,不允许串谋。
•博弈当事人都是理性人。
•博弈各方是同时出招的。
•不是任何博弈都会产生纳什均衡的。
2、知识扩展纳什均衡的应用:囚徒困境Prisoners' Dilemma假设情景:AB都是小偷,被警察逮住了,逮住以后要判罪,但警察也没有其他证据。
警察就把AB分别关在两个小黑屋里,按下表所示逐个进行审问,然后根据两个人的招供结果来判罪。
警察是这么审问的:先去A那边问,你到底招不招,可以招可以不招,但是要想清楚后果。
如果你沉默,你兄弟也保持沉默,那关个半年就把你们放了。
如果你沉默,你兄弟坦白了,那你兄弟会立即释放,而你会被关10年。
如果你坦白,你兄弟保持沉默,你会被立即释放,而你兄弟会被关10年。
如果你坦白,你兄弟也坦白了,那就各关你们2年。
然后警察去了B那边,和B讲了同样的话。
然后警察暂时撤离,留他们自己思考。
A心里会嘀咕:B无非就两种选择,要么坦白,要么沉默。
B沉默时:如果我也沉默,我会被关半年,如果我坦白,我不会关。
所以我还是坦白好;B坦白时:如果我也坦白,会被关两年,如果我沉默,会被关10年。
所以我还是坦白好。
纳什均衡求解方法
纳什均衡是博弈论中的一个重要概念,主要用于描述多个参与者选择一个策略后,达到一种相互协调的状态。
通常来说,纳什均衡被认为是一种不可协调的状态,因为所有参与者都没有动机改变自己的策略。
求解纳什均衡可以利用以下方法:
1. 策略消元法:这是一种非常基本的求解方法,适用于简单的博弈模型。
该方法的核心思想是根据参与者的策略做出相应的推理,将局面简化为更容易分析的形式。
最终得到的一个或多个均衡状态就是纳什均衡。
2. 迭代删除劣势策略法:该方法适用于有限的博弈模型,可以通过迭代删除每个参与者的劣势策略逐步缩小均衡的可能性。
最终会得出一个或多个纳什均衡状态。
3. 前瞻解法:该方法主要适用于完全信息博弈,通过加权平均和后验概率的计算方法,可求解出参与者的最佳策略组合。
最终的最优解就是纳什均衡。
需要注意的是,纳什均衡的求解并不总是存在,并且可能存在多个均衡状态。
而一旦找到了均衡状态,参与者就不会再改变策略,因为任何人的单方面行动都可能导致良性均衡的破裂。
纳什均衡的原理与应用1. 纳什均衡的定义纳什均衡,又称为纳什平衡,是博弈论中的一个概念,由美国数学家约翰·纳什于1950年提出。
它是博弈论研究中的一个重要成果,揭示了多方参与的博弈中可能存在的平衡点。
2. 纳什均衡的原理纳什均衡的原理基于参与者在博弈中追求个人利益的假设,即每个参与者都会尽力追求自己的利益最大化。
在纳什均衡中,没有任何一个参与者可以通过改变自己的策略来提高自己的利益,而其他参与者保持不变。
3. 纳什均衡的应用纳什均衡具有广泛的应用领域,尤其在经济学、社会科学和工程领域中有重要的地位。
以下是一些纳什均衡的应用实例:• 3.1 经济学–拍卖机制:在拍卖中,卖家和买家之间的竞争决定了最终的价格。
纳什均衡理论可以帮助分析卖家和买家的策略选择,以及最终的价格形成。
–垄断定价:在垄断市场中,垄断者面临价格选择的问题。
纳什均衡可以帮助垄断者确定最优的价格策略。
• 3.2 社会科学–博弈论研究:纳什均衡是博弈论中的核心概念,用于描述多方博弈中的平衡点。
社会科学研究中,纳什均衡被广泛应用于对人类行为和决策的建模和原理研究。
–合作与竞争:纳什均衡理论可以帮助分析合作与竞争的关系。
在合作环境中,纳什均衡可以帮助确定最优的合作策略。
• 3.3 工程领域–交通流控制:纳什均衡理论可以用于交通流控制系统的设计,帮助优化交通流的分配和调度。
通过分析交通参与者的决策行为,可以建立交通流动的纳什均衡模型,从而提高交通系统的效率。
–电力市场:电力市场中的供求关系影响着电力价格的形成。
纳什均衡理论可以用于分析电力市场中各个参与者的策略选择,从而优化电力价格的形成。
4. 总结纳什均衡作为博弈论的重要成果,以其理论和应用的价值在经济学、社会科学和工程领域得到广泛的应用。
将纳什均衡理论应用于实际问题的分析中,可以帮助我们更好地理解和解决多方参与的博弈问题,从而提高决策的质量和效率。
以上是对纳什均衡的原理与应用的简要介绍,纳什均衡作为一个重要的博弈论概念,深入研究它的理论和应用,有助于我们更好地理解和改善现实生活中的各种博弈情境。
14.23 政府的产业规制第三课麻省理工学院&剑桥大学提纲l定义l纳什均衡l垄断和完全竞争l两个卖者的寡头――双头与社会福利l古诺,斯塔克尔伯格和伯川德寡头竞争(Cournot,Stackelberg,Bertrand Oligopoly)l合谋l寡头是一个问题吗?l囚徒困境和博弈论纳什均衡在纳什均衡中,参与者1和参与者2分别选择策略X和Y。
如果参与者2选择策略Y既定,那么参与者1最好的选择是策略X;如果参与者1选择策略X 既定,那么参与者2最好的选择是策略Y。
垄断与完全竞争考虑以下例子:市场需求函数:P=25-Q边际成本=平均成本=5竞争结果:MC=MR=P=5,Q=20;CS=200,PS=0垄断结果:MR=25-2Q=MC=5; Q=10, P=15;CS=50,PS=100,DWL=50古诺模型l考虑两家生产同样产品的企业,1和2。
l两家企业同时做出产量决策,假设其它企业的产量不受本企业决策的影响。
l因此可推测的变动为零(例如,对企业1,dq2/dq1=0)。
l在观察其它企业所决定的产量后,每个企业没有改变产量的意愿,此时达到均衡。
古诺模型价格函数,P=25-(q1+q2); 总成本,C1=5q1;C2=5q2;利润,Ⅱ1=(25-q1-q2)q1-5q1区分q1的利润函数,通过边际收益=边际成本得到企业1的反应或最佳反应函数(reaction function):q1=(20-q2)/2。
同理,得到企业2的反应函数:q2=(20-q1)/2。
古诺模型l q1=(20-q2)/2,q2=(20-q1)/2l q1=q2=20/3l P=35/3lⅡ1=Ⅱ2=400/9;PS=800/9l CS=800/9l CS+PS=1600/9=177.78图1-古诺均衡斯塔克尔伯格均衡l企业1是领导者;企业2是追随者l企业1知道企业2的反应函数q2=(20-q1)/2,并在此基础上做使自己利润最大化的决策l企业2是一个古诺参与者l q1=10,q2=5l p=10lⅡ1=50,Ⅱ2=25;PS=75l CS=0.5(15*15)=112.5l CS+PS=187.5图2-斯塔克尔伯格均衡伯川德模型l考虑两家生产同样产品的企业,1和2。
第三章 纳什均衡及其应用3.1 混合策略纳什均衡1 鹰鸽博弈我们知道老鹰具有攻击性,而鸽子爱好和平。
在原始社会里有两个部落,可以做出两个行动:一是进攻一是和平,分别用鹰和鸽表示。
表1 鹰鸽博弈乙甲鹰 鸽该博弈的那是均衡为(鹰,鸽),(鸽,鹰)。
一些学者研究发现,在同一个地域内,“鹰”和“鸽”的比例为0.36:0.64。
事实上,设鹰鸽比为:1z z -,可以得出如下结果:()2514(1)1439E e z z z =-+-=-; ()95(1)514E d z z z =-+-=-90.3625z == 聪明的做法是:当鹰鸽比小雨0.36时,选择鹰策略;否则选择鸽策略。
使用混合策略方法分析:第一步:混合策略型表示:乙 鹰 鸽甲鹰 p 鸽 1-p第二步:计算期望效用:(925)514(259)514E p q q E q p p=-+-=++-甲乙第三步:作出最优反应函数91 259[0,1] 2590 25q p q q ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩若若若, 90 259[0,1] 259 1 25p q p p ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩如果如果如果 第四步:作出反应函数的图像第五步:根据交点,找出纳什均衡:其中(99,2525)是混合策略纳什均衡。
2 斗鸡博弈我的老家地处安徽最北部,苏鲁豫皖四省交界之处,东北处有条小河。
河边的棉花地里,经常有鹌鹑栖息在其间。
秋末冬初的农闲时节,小鹌鹑刚好长成。
村民结网捕鹌鹑把玩、斗鸟儿为乐。
每天早晨4点多钟出发,大约7点钟回来,雄性的鹌鹑留起来先要整夜整夜的熬鹌鹑、放在手里把鹌鹑,真正熟练了,才拿出来和别人的相斗。
设想两只鹌鹑要在场子里一决雌雄。
每只鹌鹑都有两个策略:攻击或逃跑。
由于两只鹌鹑实力相当,若同时选择进攻会两败俱伤;若一只进攻,一只逃跑,进攻者胜利。
逃跑的鹌鹑算是玩完了,以后再也没胆量进场子,主人也不回在把玩它,会用一块黑布把它的笼子蒙起来,培养成“叫子”,以后后捕鹌鹑的时候拎出去吸引同伴。