数学建模:配送中心选址
- 格式:docx
- 大小:89.45 KB
- 文档页数:10
2012河南科技大学第九届大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从题目编号中选择一项填写):F题目:物流与选址问题F 物流与选址问题摘要本篇论文主要通过建立数学模型对中心仓库选址问题进行了较为全面的研究。
内容包括生产工厂、中心仓库选址的模型及其建立。
针对工厂、中心仓库选址的一般要求以及城市对物资的需求量,同时结合它们的选址实例,运用所建立的混合整数规划模型确定工厂、中心仓库选址最佳方案并在合理的假设条件下建立了‘模型图’,最后借助优化建模软件Limgo,通过对实际问题的抽象建模,编写求解程序,成功求解该模型,使工厂和中心仓库布局科学化,将运作效率和综合效益大大提高。
关键字:运筹学;中心仓库;选址一、问题重述某公司是生产某种商品的省内知名厂家。
该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。
根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库的单位面积的建设费用和运营费用已知,请你建立数学模型,回答以下问题: 如何为两个生产工厂选址? (建多大规模?)建多少个中心仓库?分别建在什么地方? (分别建多大规模?)生产工厂如何向中心仓库供货?请你自己选用一组数据进行计算(可以根据假设、地图和铁路、公路、水路等信息选择有关数据),并对你的模型和结果作出评价。
【matlab配送中心选址问题的建模】1. 引言在现代物流管理中,配送中心的选址问题是一个至关重要的决策。
合理的配送中心选址可以有效减少物流成本、提高配送效率,对于企业而言具有重要意义。
本文将以matlab为工具,探讨配送中心选址问题的建模及解决方案。
2. 配送中心选址问题的背景配送中心选址问题是指在满足用户需求的前提下,寻找最佳的位置建立配送中心,以实现物流配送的最优化。
这其中涉及到多个因素,如客户位置分布、物流成本、运输距离等。
通过合理选址,可以降低物流成本、提高配送效率,从而提升企业竞争力。
3. matlab在配送中心选址问题中的应用matlab作为一种强大的数学建模和仿真工具,可以很好地应用于配送中心选址问题的建模和求解。
通过matlab,可以将配送中心选址问题转化为数学模型,并利用优化算法求解最优位置。
4. 配送中心选址问题的数学建模在进行配送中心选址问题的数学建模时,需要考虑多个因素。
需要确定客户位置分布情况,可以利用统计学方法进行数据分析和处理。
需要考虑物流成本和运输距离等因素,这些因素可以通过数学模型进行量化和分析。
需要建立一个评价指标函数,以评估不同选址方案的优劣。
5. matlab在配送中心选址问题中的应用案例以某电商公司为例,通过matlab对配送中心选址问题进行了建模和求解。
利用matlab对客户位置数据进行了处理和分析,得到了客户位置分布图。
建立了数学模型,考虑了物流成本、运输距离等因素,最终利用matlab的优化算法求解出了最佳的配送中心选址方案。
6. 个人观点和理解在配送中心选址问题中,利用matlab进行数学建模和求解是一种高效且可行的方法。
通过matlab,可以快速准确地分析和求解配送中心选址问题,为企业的物流配送提供科学依据。
未来,我认为随着数据的不断积累和算法的不断优化,matlab在配送中心选址问题中的应用将会更加广泛和深入。
7. 结语通过本文对matlab配送中心选址问题的建模和求解的探讨,希望能够对读者有所启发。
上海海事大学交通运输学院院系交通运输学院专业年级物流管理133 学生姓名刘笑颜学号 2二○一六年六月物流配送中心选址问题建模摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。
因此,物流中心选址、发展现代化配送中心是现代物流业的发展方向。
(我的创新:本文建立了关于中心仓库选址问题的数学模型,但并未给出具体案例。
我的创新在于将这个模型运用到一个实例中,并给出了这个模型不足和可改进的地方。
)关键字:物流网络、配送中心、最优路径、最低成本、营运费用1背景介绍工厂和中心仓库位置的选择,将显著影响其实际营运的效率与成本,以及日后仓储规模的扩充与发展。
因此在决定中心仓库设置的位置方案时,必须谨慎参考相关因素,按适当步骤进行。
在选择过程中,如果已经有预定地点或区域方案,应于规划前先行提出,并成为规划过程中的限制因素;如果没有预定的地点,则可于可行性研究时提出几个备选方案,并对比各备选方案的优劣,以供决策者选择。
2.问题介绍:在现实当中,一个企业通常不会只考虑建设一个中心仓库,而是考虑建设多个中心仓库。
因此,多中心仓库选址模型在实际当中更加受欢迎。
不同产品从不同的工厂运到中心仓库,再由中心仓库转运给不同的顾客,为使企业成本最低应考虑仓库的建造费用、运输费用、仓库营运费用等。
下面需要建立模型来解决这些问题。
3.建模:3.1.模型的假设本文建立的选址模型是在给定某一地区所有被选点的地址集合中选出一定数目的地址作为中心仓库,使选出点建立的中心仓库在满足城市的需求前提下,在考虑工厂和城市重要度的情况下使得总费用最小。
为了便于模型求解,同时使模型具有使用价值,作如下的假设:(1)仅在一定的备选范围内考虑设置新的中心仓库;(2)模型包括从工厂到中心仓库之间的运输以及从中心仓库到城市之间的运输;(3)一个中心仓库可由多个工厂供货,一个城市的需求也可由多个中心仓库提供;(4)中心仓库的容量能够满足城市的需求;(5)各城市的需求量一定且为已知。
物流配送中心选址模型姓名:学号:班级:摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。
因此,发展现代化配送中心是现代业的发展方向。
文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。
关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。
前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。
归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。
第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。
这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。
解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。
解析方法的优点在于计算简单,数据容易搜集,易于理解。
由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。
第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。
第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。
国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。
(三)物流配送中心选址的主要方法与类型1.选址方法类型近年来,随着选址理论迅速发展,各种各样的选址越来越多,层出不穷。
特别是计算机技术的发展与应用,促进了物流系统选址的理论发展,对不同方案的可行性分析提供了强有力的工具。
但是现阶段选址的理论方法大体上有以下几类:(1)运筹法运筹法是通过数学模型进行物流网点布局的方法。
采用这种方法首先根据问题的特征、己知条件以及内在的联系建立数学模型或者是图论模型。
然后对模型求解获得最佳布局方案。
采用这种方法的优点是能够获得较为精确的最优解缺乏是对一些复杂问题建立适当的模型比较困难,因而在实际应用中受到很大的限制。
解析法中最常用的有重心法和线性规划法。
(2)专家意见法专家意见法是以专家为索取信息的对象,运用专家的知识和经验考虑选址对象的社会环境和客观背景,直观地对选址对象进行综合分析研究寻求其特点和发展规律并进行选择的一类选址方法是专家选择法,其中最常用的有因素评分法和德尔菲法。
(3)仿真法仿真法是将实际问题用数学方法和逻辑关系表示出来然后通过模拟计算及逻辑推理确定最佳布局方案。
这种方法的优化是比较简单,缺点是选用这种方法进行选址,分析者必须提供预定的各种网点组合力案以供分析评价,从中找出最佳组合。
因此,决策的效果依赖于分析者预定的组合方案是否接近最佳方案该法是针对模型的求解而言的,是种逐次逼近的方法。
对这种方法进行反复判断实践修正直到满意为止。
该方法的优点是模型简单,需要进行方案组合的个数少,因而,容易寻求最佳的答案。
缺点是这种方法得出的答案很难保证是最优化的一般情况下只能得到满意的近似解用启发式进行选址,一般包括以下步骤:①定义一个计算总费用的方法;②制定评判准则;③规定方案改进的途径;④给出初始方案;⑤迭代求解。
2.典型物流中心选址决策方法(1)单点物流中心选址方法所谓单点网点选址,就是指在规划区域内设置网点的数目惟一的物流设施的选点问题,其中主要包含以下几种方法:1交叉中值法选址在城市内建立物流设施,不可能不受限制任意选址,可能的情况是只能沿着相互交叉的街道选择某一处地点。
数学建模:配送中心选址10页一、问题描述在某个区域内,有多个顾客需要配送。
假设区域内每个顾客的需求量是一样的,也就是每个顾客需要一定数量的货物,并且在配送过程中需要考虑物流成本。
现在需要选取一个最优的配送中心位置,这个位置不仅要满足区域内所有顾客的需求,还要尽量降低物流成本。
请问应该如何选择配送中心的位置?二、模型建立1.建立数学模型假设有n个顾客,每个顾客的需求量为q,配送中心的位置为(x,y)。
我们的目标是找到最合适的(x,y),同时最小化总的物流成本。
设(xi,yi)为第i个顾客的位置,bi为从配送中心到第i个顾客的物流成本。
我们可以通过以下公式计算bi:bi = α*|xi-x| + β*|yi-y|α和β是权重系数,用来控制x轴和y轴的影响。
通常,重量系数水平一样,即α=β=1时。
最小化总物流成本的目标可以表示为:min{Σbi}+c其中,c是设施成本。
2.求解最优解我们可以使用最小二乘法来求解最优解。
最小二乘法的本质是寻找一个函数,使得在指定的点上函数的值和给定的值最接近。
我们可以通过求导来得到函数的最小值。
根据上述公式,我们可以得到如下最小二乘法的方程:Σ[(α(xi-x)+β(yi-y))^2] = min通过求偏导,我们可以得到x和y的最优解:三、实现为了实现方便,我们将上述模型用Python语言实现。
具体代码如下:import numpy as npdef optimize(x, y, xi, yi, q, alpha=1, beta=1, c=0): # 求解xnx = len(xi)nx_alpha = np.sum(alpha * xi)nx_beta = np.sum(beta * yi)nb = np.sum([alpha * (xi[i] - x) + beta * (yi[i] - y)for i in range(nx)])x_new = (nx_alpha + nb) / (nx_alpha + nx_beta + c) # 求解yny_alpha = np.sum(alpha * yi)ny_beta = np.sum(beta * xi)nb = np.sum([alpha * (yi[i] - y) + beta * (xi[i] - x)for i in range(nx)])y_new = (ny_alpha + nb) / (ny_alpha + ny_beta + c) return x_new, y_new# 初始化配送中心的位置x = np.mean(xi)y = np.mean(yi)# 计算总物流成本total_cost = np.sum([alpha * np.abs(xi[i] - x) + beta * np.abs(yi[i] - y)for i in range(n)]) + cprint('配送中心的位置为:({:.2f}, {:.2f})'.format(x, y))print('总物流成本为:{:.2f}'.format(total_cost))四、结论通过上述模型,在考虑物流成本和所有顾客需求的情况下,我们可以得到最优的配送中心位置。
物流配送中心选址数学模型的研究和优化物流配送中心的选址是一个关键的决策问题,它不仅直接关系到物流效率,也对企业的经济效益产生直接影响。
在新的城市建设或农村地区开发中,物流配送中心的选址更是必不可少的环节。
如何确定物流配送中心的最佳选址,是一个需要深入研究和不断优化的问题。
物流配送中心选址数学模型的研究和优化是解决此问题的有效手段。
数学模型能够通过建立数学方程和条件,将问题转化为可解的数学问题。
在建立数学模型时,需要考虑多个因素,例如周围的交通状况、人流量、商圈、租金、物流成本等。
经过分析和计算,得出最佳方案,能够节省时间和成本,提高效率,并为企业增加更多的经济价值。
常见的物流配送中心选址数学模型包括最小总成本模型、最小覆盖模型、最小距离模型、中心化模型等。
其中,最小总成本模型是最为普遍的,通过分析各种成本因素并评估其影响,寻求最低成本的选址方案。
该模型的关键是确定成本因素的权重和各地区物流成本的数值。
最小覆盖模型则是为了最大化服务范围而设计的,通过要求服务范围包含最多的消费者,找到最佳的配送中心位置。
相比之下,最小距离模型更注重行政层面的管辖,具备较强的政策倾向性。
而中心化模型则是综合考虑多个区域的供货质量和销售需求,寻找最合适的中心点进行服务。
除了考虑表面因素的贡献以外,如今科技的快速发展还提供了新的工具来支持物流配送中心的选址,例如大数据分析和人工智能。
数据分析的方法可以对货物的来源和目的地进行更细致和准确的刻画和描述,用于确定配送的最优路径和方案,优化物流中心的运作。
而人工智能则可以逐步整合并优化各水平上的各种因素,使得物流配送中心的选址更加高效、经济和智能化。
总之,物流配送中心选址数学模型的研究和优化将成为未来物流领域的重要发展方向,帮助企业更好地规划和组织物流仓储,在今后的速递、同城配送、农村配送等领域发挥更加重要的作用。
物流配送中心选址模型姓名:学号:班级:摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。
因此,发展现代化配送中心是现代物流业的发展方向。
文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。
关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。
1.2 前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。
归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。
第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。
这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。
解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。
解析方法的优点在于计算简单,数据容易搜集,易于理解。
由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。
第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。
第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。
国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。