2006年江西高考理科数学试题及答案
- 格式:doc
- 大小:480.50 KB
- 文档页数:16
2006年普通高等学校招生全国统一考试(江西卷)理科数学第一卷参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk k n n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( )A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z+3i )z =3i ,则z =( )A.32B. 34C. 32D.343、若a >0,b >0,则不等式-b <1x <a 等价于( )A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙=-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( )A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( )A .0 B. -2 C.-52 D.-37、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( )A .100 B. 101 C.200 D.2018、在(x)2006 的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( )A. 6B.7C.8D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( )A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定C12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图像表示,则正确的应该是( )第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。
12006高等学校全国统一数学文试卷(江西卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合{}(1)0P x x x =-≥,101Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q 等于( )A.∅B.{}1x x ≥C.{}1x x >D.{}1x x x <0或≥2.函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭地最小正周期为( )A.π2B.πC.2πD.4π3.在各项均不为零地等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A.2-B.0C.1D.24.下列四个条件中,p 是q 地必要不充分条件地是( )A.:p a b >,22:q a b >B.:p a b >,:22a bq >C.22:p ax by c +=为双曲线,:0q ab <D.2:0p ax bx c ++>,2:0c bq a x x-+>5.对于R 上可导地任意函数()f x ,若满足(1)()0x f x '-≥,则必有( )A.(0)(2)2(1)f f f +<B.(0)(2)2(1)f f f +≤C.(0)(2)2(1)f f f +≥D.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 地最小值为( )A.0B.2-C.52-D.3-7.在2nx⎫+⎪⎭地二项展开式中,若常数项为60,则n等于( )A.3B.6C.9D.128.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到地概率为( )A.12344812161040C C C CCB.21344812161040C C C CCC.23144812161040C C C CCD.13424812161040C C C CC9.如果四棱锥地四条侧棱都相等,就称它为"等腰四棱锥",四条侧棱称为它地腰,以下4个命题中,假命题是( )A.等腰四棱锥地腰与底面所成地角都相等B.等腰四棱锥地侧面与底面所成地二面角都相等或互补C.等腰四棱锥地底面四边形必存在外接圆D.等腰四棱锥地各顶点必在同一球面上10.已知等差数列{}n a地前n项和为n S,若1200OB a OA a OC=+,且A B C,,三点共线(该直线不过点O),则200S等于( )A.100B.101C.200D.20111.P为双曲线221916x y-=地右支上一点,M,N分别是圆22(5)4x y++=和22(5)1x y-+=上地点,则PM PN-地最大值为( )A.6B.7C.8D.912.某地一天内地气温()Q t(单位:时)之间地关系如图(1)所示,令()C t[0]t,内地温差(即时间段[0]t,地差).()C t与t确地图象大致是( )C(C3第II 卷二、填空题:本大题4小题,每小题4分,共16分.请把解析填在答题卡上.13.已知向量(1sin )a θ= ,,(1cos )b θ= ,,则a b -地最大值为.14.设3()log (6)f x x =+地反函数为1()fx -,若11[()6][()6]27f m f n --++= ,则()f m n +=.15.如图,已知正三棱柱111ABC A B C -地底面边长为1,高为8,一质点自A 点出发,沿着三棱柱地侧面绕行两周到达1A 点地最短路线地长为.16.已知12F F ,为双曲线22221(00)a b x y a b a b≠-=>>且,地两个焦点,P 为双曲线右支上异于顶点地任意一点,O 为坐标原点.下面四个命题( )A.12PF F △地内切圆地圆心必在直线x a =上;B.12PF F △地内切圆地圆心必在直线x b =上;C.12PF F △地内切圆地圆心必在直线OP 上;D.12PF F △地内切圆必通过点0a (),.1C 1B 1A ACB(C t (C4其中真命题地代号是(写出所有真命题地代号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a b ,地值及函数()f x 地单调区间;(2)若对[12]x ∈-,,不等式2()f x c <恒成立,求c 地取值范围.18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球地箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求(1)甲、乙两人都没有中奖地概率;(2)甲、两人中至少有一人获二等奖地概率.19.(本小题满分12分)在锐角ABC △中,角A B C ,,所对地边分别为a b c ,,,已知sin A =,(1)求22tansin 22B C A++地值;(2)若2a =,ABC S =△,求b 地值.20.(本小题满分12分)如图,已知三棱锥O ABC -地侧棱OA OB OC ,,两两垂直,且1OA =,2OB OC ==,E 是OC 地中点.(1)求O 点到面ABC 地距离;(2)求异面直线BE 与AC 所成地角;(3)求二面角E AB C --地大小.21.(本小题满分12分)如图,椭圆22221(0)x y Q a b a b +=>>:地右焦点为(0)F c ,,过点F并且交椭圆于A B ,两点,P 为线段AB 地中点.(1)求点P 地轨迹H 地方程;(2)若在Q 地方程中,令21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤.设轨迹H 地最高点和最低点分别为M 和N .当θ为何值时,MNF △为一个正三角形?22.(本小题满分14分)已知各项均为正数地数列{}n a ,满足:13a =,且11122n nn n n n a a a a a a +++-=-,*n N ∈.AOECB5(1)求数列{}n a 地通项公式;(2)设22212n n S a a a =+++ ,22212111n nT a a a a =+++ ,求n n S T +,并确定最小正整数n ,使n n S T +为整数.。
2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(2)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(3)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (4)如果(m 2+i)(1+mi)是实数,则实数m=(A )1(B )-1(C )2(D )-2(5)函数f(x)=tan(x+4π)的单调递增区间为(A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈ (C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈ (6)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43(C )42 (D )32(7)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (8)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(9)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0,如果平面向量b 1、b 2、b 3满足|b i |=2|a i |,且a i 顺时针旋转30︒后与同向,其中i=1、2、3,则(A )-b 1+b 2+b 3=0 (B )b 1-b 2+b 3=0(C )b 1+b 2-b 3=0 (D )b 1+b 2+b 3=0(10)设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=(A )120 (B )105 (C )90 (D )75(11)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2(C )355cm 2(D )20cm 2(12)设集合I={1,2,3,4,5},选择I 的两个非空子和B ,要使B 中的最小的数大于A 中最大的数,则不同的选择方法共有(A )50种 (B )49种 (C )48种 (D )47种第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
Unit 8 B卷I.词组英汉互译(10分)1.干家务________2.洗餐具______3.整理床铺__________4.打扫客厅__________5.一个重要会议__________6.Feed dogs and cats_________7.No walking dogs in the park. __________8.Work on English teaching_________9.Stay out late_____________10.have an English test tomorrow __________ II.选择填空(15分)( )1 Could you please ________ your classroom every day?A. to cleanB. cleaningC. cleanD. cleaned( ) 2. Could you please ________-- to music in class?A. No listenB. not listenC. don't listenD. No listening( ) 3. __________ times do you eat junk food a week?A. How oftenB. how manyC. how longD. how much( )4. I often help grandpa _______ the birds and animals.A. FeedingB. feedsC. to feedD. fed( )5.So _____ homework really make the students ______ tired.much: feel B. many feel C. much feeling D. many feels( )6-Dave! Your mom is too busy! You shouldn't throw your waste things everywhere!---Oh. I am sorry. I am going to_____________ and put them in the waste box.A. tale out the trashB. make the desk cleanC. fold my clothesD. do some shopping( ) 7. -Could you please go skating with me this afternoon?--Oh. I'd love to. But my sister is ill in bed and I have to _________her.A. take careB. take a walk withC. take care ofD. take out of( )8. ________ some money from himbut I will _________my bike to him in a few days.A. borrow, returnB. lend, borrowC. borrow, lendD. lend, keep( )9.Don't forget _________ when you leave.A. putting it onB. to put it onC. put on itD. to put on it( )10-Could I please use your pen? ---______________.A. with pleasureB. No, y ou can'tC. You shouldn't say thatD. You're polite( )11(2005年浙江丽水中考题)--Can you stay here for lunch? -Sorry, _________, I have to see my parents.A. can'tB. shouldn'tC. I mustn'tD. I won't( )12.(2005年山东泰安市中考题)--Can I get you a cup of tea? --__________.A. It's very nice of youB.With pleasureC. You can, pleaseD.That's all right( )13.(2005年广州市中考题)A neighbour helped to keep our dog. It _________while we were on holiday.A. was taken careB. took care ofC. is taken care ofD. was taken care of( )14.(2005年安徽省中考题)--Excuse me, could you help me carry the heavy box? ---____.A. Yes, I couldB. It doesn't matterC. With pleasureD.Don't mention it ( )15.(2005年福州市中考题)--I like the party so much, but I _______go home. It's too late.--What a pity!A. mustn'tB. have toC. mayD. can'tIII. 以所给词的正确形式填空(10分)1.Good food and exercise help me study__________(well) And practice __________(speak) English is good for my study.2.How often does Katrina___________( do )homework ? -Very often. She ialways has a lot of homework ___________(do)3.Who is the __________(good) English student?4.How about ___________(go ) to the sports camp next week?5.What did you_________(do) an hour ago? I ___________(feed) my dogs.6.They __________ (enjoy)________(them) at the English party yesterday.7.Listen. Can you hear the birds __________(sing) in the tree?8.It's good for your health__________(eat) a lot of fruit and vegetables. VI.翻译下列句子(15分)1.我不喜欢倒垃圾。
2006年普通高等学校招生全国统一考试理科数学(江西卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合3{0}(1)xM xx =≥-,2{31,}N x y x x R ==+∈,则M N =A .∅ B.{1}x x ≥ C.{1}x x > D.{01}x x x <≥或2.已知复数z 满足3)3i z i =,则z =A .322- B.344i - C.322i + D.344+ 3.若0a >,0b >,则不等式1b a x-<<等价于 A.10x b -<<或10x a << B.11x a b-<<C.1x a <-或1x b >D.1x b <-或1x a>4.设O 为坐标原点,F 为抛物线24y x =的焦点,A 是抛物线上一点,若OA AF ⋅4=-,则点A 的坐标是A .(2,± B.(1,2)± C.(1,2) D.(2, 5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有 A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ C.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对于一切1(0,)2x ∈成立,则a 的取值范围是A .0 B.2- C.52- D.3-7.已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且,,A B C 三点共线(该直线不过原点O ),则200S =A .100 B.101 C.200 D.2018.在2006(x -的二项展开式中,含x 的奇次幂的项之和为S ,当x =S 等于A.23008B.23008-C.23009D.23009-9.P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆22(5)4x y ++=和 22(5)1x y -+=上的点,则PM PN -的最大值为A.6B.7C.8D.910.将7个人(含甲、乙)分成三个组,一组3人,另两组2人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为A.105a =,521p =B.105a =,421p =C.210a =,521p =D.210a =,421p =11.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别是1S ,2S ,则必有A.12S S <B.12S S >C.12S S =D.1S ,2S 的大小关系不能确定12.某地一年的气温()Q t (单位:C )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10C ,令()G t 表示时间段[0,]t 的平均气温,()G t 与t 之间的函数关系用下列图象表示,则正确的应该是10C二、填空题:本大题共4小题,每小题4分,共16分.13.数列21{}41n -的前n 项和为n S ,则n lim n S →∞= .14.设3()log (6)f x x =+的反函数为1()f x -,若11[()6][()6]27f m f n --++=,则()f m n += .15.如图,在直三棱柱111ABC A B C -中,底面为直角三角形,90ACB ∠=,6AC =,1BC CC ==,P 是1BC 上一动点,则1CP PA +的最小值是 .16.已知圆M :22(cos )(sin )1x y θθ++-=, 直线l :y kx =,下面四个命题:A.对任意实数k 与θ,直线l 和圆M 相切;10C10C10CC(G t ABCPA 1B 1C 1B.对任意实数k 与θ,直线l 和圆M 有公共点;C.对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切D.对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(Ⅰ)求a 、b 的值与函数()f x 的单调区间;(Ⅱ)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元.现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲,乙摸球后获得的奖金总额.求: (Ⅰ)ξ的分布列; (Ⅱ)ξ的的数学期望. 19.(本小题满分12分)如图,已知ABC ∆是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过ABC ∆的中心G ,设MGA α∠=(233ππα≤≤).(Ⅰ)试将AGM ∆、AGN ∆的面积(分别记为1S 与2S ),表示为α的函数; (Ⅱ)求221211y S S =+的最大值与最小值.20.(本小题满分12分)如图,在三棱锥A BCD -中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD =1BD CD ==,另一个侧面是正三角形AB CDMNα(Ⅰ)求证:AD BC ⊥; (Ⅱ)求二面角B AC D --的大小(Ⅲ)在直线AC 上是否存在一点E ,使ED 与面BCD 成30角?若存在,确定E 的位置;若不存在,说明理由.21.(本大题满分12分)如图,椭圆Q :22221x y a b=+(0a b >>)的右焦点(,0)F c ,过点F 的一动直线m绕点F 转动,并且交椭圆于A 、B 两点,P 是线段AB 的中点. (Ⅰ)求点P 的轨迹H 的方程.(Ⅱ)在Q 的方程中,令21cos sin a θθ=++,2sin b θ=(02πθ<<),确定θ的值,使原点距椭圆的右准线l 最远,此时,设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?22、(本大题满分14已知数列{}n a 满足:132a =,且11321n n n na a a n --=+-,2n ≥,n N *∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)证明:对于一切正整数n ,不等式122!n a a a n ⋅⋅<⋅.ABCD。
2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z 3i )z =3i ,则z =( )A .322 B. 344 C. 322 D.3443、若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙ =-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC+,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( ) A .100 B. 101 C.200 D.201 8、在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( ) A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )C理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n k k kn n P k C P P -=- 球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x R },则M N =( ) A . B. {x|x1} C.{x|x 1} D. {x| x 1或x 0}2、已知复数z +3i )z =3i ,则z =( )A .32 B. 34 C. 32 D.34 3、若a0,b 0,则不等式-b 1x <a 等价于( ) A .1b -<x 0或0x 1a B.-1a <x 1b C.x -1a 或x 1b D.x 1b-或x1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙=-4 则点A 的坐标是( )A .(2,) B. (1,2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)2f (1) B. f (0)+f (2)2f (1)B . f (0)+f (2)2f (1) C. f (0)+f (2)2f (1)6、若不等式x 2+ax +10对于一切x (0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52 D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( )A .100 B. 101 C.200 D.2018、在(x)2006 的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( )A.23008B.-23008C.23009D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( )A. 6B.7C.8D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( )A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1S 2B. S 1S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )Ct理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
江西省2006年中等学校招生考试 数学试卷(大纲卷)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、填空题(本大题共10小题,每小题3分,共30分)1.计算:23______-=.2.若m n ,互为相反数,则_______m n +=.3.在ABC △中,8060A B ==∠,∠,则_____C =∠. 4.如图,在矩形ABCD 中,12AB BC ==,,则_______AC =. 5.当3m <时,()23________m -=.6.若圆柱的底面半径为2cm ,高为3cm ,则它的侧面积是 2cm .7.近视眼镜的度数()y 度与镜片焦距(m)x 成反比例,已知400度近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为 .8.方程2101x x-=-的解是 . 9.请在由边长为1的小正三角形组成的虚线网格中,画出一个..所有顶点均在格点上,且至少..有一条边为无理数的等腰三角形. 10.用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:(第4题)(第9题)第1个 第2个 第3个 …(1)第4个图案中有白色纸片张;(2)第n个图案中有白色纸片张.二、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.11.下列运算正确的是()A.22a a a+=B.232a a a=C.()224a a a÷=D.()22ab ab-=12.在平面直角坐标系中,点()32-,在()A.第一象限B.第二象限C.第三象限D.第四象限13.计算123-的结果为()A.3B.3C.33D.914.下列图案都是由字母“m”经过变形、组合而成的,其中不是..中心对称图形的是()15.某公司2003年缴税60万元,2005年缴税80万元,设该公司这两年缴税的年平均增长率为x,则得到方程()A.B.C.D.A.60280x +=B.()60180x += C.26080x =D.()260180x += 16.如图,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得 2.0AC =米,8.0BC =米,则旗杆的高度是( ) A.6.4米 B.7.0米C.8.0米 D.9.0米三、(本大题共3小题,第17小题6分,第18,19小题各7分,共20分)17.计算:()()()222x y y x y x --+-.18.已知关于x 的一元二次方程210x kx +-=.(1)求证:方程有两个不相等的实数根;(2)设方程的两根分别为12x x ,,且满足1212x x x x +=,求k 的值.19.如图,在平面直角坐标系中,点A 在第一象限,点B 的坐标为()30,,2OA =,60AOB =∠.(第16题)。
2006高等学校全国统一考试数学理试题(江西理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合230{31}(1)x M x N y y x x R x ⎧⎫===+∈⎨⎬-⎩⎭,,≥,则 M N 等于( ) A.∅ B.{1}x x ≥ C.{1}x x > D.{10}x x x <或≥2.已知复数z满足3)3i z i =,则z 等于( )A.322-B.344-C.322+D.344+3.若00a b >>,,则不等式1b a x-<<等价于( )A.10x b-<<或10x a<< B.11x a b-<<C.1x a<-或1x b>D.1x b<-或1x a>4.设O 为坐标原点,F 为抛物经24y x =的焦点,A 为抛物线上一点,若4OA AF =-,则点A 的坐标为( )A.(2±, B.(12)±, C.(12),D.(2 5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( ) A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥D.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( )A.0B.2-C.52- D.3-7.已知等差数列{}n a 的前n 项和为n S ,若120O B aO A a O C =+,且A B C ,,三点共线(该直线不过点O ),则200S 等于( )A.100 B.101 C.200 D.2018.在2006(x -的二项展开式中,含x 的奇次幂的项之和为S,当x =S 等于( )A.30082B.30082-C.30092D.30092-9.P 为双曲线221916xy-=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.6 B.7 C.8 D.910.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a ,甲、乙分在同一组概率为p ,则a p ,的值分别为( ) A.510521a p ==, B.410521a p ==,C.521021a p ==, D.421021a p ==, 11.如图,在四面体A B C D 中,截面AEF 经过四面 体的内切球(与四个面都相切的球)球心O ,且与 BC DC ,分别截于E F ,.如果截面将四面体分 为体积相等的两部分,设四棱锥A BEFD -与三棱锥A E F C -的表面积分别为12S S ,,则必有( )A.12S S < B.12S S > C.12S S = D.1S ,2S 的大小关系不能确定12.某地一年内的气温()Q t之间的关系如图(1令()C t 表示时间段[0]t ,第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,请把答案填在答题卡上. 13.数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为n S ,则lim n n S →∞= . 14.设3()log (6)f x x =+的反函数为1()f x -,若11[()6][()6]27fm fn --++= ,则()f m n += .15.如图,在直三棱柱111ABC A B C -中,底面为直角三角形,1906ACB AC BC CC ∠====,,.P 是BC 上一动点,则1C P PA +的最小值为 .16.已知圆2:(cos )M x θ+2(sin )1y θ+-=,填线:l y kx =,下面四个命题 A .对任意实数k 和θ,直线l 和圆M 相切;B .对任意实数k 和θ,直线l 和圆M 有公共点;C .对任意实数θ,必存在实数k ,使得直线l 和圆M 相切;D .对任意实数k ,必存在实数θ,使得直线l 和圆M 相切. 其中真命题的代号是 (写出所有真命题的代号).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a b ,的值及函数()f x 的单调区间;(2)若对[12]x ∈-,,不等式2()f x c <恒成立,求c 的取值范围.ACP B1A1C 1B BE18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元,现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲、乙两人摸球后获得的奖金总额.求(1)ξ的分布列;(2)ξ的数学期望.19.(本小题满分12分)如图,已知A B C△是边长为1的正三角形,MM N经过A B C△的中心G,设2M G Aααππ⎛⎫= ⎪33⎝⎭≤≤.(1)试将AGM AGN,△△的面积(分别记为1S与2S)表示为α(2)求221211yS S=+的最大值与最小值.20.(本小题满分12分)如图,在三棱锥A B C D-中,侧面ABD ACD,是全等的直角三角形,A D是公共的斜边,且1AD BD C D===,另一侧面ABC是正三角形.(1)求证:AD BC⊥;(2)求二面角B A C D--的大小;(3)在线段A C上是否存在一点E,使E D与面BC D成30 角?若存在,确定点E的位置;若不存在,说明理由.21.(本小题满分12分)如图,椭圆2222:1(0)x yQ a ba b+=>>的右焦点为(0)F c,,过点F的一动直线m绕点F转动,并且交椭圆于A B,两点,P为线段A B的中点.(1)求点P的轨迹H的方程;‘(2)若在Q的方程中,令221cos sin sin0a bθθθθπ⎛⎫=++=<⎪2⎝⎭,≤.确定θ的值,使原点距椭圆Q的右准线l最远.此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?22.(本小题满分14分)已知数列{}na满足:132a=,且113(2)21nnnnaa n na n*--=∈+-N,≥.(1)求数列{}na的通项公式;(2)证明:对一切正整数n,不等式122!na a a n<恒成立.ABCDB D2006高等学校全国统一考试数学理试题理(江西)参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2006年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合M={x|0)1(3≥-x x },N={y|y=3x 2+1,x ∈R},则M ∩N 等于 A. B.{x|x ≥1} C .{x|x >1} D .{x|x ≥1或x <0} 2.已知复数z 满足(3+3i)z=3i ,则z 等于A .2323-i B. 4343-i C .i 2323+ D .4343+i 3.若a >0,b >0则不等式-b <x1<a 等价于 A .-b 1<x <0或0<x <a 1 B .-a 1<x <b 1C. x <-a 1或x >b 1D. x <-b 1或x >a14.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若AF OA ∙=-4,则点A 的坐标为A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) 5.对于R 上可导的任意函数f(x),若满足(x-1)f ′(x)≥0,则必有A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1) C. f(0)+f(2)≥2f(1) D .f (0)+f(2)>2f(1) 6.若不等式x 2+ax+l ≥0对一切x ∈(0,21]成立,则a 的最小值为A .0 B.-2 C .-25D .-3 7.已知等差数列{a n }的前n 项和S n ,若OB =a 1OA +a 200,且A 、B 、C 三点共线(该直线不过点O),则S 200等于A .100B .101C .200D .201 8.在(x-2)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x=2时,S 等于A .23008B .-23008C .23009D .-230099.P 为双曲线16922y x -=1的右支上一点,M 、N 分别是圆(x+5)2+y 2=4和(x-5)2+y 2=1上的点,则|PM|-|PN|的最大值为A .6B .7C .8D .910.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a,甲、乙分在同一组的概率为p,则a 、p 的值分别为 A .a=105,p=215 B .a=105,P=214 C .a=210,p=215 D .a=210,p=214 11.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F.如果截面将四面体分为体积相等的两部分,设四棱锥A-BEFD 与三棱锥A-EFC 的表面积分别为S 1、S 2,则必有A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1、S 2的大小关系不能确定12.某地一年内的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图(1)所示,已知该年的平均气温为10℃.令C(t)表示时间段[0,t ]的平均气温,C(t)与t 之间的函数关系用下列图象表示,则正确的应该是第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分。
2006年江西省重点中学高考第一次联考理科数学试卷参考答案一、选择题(每小题5分,共12×5分=60分) 1. A 2. D 3. B 4. C 5. C6. A7. D8. C9. A10. A 11. C 12. B二、填空题(每小题4分,共4×4分=16分) 13. 2π14. -2≤a ≤-1或0≤a ≤1 15. a n =2n+1(n ∈N*) 16. (1),(2)三、解答题(共6小题,总分76分)17. (1)BC=BAC AC AB AC AB ∠⋅⋅-+cos 222=132分cosB=BC AB AC BC AB ⋅-+2222=131>05分(2)∵cosB>0,∴B 为锐角,sinB=1332 7分∵-π<B+x<2π,cos (B+x )=-1310 < 0 ∴-π<B+x<2π-,∴sin (B+x )=-1339分 ∴cosx=cos[(B+x )-B]= … =-13106+ 12分 18. (1) P (ξ=7)=351222C C C =51,P (ξ=8)= 3512221122C C C C C +=103, P (ξ=9)=35111212C C C C =52, P (ξ=10)=351122C C C =1017分 E ξ=8.4 8分 (2)信息畅通的概率P 1=P (ξ=10) =10110分信息基本畅通的概率P 2=P (ξ=8或ξ=9)=10712分 19. (1) ∵DE ⊥平面ACD ,∴DE ⊥AF又∵AC=AD=CD ,F 为CD 的中点∴AF ⊥CD ∴AF ⊥平面CDE 4分(2)取DE 的中点G ,连AG 、CG ,则∠CAG 或其补角就是异面直线AC 、BE 所成角 6分 由题设可以求出:CG=AG =5a ,AC=2a∵cos ∠CAG=AG AC CG AG AC ⋅-+2222=55∴异面直线AC 、BE 所成角的余弦值为558分 (2)延长DA 、EB 交于H 点,连CH , 则CH ∥AF , 又由AF ⊥平面DCE ,故HC ⊥平面DCE ,从而∠DCE 就是平面BCE 和平面ACD 所成锐二面角 10分 由平面几何知:△CDE 为等腰直角三角形 ∴∠DCE=45°∴平面BCE 和平面ACD 所成锐二面角为45° 12分 注:采用向量法求解答题各小问的得分给出相应分数。
这七种方法不伤身体又不用长期坚持的减肥方法1、黄瓜鸡蛋法每餐只吃黄瓜和鸡蛋,代替3餐,坚持7天,包你瘦,不过到时你就会特别想念老干妈的味道了。
是很好的刮油办法。
原理:黄瓜果肉脆甜多汁,清香可口,它含有胶质、果酸和生物活性酶,可促进机体代谢,能治疗晒伤、雀斑和皮肤过敏。
黄瓜还能清热利尿、预防便秘。
新鲜黄瓜中含有的丙醇二酸,能有效地抑制糖类物质转化为脂肪,因此,常吃黄瓜对减肥和预防冠心病有很大的好处。
>>>减肥:这样吃黄瓜有害健康2、过午不食法超过下午三点不吃任何东西,当然能吃的时候也不能猛吃啊,这样一周可以瘦几公斤。
原理:夜间休息,人体消耗的能量较少,摄入的过多能量用以变成脂肪囤积起来。
此法的注意事项是早餐和午餐必须吃饱吃好,补充一天所必须的营养物质。
健康提示:如果实在饿得慌,可以多喝水,或者吃一个苹果。
3、不吃正餐法每天少吃正餐,把豆浆作为三餐的一部分,女孩子喝了很有好处的,不过注意是无糖的哦,最好自己买台豆浆机,每天自己打,方便又便宜。
原理:豆浆主要榨取了含有丰富高优质植物性蛋白质的大豆,除了大豆蛋白质,还含有大量的大豆异黄酮(Isoflavone)、大豆配醣体(Saponin)等成份。
这些成份可以抑制吸收体内的脂质和醣类,发挥燃烧体脂肪的效果。
因此从饮用豆浆的那一刻起,经过消化→吸收→燃烧脂肪的各个阶段,这些有效成份可都正在发挥瘦身效果呢!>>>四大密技巧喝豆浆轻松减肥4、苹果减肥法吃2天苹果然后正常节制的饮食3天,这样几个周期循环,效果不错。
原理:肥胖者几乎都是因过食而使胃部扩张,无法控制食欲。
苹果减肥法能使胃部收缩,减肥后食欲变得容易控制,而且味觉变正常,不会喜欢刺激性食物或油腻食物。
苹果减肥可以促进血液内白血球的生成,提高人体的抵抗力和免疫力,同时促进神经和内分泌功能,有助美容养颜。
吃苹果减肥的好处是不必挨饿,肚子饿就吃苹果。
因为它是低热量食物,无论吃多少,都不会比日常生活所摄取的热量还多,所以体重自然减轻。
绝密★启用前2006年普通高等学校招生全国统一考试理科综合能力测试本试卷分第I卷(选择题)和第a卷(非选择题)两部分。
第I卷1至4页,第Ⅱ卷5至8页。
考试结束后,将本试题卷和答题卡一并交回。
第I卷注愈事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3本卷共21小题,每小题6分,共126分。
以下数据可供解题时参考:相对原子质量(原子量):H 1 C 12 N 14 O 16一、选择题(本题包括13小题。
每小题只有一个选项符合题意)1.人的神经系统中,有些神经细胞既能传导兴奋,又能合成分泌激素。
这些细胞位于A.大脑皮层B. 垂体C. 下丘脑D. 脊髓2.一般情况下,用抗原免疫机体,血清中抗体浓度会发生相应变化。
如果第二次免疫与第一次免疫所用的抗原相同且剂量相等,下列四图中能正确表示血清中抗体浓度变化的是3.下列关于动物细胞培养的叙述,正确的是A.培养中的人效应T细胞能产生单克隆抗体B.培养中的人B 细胞能够无限地增殖C.人的成熟红细胞经过培养能形成细胞株D.用胰蛋白酶处理肝组织可获得单个肝细胞4.锄足蟾蝌蚪、雨蛙蝌蚪和蟾蜍蝌蚪均以浮游生物为食。
在条件相同的四个池塘中,每池放养等量的三种蝌蚪,各池蝌蚪总数相同。
再分别在四个池塘中放入不同数量的捕食者水螈。
一段时间后,三种蝌蚪数量变化结果如图。
下列分析,错误..的是A.无水螈的池塘中,锄足蟾蝌蚪数量为J 型增长B.三种蝌蚪之间为竞争关系C.水螈更喜捕食锄足蟾蝌蚪D.水螈改变了三种蝌蚪间相互作用的结果5.采用基因工程技术将人凝血因子基因导入山羊受精卵,培育出了转基因羊。
但是,人凝血因子只存在于该转基因羊的乳汁中。
以下有关叙述,正确的是A.人体细胞中凝血因子基因编码区的碱基对数目,等于凝血因子氨基酸数目的3倍B.可用显微注射技术将含有人凝血因子基因的重组DNA 分子导入羊的受精卵C.在转基因羊中,人凝血因子基因存在于乳腺细胞,而不存在于其他体细胞中D.人凝血因子基因开始转录后,DNA 连接酶以DNA 分子的一条链为模板合成mRNA6.在常温常压下呈气态的化合物,降温使其固化得到的晶体属于A.分子晶体B.原子晶体C.离子晶体D.何种晶体无法判断7.下列叙述正确的是A.同一主族的元素,原子半径越大,其单质的熔点一定越高B.同一周期元素的原子,半径越小越容易失去电子C.同一主族的元素的氢化物,相对分子质量越大,它的沸点一定越高D.稀有气体元素的原子序数越大,其单质的沸点一定越高8.用A N 代表阿伏加德罗常数,下列说法正确的是A.0.5molAl 与足量盐酸反应转移电子数为1A NB.标准状况下,11.2L 3SO 所含的分子数为0.5A NC.0.1mol 4CH 所含的电子数为1A ND.46g 2NO 和24N O 的混合物含有的分子数为1A N9.把分别盛有熔融的氯化钾、氯化镁、氯化铝的三个电解槽串连,在一定条件下通电一段时间后,析出钾、镁、铝的物质的量之比为A. 1:2:3B. 3:2:1C.6:3:1D. 6:3:210. 浓度均为0.1mol·L-1的三种溶液等体积混和,充分反映后没有沉淀的一组溶液是A. BaCl2 NaOH NaHCO3B. Na2CO3 MgCl2 H2SO4C. AlCl3 NH3·H2O NaOHD. Ba(OH)2CaCl2Na2SO411.在0.1mol·L-1CH3COOH溶液中存在如下电离平衡:CH3COOH CH3COO-+H+对于该平衡,下列叙述正确的是A.加入水时,平衡向逆反应方向移动B.加入少量NaOH固体,平衡向正反应方向移动C.加入少量0.1mol·L-1HCl溶液,溶液中c(H+)减小D.加入少量CH3COONa固体,平衡向正反应方向移动12. 茉莉醛具有浓郁的茉莉花香,其结构简式如下所示:关于茉莉醛的下列叙述错误的是A.在加热和催化剂作用下,能被氢气还原B.能被高锰酸钾酸性溶液氧化C.在一定条件下能与溴发生取代反应D.不能与氢溴酸发生加成反应13.由硫酸钾、硫酸铝和硫酸组成的混和溶液,其pH=1,c(Al3+)=0.4mol·L-1,c(SO42-)=0.8mol·L-1,则c(K+)为A.0.15mol·L-1B.0.2mol·L-1C.0.3mol·L-1D.0.4mol·L-1二、选择题(本题包括8小题。
2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kkkn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z 3i )z =3i ,则z =( )A .322i B. 344 C. 322 D.3443、若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A •=-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( ) A .100 B. 101 C.200 D.201 8、在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( ) A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )C理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。
13、数列{214n 1-}的前n 项和为S n ,则n lim →∞S n =______________14、设f (x )=log 3(x +6)的反函数为f -1(x ),若〔f -1(m )+6〕〔f -1(n )+6〕=27则f (m +n )=___________________15、如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 1,P 是BC 1上一动点,则CP +PA 1的最小值是___________16、已知圆M :(x +cos θ)2+(y -sin θ)2=1, 直线l :y =kx ,下面四个命题: (A ) 对任意实数k 与θ,直线l 和圆M 相切;(B ) 对任意实数k 与θ,直线l 和圆M 有公共点;(C ) 对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切 (D )对任意实数k ,必存在实数θ,使得直线l 与 和圆M 相切其中真命题的代号是______________(写出所有真命题的代号)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤A10ºBCC 11A17、(本小题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间 (2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围。
18、(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元,现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲,乙摸球后获得的奖金总额。
求:(1)ξ的分布列 (2)ξ的的数学期望19、(本小题满分12分)如图,已知△ABC 是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的中心G , 设∠MGA =α(233ππα≤≤) (1) 试将△AGM 、△AGN 的面积(分别记为S 1与S 2) 表示为α的函数A C(2) 求y =221211S S +的最大值与最小值 20、(本小题满分12分)如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD,BD =CD =1,另一个侧面是正三角形(1) 求证:AD ⊥BC(2) 求二面角B -AC -D 的大小(3) 在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由。
21、(本大题满分12分)如图,椭圆Q :2222x y 1a b+=(a >b >0)的右焦点F (c ,0),过点F 的一动直线m 绕点F 转动,并且交椭圆于A 、B 两点,P 是线段AB 的中点(1) 求点P 的轨迹H 的方程(2) 在Q 的方程中,令a 2=1+cos θ+sin θ,b 2=sin θ(0<θ≤2π ),确定θ的值,使原点距椭圆的右准线l 最远,此时,设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD的面积最大?22、(本大题满分14分)已知数列{a n}满足:a1=32,且a n=n1n13nan2n N2a n1*≥∈--(,)+-(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,不等式a1•a2•……a n<2•n!2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kkkn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( C ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}解:M ={x|x >1或x ≤0},N ={y|y ≥1}故选C2、已知复数z 3i )z =3i ,则z =( D )A .32 B. 34 C. 32 D.34解:z 故选D3、若a >0,b >0,则不等式-b <1x<a 等价于( D ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a解:故选D4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A •=-4则点A 的坐标是(B )A .(2,±) B. (1,±2) C.(1,2)D.(2,)解:F (1,0)设A (20y 4,y 0)则O A =( 20y 4,y 0),F A =(1-2y 4,-y 0),由O A • F A =-4⇒y 0=±2,故选B5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( C ) C . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1)解:依题意,当x ≥1时,f '(x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f '(x )≤0,f (x )在(-∞,1)上是减函数,故f (x )当x =1时取得最小值,即有 f (0)≥f (1),f (2)≥f (1),故选C 6、若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的取值范围是( C ) A .0 B. –2 C.-52D.-3 解:设f (x )=x 2+ax +1,则对称轴为x =a 2- 若a 2-≥12,即a ≤-1时,则f (x )在〔0,12〕上是减函数,应有f (12)≥0⇒ -52≤x ≤-1 若a 2-≤0,即a ≥0时,则f (x )在〔0,12〕上是增函数,应有f (0)=1>0恒成立,故a ≥0若0≤a 2-≤12,即-1≤a ≤0,则应有f (a2-)=222a a a 110424≥-+=-恒成立,故11bxb 001x xb a 11ax x a 00x x 1x 0x x bx 1011bx x x 1ax 01b a x x 0a ⎧⎧⎪⎪⎪⎪⇔⇔⎨⎨⎪⎪⎪⎪⎩⎩⎧⎪⎧⎪⇔⇔⇒⎨⎨⎩⎪⎪⎩++---或-(+)-或(-)或-1≤a ≤0 综上,有-52≤a 故选C 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( A ) A .100 B. 101 C.200 D.201解:依题意,a 1+a 200=1,故选A8、在(x )2006的二项展开式中,含x 的奇次幂的项之和为S ,当x 时,S 等于(B ) A.23008 B.-23008 C.23009 D.-23009解:设(x )2006=a 0x 2006+a 1x 2005+…+a 2005x +a 2006则当x 时,有a 0)2006+a 1)2005+…+a 2005)+a 2006=0 (1)当x 时,有a 0)2006-a 1)2005+…-a 2005)+a 2006=23009 (2)(1)-(2)有a 1)2005+…+a 2005)=-23009÷2=-23008 故选B9、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( D ) A. 6 B.7 C.8 D.9解:设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时 |PM|-|PN|=(|PF 1|-2)-(|PF 2|-1)=10-1=9故选B10、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( A ) B . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=421解:a =322742C C C 2!=105甲、乙分在同一组的方法种数有(1) 若甲、乙分在3人组,有122542C C C 2!=15种(2) 若甲、乙分在2人组,有35C =10种,故共有25种,所以P =25510521= 故选A11、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 解:连OA 、OB 、OC 、OD则V A -BEFD =V O -ABD +V O -ABE +V O -BEFD V A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC 而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( A )解:结合平均数的定义用排除法求解CA 10º BC理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。