七年级数学三角形复习
- 格式:pdf
- 大小:1.29 MB
- 文档页数:10
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
2022-2023七年级上学期鲁教版数学(第1章三角形)期末复习训练一、选择题1.如图,在△ABC中,画出AC边上的高,正确的图形是( )A. B.C. D.2.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A. AB=DEB. ∠A=∠DC. AC=DFD. AC//FD3.现有以下说法:①等边三角形是等腰三角形;②三角形的两边之差大于第三边;③三角形按边分类可分为不等边三角形、等腰三角形、等边三角形;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个4.下列说法:(1)周长相等的两个三角形是全等三角形;(2)周长相等的两个圆是全等图形;(3)如果两个三角形是全等三角形,那么这两个三角形的面积相等;(4)所有的正方形是全等图形;(5)在△ABC中,当∠A=12∠C,∠B=13∠C时,这个三角形是直角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个5.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A. ∠ABC=∠DCBB. AB=DCC. AC=DBD. ∠A=∠D6.如图,AD是△ABC的中线,点E是AD的中点,若△ABC的面积为24cm2,则△CDE的面积为( )A. 8cm2B. 6cm2C. 4cm2D. 3cm27.下列叙述中,正确的是.( )A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连接三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线,这条垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部8.根据下列条件,不能画出唯一△ABC的是( )A. AB=5,BC=3,AC=6B. AB=4,BC=3,∠A=50°C. ∠A=50°,∠B=60°,AB=4D. AB=10,BC=20,∠B=80°9.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是( )①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A. ①②③④B. ①②③C. ②④D. ①③10.为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB 的长.那么△ABC≌△ADC的理由是( )A. SASB. AASC. ASAD. SSS二、填空题11.如图,Rt△ABC和Rt△EDF中,BC//DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于3平方厘米,则△ABC的面积为_________平方厘米13.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.14.如图,在锐角三角形ABC中,AB=4,△ABC的面积为10,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为______.15.如图,已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下面作法中: ①分别以B,C为圆心,c,b为半径作弧,两弧交于点A; ②作线段BC=a; ③连接AB,AC,△ABC 为所求作的三角形.正确顺序应为(填序号).16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是.三、解答题17.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,∠α,直线l及l上两点A,B.求作:△ABC,使点C在直线l的上方,且∠ABC=90∘,∠BAC=∠α.18.如图,在△ABC中,D是边BC上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:∠AEB=∠DEB;(2)若∠A=100∘,∠C=50∘,求∠AEB的度数.19.如图,在△ABC中,∠A=60°,角平分线BD,CE交于点O.(1)求∠BOC的度数;(2)点F在BC上,BF=BE,试说明:△COD≌△COF;(3)BE,CD,BC三条线段之间有怎样的数量关系?请直接写出结果.20.如图,在△ABC中,∠BAD=∠CAD.(1)如图,若DE⊥AB,DF⊥AC,垂足分别为E,F,请你说明DE=DF;(2)如图 ②,若G是AD上一点(A、D除外),GE⊥AB,GF⊥AC,垂足分别为E,F,请问:GE=GF成立吗?并说明理由;(3)如图 ③,若(2)中GE,GF不垂直于AB,AC,要使GE=GF,需添加什么条件?并在你添加的条件下说明GE=GF.21.如图,BD、CE分别是△ABC的边AC、AB上的高,P在BD的延长线上,且BP=AC,点Q 在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.22.在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,①试说明:△ABD≌△ACE;②求∠BCE的度数;(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.答案D C B B B B D B B A11. AB=ED(答案不唯一)12. 1213. 414. 515. ② ① ③16. 5017.略18.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE.在△ABE和△DBE中,{AB=DB,∠ABE=∠DBE, BE=BE,∴△ABE≌△DBE(SAS),∴∠AEB=∠DEB.(2)∵BE平分∠ABC,∴∠ABE=∠DBE,∵∠A=100∘,∠C=50∘,∴∠ABC=30∘,∴∠ABE=15∘,∴∠AEB=180∘−∠A−∠ABE=180∘−100∘−15∘=65∘.19.解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,所以∠OBC+∠OCB=12(∠ABC+∠ACB)=12×(180∘−60∘)=60∘.所以∠BOC=180°−60°=120°.(2)因为BD平分∠ABC,所以∠EBO=∠FBO.在△OBE和△OBF中,{OB=OB,∠OBE=∠OBF, BE=BF,所以△OBE≌△OBF(SAS).所以∠BOE=∠BOF.因为∠BOC=120°,所以∠BOE=60°.所以∠BOF=∠COF=∠COD=60°.在△COD和△COF中,{∠COD=∠COF, OC=OC,∠OCD=∠OCF,所以△COD≌△COF(ASA).(3)BC=BE+CD.20.(1)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD,在△AED和△AFD中,{∠DAE=∠DAF,∠AED=∠AFD, AD=AD,∴△AED≌△AFD,∴DE=DF.(2)GE=GF成立.理由如下:∵GE⊥AB,GF⊥AC,∴∠AEG=∠AFG,在△AEG和△AFG中,{∠EAG=∠FAG,∠AEG=∠AFG, AG=AG,∴△AEG≌△AFG,∴GE=GF.(3)(答案不唯一)添加AE=AF,理由如下:在△AEG和△AFG中,{AE=AF,∠EAG=∠FAG, AG=AG,∴△AEG≌△AFG,∴GE=GF.21.证明:(1)∵BD、CE分别是△ABC的边AC、AB上的高,∴BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAC=90°,∠ACE+∠BAC=90°,∴∠ABD=∠ACE,在△ABP和△QCA中,{BP=AC,∠ABP=∠ACQ, AB=CQ,∴△ABP≌△QCA(SAS),∴AP=AQ.(2)由(1)知△ABP≌△QCA,∴∠P=∠CAQ,∵BD⊥AC,∴∠P+∠CAP=90°,∴∠CAQ+∠CAP=90°,即∠QAP=90°,∴AP⊥AQ.22.解:(1)①因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).②由①可得△ABD≌△ACE,所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠BCE=∠B+∠ACB.因为∠B+∠ACB=180°−∠BAC=90°,所以∠BCE=90°.(2)α+β=180°,理由:因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠B+∠ACB=β.因为α+∠B+∠ACB=180°,所以α+β=180°.。
学习内容第九章变量之间的关系复习课总第课时周课时主备人学习目标1. 通过三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法;2. 培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力.重难点运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题.实施过程设计主要环节教学内容教学策略活动时间教师活动学生活动设计一、梳理知识结构:模块一知识点回顾基本概念1、三角形的三种重要线段:三条_______线、三条_______线、三条_______线.(1)三角形的角平分线不同于一个角的平分线,前者是一条_________,后者是一条_________.三角形的高线是_________,而线段的垂线是_________.(填“线段”或“射线”或“直线”)(2)三角形的三条角平分线相较于_________一点,三条中线相较于_________一点,三角形的三条高线也相较于一点,但锐角三角形的交点在三角形的_________,直角三角形的交点在三角形的_________,钝角三角形的交点在三角形的_________.(填“形内”或“形外”)2、三角形的性质:(1)边的性质:三角形的任意两边之和_________第三边,三角形的任意两边之差_________之差.(2)角的性质:三角形的三个内角之和等于_________°;一个外角_________与它不相邻的两个内角的和,一个外角__________任何一个与它不相邻的内角,_________三角形的两个锐角互余.(3)稳定性:即三边的长度确定后,三角形的形状保持不变.3、三角形的分类:(1)按边分:_________三角形和_________三角形.(2)按角分:_________三角形和_________三角形和_________三角形.基本性质与判定1、全等三角形的性质:全等三角形的对应边_________,对应角_________.2、全等三角形的判定(1)一般三角形有:________、________、________、________共4种.教师巡回指导教师引导,点拨学生独立思考,梳理知识结构,师友互助5分钟3分钟15分钟二、典型例析(2)直角三角形有:________、________、_______、_______、_______共5种.判定两个三角形全等,必须满足三个条件对应相等,其中不能缺少边的条件,如“AAA”不能判定两个三角形全等;三角形全等没有“SSA”的判定方法,而“HL”是不同于“SSA”的.基本思路、基本技能1、判定三角形全等的基本思路根据全等三角形的判定方法,要判定两个三角形全等,需结合题目中的已知边(或角),要迅速地确定还需要补充什么(边或角)条件,一般有以下几种思路.已知两边⎪⎩⎪⎨⎧→→→”运用“找另一边””或“运用“找直角”运用“找夹角SSSSASHLSAS已知一边一角⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→→→→”运用“找该角的另一边”运用“找这条边的对角”运用“找这条边上的另一个角边是角的一条边”运用“找任意角边与角相对SASAASASAAAS已知两角⎩⎨⎧→→”运用“找其中一角的对边”运用“找两角的夹边AASASA2、尺规作三角形(1)已知三角形的两边及其夹角,求作这个三角形.(2)已知三角形的两角及其夹边,求作这个三角形.(3)已知三角形的三边,求作这个三角形.(4)已知三角形两角和其中一角的对边,求作这个三角形.对于尺规作图应注意:①作图的痕迹要保留,不能去掉;②能够运用五种基本作图完成已知条件的三角形;③叙述作法时,语言要准确、简捷、规范.基本图形1.平移型.如图1-1、1-2中,可以把一个三角形看成是另一个三角形按一定方向、平移一定距离得到的.2.对称型.如图2-1、图2-2、图2-3、图2-4按某一条直线对折后,直线两旁的部分完全重合.教师引导,点拨学生回答学生讨论回答7分钟三、反思拓展3.旋转型.如图3-1、图3-2、图3-3可以看成是其中一个三角形绕某点旋转一定的角度后与另一个图形完全重合.模块二合作探究1.如图①,AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD,BC相交于点M,N,(1)那么∠1与∠2有什么关系?AM,CN有什么关系?请说明理由.(2)若将过O点的直线旋转至图②③的情况时,其他条件不变,那么(1)中关系的还成立吗?请说明理由.2.如图,在△ABC中,AB=AC,∠BAC =40°,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD =∠CAE =90°.(1)求∠DBC的度数;(2)求证:BD=CE.3.如图,⊿ABC与⊿DCE是等边三角形,连接BD交AC于F,连接AE,交CD于G,(1)求证:AE=BD;(2)求证:CF=C G4.如图,AB、CD交于点O,AC∥DB,OC=OD,E、F为AB上的两点,AE=BF,求证:CE=DF。
第3章三角形单元复习题一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )A.三角形内部B。
三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是()A。
4、5、6 B.6、8、15C.5、7、12D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A。
0°<α<90° B.60°<α<90°C。
60°<α<180° D.60°≤α<90°4.下列判断正确的是()A。
有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6B.6<x<12C。
0<x<12 D。
x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A。
则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7。
三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A。
三条中线交点 B.三条角平分线交点C。
三条高线交点D。
三条高线所在直线交点8。
已知等腰三角形的一个角为75°,则其顶角为()A。
30°B。
75°C.105°D。
30°或75°9。
如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A。
一处 B.二处C。
三处D。
四处10。
三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是()A.锐角三角形B.直角三角形C。
七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
A BEC D 2005年春季期七年级数学第七章三角形复习训练题一、填空题1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
5、三角形有两条边的长度分别是5和7,则第三条边a 的取值范围是___________。
6、△ABC 中,∠A =50°,∠B =60°,则∠C = 。
7、将一个三角形截去一个角后,所形成的一个新的多边形的内角和___________。
8、等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.9、古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 .10、在∆ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。
11、一个多边形的内角和是1980°,则它的边数是____,共有条对角线____,它的外角和是____。
12、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
二、选择题1、小芳画一个有两边长分别为5和6的等腰三角形,则它的周长是( )A 、16B 、17C 、11D 、16或172、如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED =∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是( )A ∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDEB ∠BED =∠ABE -∠CDEC ∠BED =∠CDE -∠ABE 或∠BED =∠ABE -∠CDED ∠BED =∠CDE -∠ABE3、 以长为3cm ,5cm ,7cm ,10cm 的四根木棍中的三根木棍为边,可以构成三角形的个数是( )A .1个B .2个C .3个D .4个4、已知一多边形的每一个内角都等于150°,则这个多边形是正( )(A) 十二边形 (B) 十边形 (C) 八边形 (D) 六边形 5、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A.正方形与正三角形 B.正五边形与正三角形 C.正六边形与正三角形 D.正八边形与正方形6、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高, 且相交于一点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°7、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( )A 、500B 、100 0C 、180 0D 、 2008、在∆ABC 中,三个内角满足∠B -∠A=∠C -∠B ,则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 9、在锐角三角形中,最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90°10、下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
本文由一线教师精心整理/word可编辑初一期末复习专题-三角形模块一:三角形三边关系1.如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm【解答】解:设第三边长为x,则由三角形三边关系定理得2﹣1<x<2+1,即 1<x<3.故选:B.2.如果三角形的两边长分别为5 和 7,第三边长为偶数,那么这个三角形的周长可以是A.10 B.11 C.16 D.26【解答】解:设第三边为acm,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则 a 可以为 4cm 或 6cm 或 8cm 或 10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.3.一个等腰三角形的边长分别是4cm 和 7cm,则它的周长是 15cm 或 18cm .【解答】解:①当腰是4cm,底边是 7cm 时,能构成三角形,则其周长=4+4+7=15cm;②当底边是 4cm,腰长是 7cm 时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm 或 18cm.4.一个三角形的三边长分别是 xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,则 x 的取值范围是()A.x≤133B.1< x≤133C.D.1< x≤73【解答】解:∵三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,∴x+2<x+x+1,x+x+1+x+2≤10,解得:x>1,,所以 x 的取值范围是 1<x≤73,故选:D.5.一个三角形的三边长分别为 xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则 x 的取值范围是 2<x≤11 .【解答】解:∵一个三角形的3 边长分别是 xcm,(x+2)cm,(x+4)cm,它的周长不超过 39cm,解得 2<x≤11.故答案为:2<x≤11.6.已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m 的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.7.现有长为 57cm 的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm 的整数,如果其中任意 3 小段都不能拼成三角形,则n 的最大值为 8 .【解答】解:因为 n 段之和为定值 57cm,故欲 n 尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意 3 段都不能拼成三角形,因此这些小段的长度只可能分别是 1,1,2,3,5,8,13,21,34,55,但 1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以 n 的最大值为 8.故答案为 8.模块二:三角形中求角度8.如图,△A BC 的角平分线AD 交 BD 于点D,∠1=∠B,∠C=66°,则∠BAC 的度数是 76° .【解答】解:∵△ABC 的角平分线 AD 交 BD 于点 D,∴∠C AD=∠1=1∠BAC,2∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC 中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°9.将一副直角三角板如图放置,使含 30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.10.在锐角△ABC 中,三条高交于点H,若∠BHC=110°,则∠BAC= 70 °.【解答】解:如图所示,∵CF⊥AB,B E⊥AC,∴∠AFC=∠AEB=90°,∵∠E HF=∠BHC=110°,∴∠A=360°﹣∠AFC﹣∠AEB﹣∠EHF=360°﹣90°﹣90°﹣110°=70°.故答案为:70.11.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD,则∠1+∠2= 75° .【解答】解:连接 AC,∵A B∥CD,∴∠BAC+∠ACD=180°.∵∠BAG=30°,∠EC D=60°,∴∠E AC+∠ACE=180°﹣30°﹣60°=90°.∵∠CE D=60°,∴∠GEF=180°﹣90°﹣60°=30°.同理∠E GF=180°﹣∠1﹣90°=90°﹣∠1,∠GFE=180°﹣45°﹣∠2=135°﹣∠2,∵∠GEF+∠EGF+∠GFE=180°,即30°+90°﹣∠1+135°﹣∠2=180°,解得∠1+∠2=75°.故答案为:75°.12.如图,方格中的点A,B 称为格点(格线的交点),以AB 为一边画△A BC,其中是直角三角形的格点 C 的个数为()A.3 B.4 C.5 D.6【解答】解:如图所示:以AB 为一边画△A BC,其中是直角三角形的格点C 共有 4 个,故选:B.13.我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角的数量关系与它不相邻的三个内角的和减去180° .【解答】解:四边形的一个外角与相邻的内角互补,而四个内角的和是360 度,则四边形的一个外角等于:与它不相邻的三个内角的和减去180°.故答案是:与它不相邻的三个内角的和减去180°.模块三:三角形模型14.已知△A BC 中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+12α ;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于 O 1、O 2,则∠BO 2C= 60°+23α ;请你猜想,当∠B 、∠C 同时 n 等分时,(n ﹣1)条等分角线分别对应交于 O 1、 O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C= (用含 n 和α的代数式表 示).【解答】解:在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O 2B 和 O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC+∠O 2CB=23(∠ABC+∠ACB )=23(180°﹣α)=120°﹣23α; ∴∠BO 2C=180°﹣(∠O 2BC+∠O 2CB )=180°﹣(120°﹣23α)=60°+23α;在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O n ﹣1B 和 O n ﹣1C 分别是∠B 、∠C 的 n 等分线,∴ ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB= 1n n -( ∠ ABC+ ∠ ACB ) = 1n n-( 180 ° ﹣ α ) = 0180(1)n n -﹣(1)n nα-. ∴ ∠ BO n ﹣ 1C=180 ° ﹣ ( ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB ) =180 ° ﹣ (0180(1)n n -﹣(1)n nα- )故答案为:60°+23 α;(1)n nα-+0180n 15.如图,在△ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点 A 1,得∠A 1;∠A 1BC 和 ∠A 1CD 的平分线交于点 A 2,得∠A 2;…∠A 2021BC 和∠A 2021CD 的平分线交于点 A 2021,则∠ A 2021= 20132m度.【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD , ∵∠A 1CD=∠A 1+∠A 1BC , 即12∠ACD=∠A 1+12∠ABC , ∴∠A 1=12(∠ACD ﹣∠ABC ), ∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD ﹣∠ABC ,∴∠A 1=12∠A , ∴∠A 1=12m °, ∵∠A 1=12∠A ,∠A 2=12∠A 1=212∠A, 以此类推∠A 2021=201312∠A=20132m °. 故答案为:20132m.16.如图,在△ABC 中,∠A=40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC= 110° .【解答】解:∵D点是∠ABC 和∠ACB 角平分线的交点,∴∠C BD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.模块四:多边形17.在一个 n(n>3)边形的 n 个外角中,钝角最多有()A.2 个B.3 个C.4 个D.5 个【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.18.若 n 边形的内角和是它外角和的2 倍,则 n= 6 .【解答】解:设所求多边形边数为n,则(n﹣2)•180°=360°×2,解得 n=6.19.如图是由射线 AB、BC、CD、DE、EA 组成的图形,∠1+∠2+∠3+∠4+∠5=360° .【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.20.一个多边形的内角和等于1080°,这个多边形是 8 边形.【解答】解:设所求正n 边形边数为 n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.模块五:面积问题21.如图,△A BC 三边的中线 AD、BE、CF 的公共点为 G,若 S△ABC=12,则图中阴影部分的面积是 4 .【解答】方法 1解:∵△ABC 的三条中线 AD、BE,CF 交于点 G,∴S△CGE=S△AGE=13S△A CF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC =12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为 4.方法 2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG 的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得: S1=S2 , S3=S4 , S5=S6 , S1+S2+S3=S4+S5+S6 ①,S2+S3+S4=S1+S5+S6②由①﹣②可得 S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.22.如图,A、B、C 分别是线段 A1B,B1C,C1A 的中点,若△A BC 的面积是 1,那么△A1B1C1的面积 7 .【解答】解:如图,连接AB1,BC1,CA1,∵A、B 分别是线段 A1B,B1C 的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1 的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.23.如图,在△ABC 中,C1,C2 是 AB 边上的三等分点,A1,A2,A3 是 BC 边上的四等分点,AA1 与 CC1 交于点 B1,CC2 与 C1A2 交于点 B2,记△AC1B1,△C1C2B2,△C2BA3 的面积为 S1,S2,S3.若 S1+S3=9,S2= 4 .【解答】解:根据图形和已知条件发现:S1=12S△ACC1,S2=13S△CC1C2,S3=14S△CC2B,S△ACC1=S△CC1C2=S△CC2B,∴S1=32S2,S3=34S2,若 S1+S3=9,S2=4.24.(1)如图①,AD 是△ABC 的中线,△A BD 与△A CD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC 的面积记为 S△ABC,如图②,已知S△ABC=1,△ABC 的中线 AD 、CE 相交于点 O ,求四边形 BDOE 的面积. 小华利用(1)的结论,解决了上述问题,解法如下:连接 BO ,设 S △BEO =x ,S △BDO =y , 由(1)结论可得:1122BCE ABD ABC S S S ∆∆∆===, S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x .则有BEO BCO BCE BAO BDO BADS S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即122122x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. 所以13x y +=. 即 四边形 BDOE 的面积为13请仿照上面的方法,解决下列问题:①如图③,已知 S △ABC =1,D 、E 是 BC 边上的三等分点,F 、G 是 AB 边上的三等分点,AD 、 CF 交于点 O ,求四边形 BDOF 的面积.②如图④,已知 S △ABC =1,D 、E 、F 是 BC 边上的四等分点,G 、H 、I 是 AB 边上的四等分 点,AD 、CG 交于点 O ,则四边形 BDOG 的面积为110. 【解答】解:(1)S △ABD =S △ACD .∵AD 是△A BC 的中线∴BD=CD ,又∵△ABD 与△A CD 高相等,∴S △ABD =S △ACD .(2)①如图 3,连接 BO ,设 S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =13S △ABC =13S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有BFO BCO BCF BDO BAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩即133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. , 所以 x+y=16,即四边形 BDOF 的面积为16; ②如图,连接 BO ,设 S △BDO =x ,S △BGO =y ,,S △BCG =S △ABD =14S △ABC =14, S △BCO =4S △BDO =4x ,S △BAO =4S △BGO =4y .则有BGO BCO BCG BDOBAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即144144x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 所以 x+y=110,即四边形 BDOG 的面积为110, 故答案为:110. 模块六:综合题25.证明:三角形三个内角的和等于180°. 已知: △A BC .求证: ∠BAC+∠B+∠C =180° .【解答】解:已知:△ABC , 求证:∠BAC+∠B+∠C =180°, 证明:过点 A 作 EF ∥BC ,∵E F ∥B C ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°. 即知三角形内角和等于 180°. 故答案为:△ABC ;∠BAC+∠B+∠C =180°.26.如图①,在 Rt△ABC 中,∠ACB=90°,D 是 AB 上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC 的平分线分别交 BC,CD 于点 E,F,求证:∠AEC=∠C FE.【解答】(1)证明:∵∠ACB=∠ACD+∠BCD=90°,∠B=∠ACD,∴∠B+∠BCD=90°,又∵∠CDB+∠B+∠BCD=180°,∴∠C DB=90°,∴CD⊥AB;(2)在△A CE 中,∠AEC+∠C AE=90°,在△AFD 中,∠FAD+∠AFD=90°,∵AE 平分∠BAC,∴∠C AE=∠FAD,∴∠AEC=∠AFD,又∵∠CFE=∠AFD,∴∠AEC=∠C FE.27.在△ABC 中,点 D、E 分别在边 AC、BC 上(不与点 A、B、C 重合),点 P 是直线 AB 上的任意一点(不与点A、B 重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点 P 在线段 AB 上运动,且 n=90°时①若PD∥BC,PE∥AC,则m= 90° ;②若 m=50°,求 x+y 的值.(2)当点 P 在直线 AB 上运动时,直接写出x、y、m、n 之间的数量关系.【解答】解:(1)①如图1,∵PD∥B C,PE∥AC,∴四边形 DPEC 为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠C DP=180°﹣x,∠CEP=180°﹣y,∵∠C+∠C DP+∠DPE+∠CE P=360°,∠C=90°,∠DPE=50°,∴90°+180°﹣x+50°+180°﹣y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为 360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.。
B 、 3cm, 5cm, 9cmC 、 14cm, 9cm, 6cmD 、 5cm, 6cm, 11cm2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定4.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )第4题图第2A B CD于O,则∠AOC+∠DOB=()第6题图A、900B、1200C、1600D、1800题组三:1、已知两条线段的长分别是3cm、8cm ,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多少长?2、有两边相等的三角形一边的长是5 cm,另一边的长是8cm,求它的周长3、指导复习题7第3、6、7、9、10拓展思维1、如图:D是△ABC中BC 边上一点,试说明2AD<AB+BC+AC。
2、有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。
活动5推荐作业,补充升华必做题:习题复习题7第2、8题选做题:习题:设计出多边形镶嵌的图案吗?【师生互动】提示:由AC+CD>AD与AB+BD>AD相加可得。
【课件展示】六边形,截去一三角形,内角和会发生怎样变化?【设计意图】鼓励学生能用所学知识,解决实际问题。
【设计意图】为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。
B AD CB。
全等三角形复习一、知识点梳理及示例一重新认识“全等形”与“全等三角形”.全等形和全等三角形,其实质是“完全重合”,也就是“形状相同,大小相等”,全等三角形是全等形中的一种,因此,从这个意义上,不难得到全等三角形的性质,对应边和对应角分别相等.在这里,要特别注意“对应”的问题,当我们用“≌”表示两个三角形全等时;对应字母一定要写在对应的位置,这样便于看出对应的元素是什么。
在学习了第十四章(轴对称)后,对全等形应有一个新的认识:成轴对称的两个图形一定是全等形,只是这时两个图形的位置特殊罢了.我们在解数学中的“折叠问题”时,用全等形的性质往往是个关键.二掌握证明三角形全等的分析要领,会用综合法书写证明过程.证明三角形全等时的分析方法与步骤:(1)仔细观察图形,找出欲证的两个全等三角形已知的直接相等条件,并把已知条件标注在图上,使条件在图上一目了然.(2)注意挖掘图形中的隐含条件,如公共边(角)、对顶角、等腰(边)三角形或正方形中的等角(边)等,这些条件虽然没有直接告诉,它们却是证明三角形全等必不可少的条件。
(3)对照判定三角形全等的五种方法(SSS,SAS,ASA,AAS,HL),看看三角形全等的条件是否具备了,如果不够,还需要找出哪些条件或创造哪些条件.有时,两个三角形全等的某些条件是必须证明的.常会遇到以下几种情况:①利用中点的定义证明线段相等;②利用角平分线的定义证明角相等;③利用垂直的定义证明角相等;④利用平行线的性质证明角相等;⑤利用三角形的内角和为180°证明角相等;⑥利用图形的和、差证明线段或角相等.经过正确分析之后,要把论证过程规X地写出来.本章要求我们能用综合法书写证明过程,这也是本章的一个重点.什么叫“综合法证明格式”?就是按照从题设(已知条件)出发,经过一步步推理论证,最后得到结论的格式来书写证明过程.例l如下图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,连接BF,DE,你能证明BF=DE吗?分析:①找出欲证的两个全等三角形:从图形及要证的结论来看,可考虑证明△BCF≌△DCE;②找出并标上已知条件:CE=CF,∠ECF=90°;③有没有隐含条件?有:BC=DC,∠BCD=90°,它们是正方形的边和角;④对照判定三角形全等的方法,还差什么条件?因为BF=DE是要证的,所以,可证∠BCF=∠DCE,而这个结论很容易证得.至此,分析过程顺利完成,书写格式如下:证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∴∠BCD-∠DCF=∠ECF-∠DCF即∠BCF=∠DCE在△BCF和△DCE中,∵∴△BCF≌△DCE,∴BF=DE三理解“SSA”为什么不能判定两个三角形全等,防止误用SSA.在学习新课时,探究并得到了判定两个三角形全等的五种方法.并且知道判断两个三角形全等至少需要3个条件,其中至少有—个条件是边.但SSA却是个假命题,有些同学自觉或不自觉地应用它来证明三角形全等,这是不对的.例2如图,AC、BD交于E,AD=BC,∠C=∠D,试说明AC=BD.错解:在△ABD和△BAC中∴△ABD≌△BAC,∴AC=BD正确解法,在△ADE和△BCE中∴△ADE≌△BCE(AAS)∴AE=BE,DE=CE∴AE+CE=BE+DE,即AC=BDSSA为什么不能判定两个三角形全等呢?我们可以从下图中看出来,你能根据下图说明为什么吗?其实,HL中的3个条件就是SSA,为什么HL是正确的呢?这是由直角三角形的特殊性决定的.下面留一个问题请你解决,这样有助于我们更进一步地理解与掌握全等三角形的判定.探究:我们知道:“有两边和其中一边的对角对应相等的两个三角形全等”是个假命题.请你对三个条件或三角形的形状给些必要的限制,使得具备“SSA”三个条件的两个三角形全等.四你会判定两个特殊三角形全等吗?我们课本主要研究了一般三角形全等的4种判定方法,只有“HL”,是关于特殊三角形(即直角三角形)全等的判定;课本为什么不探究特殊三角形的全等条件呢?这是因为一般的方法适用特殊,这样也是为了减少我们的学习负担,集中精力学会一般的方法.我们共同来看下面一个例子.例3.下列说法:①一边相等的两个等腰直角三角形全等;②—腰和底对应相等的两个等腰三角形全等;③周长相等的两个等腰三角形全等;④一个钝角和它的一条邻边对应相等的两个等腰三角形全等.其中,正确的说法有( ).A.0个.B.1个C.2个D.3个分析与解:①的说法中相等的这—对边,没有指明是对应腰还是对应底,如果一个是底与另一个的腰相等,则不能得到两个等腰直角三角形全等.②的说法中,一腰和底对应相等,这就有两对边相等了,第三对边是不是相等呢?当然相等了,因为第三对边是腰,也应该相等,这样就符合“SSS”了。
章末复习
知识技能考点聚焦掌握方法
专题一:三角形的三边关系
1.已知中,,,那么边的长可能是下列哪个值().A.B.C.D.
【答案】B
【解析】
2.若一个等腰三角形的两边长分别是和,则它的周长为().
A.B.C.或D.或
【答案】A
【解析】
3.长为,,,的四根木条,组成三角形,选法有().
A.种B.种C.种D.种
【答案】C
【解析】
专题二:三角形的内角和
4.如图,的大小等于().
A.B.C.D.
【答案】D
【解析】
5.如图,在中,,的平分线,相交于点,,,则
().
A.B.C.D.
【答案】C
【解析】
专题三:全等三角形的判定及应用
6.(2015·绍兴)如图,小敏做了一个角平分仪,其中,,将仪器上的点
与的顶点重合,调整和,使它们分别落在角的两边上,过点,画一条射线
,就是的平分线,此角平分仪的画图原理是:根据仪器结构,可得≌
,这样就有.则说明这两个三角形全等的依据是().
A .
B .
C .
D .
【答案】D
【解析】
7.(2015·宜昌)如图,在方格纸中,以为一边作,使之与全等,从
,,
,四个点中找出符合条件的点,则点有().
A.个B.个C.个D
.个
【答案】C 【解析】
8.(2015·齐齐哈尔)如图,点,
,,在同一直线上,,,要使
≌,则只需添加一个适当的条件是__________.(只填一个即可)
【答案】示例:
【解析】
9.(2015·黄岛区期末)如图,已知,,,则.。
初一数学三角形复习题一.选择题1.下列给出的三条线段中,能组成三角形的是( )A. 6. 7 .2.B. 三边之比为5:6:11C. 30cm8cm10cmD. 三边之比为5:3:1 2.如图,在△ABC 中,∠C =80°,D 为AC 上一点,则x 可能是( ) A.5 B.10 C3.在△ABC 中,D ,E 分别为BC 上两点,且BD=DE=EC,则图中面积相等的三角形有( )对。
9x°CBDAAD CBE22211111(第2题) (第3题) (第4题)4.观察图和所给表格中的数据后回答: 当梯形的个数为n 时,图形周长为( ) A.3n B.3n+1 C.3n+2 D.3n+3 错误..的个数是( ) (1)钝角三角形三边上的高都在三角形的外部(2)三角形中,至少有两个锐角,最多有一个直角或钝角(3)三角形的一个外角等于它的两个内角的和(4)三角形的一个外角大于它的任何一个内角(5)三角形的三个外角(每个顶点只取一个外角)中,钝角个数至少有2个6.若一个三角形的三个内角度数之比为3:2:1,则与之相邻的三个外角度数之比为( ) A. 3:2:1 B. 1:2:3 C. 5:4:3 D. 3:4:5 7.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形 D.属于哪一类不能确定 8.下面各角能成为某多边形的内角和的是( )A .430°B .4343°C .4320°D .4360°ACO B109. n 边形所有对角线的条数有( ) A. ()12n n -条 B.()22n n -条 C. ()32n n -条 D. ()42n n -条 10. 如右图,∠ABC 和∠ACB 的角平分线交于O 点,∠A=80°,则∠BOC 等于( ) A. 95° B. 120° C. 130° D. 无法确定11、如图,AB//CD//EF,那么∠BAC+∠ACE+∠CEF=( ) . A 、1800B 、2700C 、3600 D 、540012、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( ).13、下列图形中,正确画出AC 边上的高的是( ).14、如果mn<O ,且m>O ,那么点P(m 2,m-n)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限15.已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( ) A 、()2,2 B 、()2,2- C 、()1,1-- D 、()2,2--二.填空题1.已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为.2、在平面直角坐标系中,点P(-4,5)到x 轴的距离为______,到y 轴的距离为________.3、若等腰三角形的边长分别为3和6,则它的周长为________.4、如果一个等腰三角形的外角为100°,则它的底角为________.5、如图,已知直线AE∥BF,∠EAC=28°,∠FBC=50°,∠ACB 的度数为.6、过钝角∠AOB 的顶点O 作CO ⊥AO ,CO 分∠AOB 为∠AOC 与∠BOC 两部分且∠AOC 是 ∠BOC 的4倍多2度,则∠AOB 的度数为.第(5)题FED C B A 11E D CB AF ADCBEFADC BE(第5题) (第7题图) (第9题)(第10题)7.如图,⊿A B C 中,∠A = 40°,∠B = 72°,CE 平分∠A CB ,CD ⊥A B 于D ,D F ⊥C E ,则∠CD F =度。
2022-2023学年七年级数学下学期复习备考高分秘籍【苏科版】专题2.2三角形的认识大题专练(分层培优解答30题,七下苏科)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2021春•广陵区校级期中)已知a、b、c是一个三角形的三条边长,则化简|a+b﹣c|+|b﹣a﹣c|的结果是多少?2.(2020春•相城区期中)若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.3.(2019春•大丰区期中)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?4.(2022春•盱眙县期中)如图,已知AD、AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度.5.(2022春•姜堰区期末)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都在格点上.(1)利用网格画直线CD,使CD⊥AB,且点D在格点上,并标出所有符合条件的格点D;(2)在(1)的条件下,连接AD、BD,求△ABD的面积.6.(2022春•高港区校级月考)已知△ABC的三边长分别为3、5、a,化简|a﹣2|﹣|a﹣1|+|a﹣8|.7.(2022春•锡山区校级月考)已知a,b,c是一个三角形的三边长,(1)填入“>、<或=”号:a﹣b﹣c0,b﹣a﹣c0,c+b﹣a0.(2)化简:|a﹣b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|.8.(2022春•亭湖区校级月考)如图,AD、AE、AF分别是△ABC的高线、角平分线和中线.(1)若S△ABC=20,CF=4,求AD的长.(2)若∠C=70°,∠B=26°,求∠DAE的度数.9.(2022春•泗阳县月考)如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时,若AE=6,△ABC的面积为30,求CD的长;(2)当AD为∠BAC的角平分线时,若∠C=66°,∠B=36°,求∠DAE的度数.10.(2022春•阜宁县期中)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.(1)∠2与∠DCB相等吗?为什么?(2)试说明CD是△ABC的高.B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022春•东台市月考)如图,已知△ABC的周长为24cm,AB=6cm,BC边上的中线AD=5cm,△ABD 的周长为16cm,求AC的长.12.(2019春•锡山区期中)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.13.(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.14.(2022春•秦淮区期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.15.(2020春•姜堰区期中)如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;(2)当AD为∠BAC的角平分线时.①若∠C=65°,∠B=35°,求∠DAE的度数;②若∠C﹣∠B=20°,则∠DAE=°.16.如图,点P是△ABC内一点,连接BP,并延长交AC于点D.(1)试探究线段AB+BC+CA与线段2BD的大小关系;(2)试探究AB+AC与PB+PC的大小关系.17.如图,已知D、E是△ABC内的两点,问AB+AC>BD+DE+EC成立吗?请说明理由.18.如图,已知O是△ABC内的一点,试说明:(1)OB+OC<AB+AC;(2)OA+OB+OC>(AB+BC+AC).19.(2021秋•铁东区校级月考)如图,AD为△ABC中BC边上的中线(AB>AC)(1)求证:AB﹣AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.20.(2022秋•乌鲁木齐县月考)已知a,b,c是△ABC的三边长,a=4,b=6,设△ABC的周长是x.(1)求c与x的取值范围;(2)若x是小于18的偶数,试判断△ABC的形状.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022春•宝应县校级月考)如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上.(1)若三角形BDE的周长与四边形ACDE的周长相等,求线段AE的长.(2)若三角形ABC的周长被DE分成的两部分的差是2cm,求线段AE的长.22.(2020春•如东县期末)如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.23.(2019春•无锡期末)如图,已知△ABC中,点D、E分别在边AB、AC上,点F在CD上.(1)若∠AED=∠ACB,∠DEF=∠B,求证:EF∥AB;(2)若D、E、F分别是AB、AC、CD的中点,连接BF,若四边形BDEF的面积为6,试求△ABC的面积.24.(2019秋•江阴市期中)如图,P是长方形ABCD内一点,三角形ABP的面积为a.(1)若长方形ABCD的面积为m,则三角形CPD的面积为;(用含m、a的代数式表示)(2)若三角形BPC的面积为b(b>a),则三角形BPD的面积为.(用含a、b的代数式表示)25.(2020春•江阴市期中)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3cm,设运动的时间为t秒.(1)当t=时,CP把△ABC的周长分成相等的两部分?(2)当t=时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为18cm2?26.(2022秋•西城区校级期中)已知△ABC(如图),按下列要求画图:(1)△ABC的中线AD;(2)△ABD的角平分线DM;(3)△ACD的高线CN;(4)若C△ADC﹣C△ADB=3,(C表示周长)且AB=4,则AC=.27.(2020春•张家港市期末)如图,已知∠BDC+∠EFC=180°,∠DEF=∠B.(1)求证:ED∥BC;(2)若D,E,F分别是AB,AC,CD边上的中点,四边形ADFE的面积为6.①求△ABC的面积;②若G是BC边上一点,CG=2BG,求△FCG的面积.28.(2020春•姑苏区期中)【数学经验】三角形的中线的性质:三角形的中线等分三角形的面积.【经验发展】面积比和线段比的联系:如图1,M为△ABC的AB上一点,且BM=2AM,若△ABC的面积为a,若△CBM的面积为S,则S=(用含a的代数式表示).【结论应用】如图2,已知△CDE的面积为1,,,求△ABC的面积.【迁移应用】如图3,在△ABC中,M是AB的三等分点(AM=AB),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为.29.(2021秋•秦淮区校级月考)如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的面积分成相等的两部分;(2)当t=5时,CP把△ABC分成的两部分面积之比是S△APC:S△BPC=;(3)当t为何值时,△BPC的面积为18.30.(2022春•沭阳县月考)如图,在△ABC中,∠A=∠BCD,CD⊥AB于点D,BE平分∠ABC交CD、CA于点F、E.(1)求∠ACB的度数;(2)试说明∠CEF=∠CFE;(3)若AC=3CE,AB=4BD,△ABC、△CEF、△BDF的面积分别表示为S△ABC、S△CEF、S△BDF,且S=60,则S△CEF﹣S△BDF=(仅填结果).△ABC。
初一下册数学《三角形》知识点复习总结初一下册数学《三角形》知识点复习总结章一一、三角函数1.定义:在rt△abc中,∠c=rt∠,则sina= ;cosa= ;tga= ;ctga= .2. 特殊角的三角函数值:0° 30° 45° 60° 90°sinαcosαtgα /ctgα /3. 互余两角的三角函数关系:sin(90°-α)=cosα;…4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2. 依据:①边的关系:②角的关系:a+b=90°③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
初一下册数学《三角形》知识点复习总结章二一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。
三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。