18.4第一课时 反比例函数概念
- 格式:ppt
- 大小:1.21 MB
- 文档页数:21
反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。
其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。
在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。
在本文中,我们将探讨一些与反比例函数相关的知识点。
一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。
其中,k是一个常数,被称为反比例函数的比例常数。
在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。
二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。
该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。
同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。
三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。
例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。
又如,在某种化学反应中,反应速率与溶液中的浓度成反比。
这些实际问题可以通过反比例函数来表示和解决。
四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。
首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。
其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。
五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。
例如,y=k/(x-a)、y=(k+x)/(k-x)等。
这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。
六、反比例函数的应用举例反比例函数的应用非常广泛。
下面以几个具体的实例来说明。
例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。
这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。
例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。
九年级反比例函数知识点反比例函数是数学中的一种特殊函数类型,它的图像呈现出一条直线,并且函数的定义域和值域都不包括零。
在九年级学习数学的过程中,反比例函数是一个重要的知识点。
本文将为大家介绍九年级反比例函数的相关知识。
一、反比例函数的定义与特征反比例函数是指当自变量x变大时,函数值y变小;当自变量x变小时,函数值y变大。
可以简单地用以下形式表示:y = k/x,其中k为一个常数。
反比例函数的定义域是除了x=0之外的所有实数。
反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。
这条直线的渐进线是x轴和y轴,即当x趋近于正无穷或者负无穷时,函数值y趋近于零。
二、反比例函数的性质与运算1. 曲线的平移:若y = k/x关于y轴平移h个单位,则函数变为y = k/(x - h)。
2. 曲线的伸缩:若y = k/x的k值乘以a,则函数变为y = ak/x。
当a>1时,图像在x轴方向上被压缩;当0<a<1时,图像在x轴方向上被展开。
3. 曲线的关于y轴的对称:若y = k/x关于y轴对称,则函数变为y = -k/x。
4. 曲线的关于x轴的对称:若y = k/x关于x轴对称,则函数变为y = -k/x。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,下面以几个例子来说明:1. 比例尺:地图上的比例尺就是一个反比例函数。
比如地图上标注1cm代表的实际距离为1km,这个比例尺可以表示为y = 1/x。
2. 速度与时间:当一辆车以恒定的速度行驶时,车辆的速度与时间呈现出反比例关系。
速度越大,所用的时间越短,可以用反比例函数来表示。
3. 某商品的价格与销售数量:在市场中,某商品的价格与销售数量通常是呈反比例关系的。
价格越高,销售数量越小,可以用反比例函数来描述。
四、反比例函数的图像与解析式反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。
反比例函数(基础)【学习目标】1. 1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质. 【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例即xy k =,或表示为kyx =,其中k 是不等于零的常数是不等于零的常数.. 一般地,一般地,形如形如ky x=(k 为常数,0k ¹)的函数称为反比例函数,的函数称为反比例函数,其中其中x 是自变量,y 是函数,定义域是不等于零的一切实数是函数,定义域是不等于零的一切实数. .要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ¹.故函数图象与x 轴、y 轴无交点;轴无交点;(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件这一条件. .(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式,从而得到反比例函数的解析式. .要点二、确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,的对应值或图象上的一个点的坐标,即可求出即可求出k 的值,从而确定其解析式从而确定其解析式. .用待定系数法求反比例函数关系式的一般步骤是:用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为:k y x=(0k ¹);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程; (3)解方程求出待定系数k 的值;的值; (4)把求得的k 值代回所设的函数关系式ky x= 中. 要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴标轴. .要点诠释:(1)若点)若点((a b ,)在反比例函数ky x=的图象上,则点的图象上,则点((a b --,)也在此图象上,所以反比例函数的图象关于原点对称;上,所以反比例函数的图象关于原点对称; (2)在反比例函数(k 为常数,0k ¹) ) 中,由于中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.轴.2、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、双曲线的两个分支分别位于第一、三象限,三象限,在每个象限内,y 值随x 值的增大而减小;值的增大而减小;(2)如图2,当0k <时,时,双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、四象限,四象限,四象限,在每个象限内,在每个象限内,y 值随x 值的增大而增大;值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;的符号决定的;反过来,反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号的符号. . 要点四、反比例函数()中的比例系数k 的几何意义过双曲线x ky =(0k ¹) ) 上任意一点作上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线xk y =(0k ¹) ) 上任意一点作一坐标轴的垂线,上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的的垂线和两坐标轴围成的面积始终是不变的. . 【典型例题】类型一、反比例函数的定义1、在下列函数关系式中,哪些函数表示y 是x 的反比例函数?的反比例函数?(1)5xy =; ((2)3y x =; ((3)23y x =; ((4)12xy =; ((5)21y x =-; (6)2y x=-; ((7)12y x -=; ((8)5a y x -=(5a ¹,a 是常数)是常数)【答案与解析】 解:根据反比例函数(0)k y k x=¹的形式及其关系式xy k =,1y kx -=,可知反比例函数有:有:(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)..【总结升华】根据反比例函数的概念,必须是形如k y x=(k 为常数,0k ¹)的函数,才是反比例函数.如(2)(3)(6)(8)(2)(3)(6)(8)均符合这一概念的要求,均符合这一概念的要求,所以它们都是反比例函数.但还要注意ky x=(k 为常数,0k ¹)常见的变化形式,如xy k =,1y kx -=等,所以(4)(7)(4)(7)也是反比例函数.在也是反比例函数.在也是反比例函数.在(5)(5)(5)中,中,y 是()1x -的反比例函数,而不是x 的反比例函数.例函数.(1)(1)(1)中中y 是x 的正比例函数.的正比例函数.类型二、确定反比例函数的解析式2、已知正比例函数y kx =和反比例函数3y x=的图象都过点A(m ,1) 1) .求此正比.求此正比例函数的关系式及另一个交点的坐标.例函数的关系式及另一个交点的坐标. 【答案与解析】解:解: 因为3y x=的图象经过点A(m ,1)1),则,则31m =,所以m =3.把A(3A(3,,1)1)代入代入y kx =中,得13k =,所以13k =. 所以正比例函数关系式为13y x =. 由1,33,y x y x ì=ïíï=ïî得得3x =±. 当3x =时,1y =;当3x =-时,1y =-.所以另一个交点的坐标为.所以另一个交点的坐标为((-3,-,-1)1)1).. 【总结升华】确定解析式的方法是特定系数法,由于正比例函数y kx =中有一个待定系数,因此只需一对对应值即可.因此只需一对对应值即可.举一反三:【变式】已知y 与x 成反比,且当6x =-时,4y =,则当2x =时,y 值为多少?值为多少? 【答案】 解:设ky x =,当6x =-时,4y =, 所以46k=-,则k =-=-242424,,所以有24y x-=.当2x =时,24122y -==-. 类型三、反比例函数的图象和性质3、在函数21a y x--=(a 为常数)的图象上有三点为常数)的图象上有三点((11x y ,),(22x y ,),(33x y ,),且1230x x x <<<,则123y y ,y ,的大小关系是(的大小关系是( )). A .231y y y << B B..321y y y << C C..123y y y << D D..312y y y << 【答案】D ; 【解析】解:当0k <时,反比例函数的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.此题中需要注意的是大.此题中需要注意的是((11x y ,),(22x y ,),(33x y ,)不在同一象限内.因为221(1)0k a a =--=-+<,所以函数图象在第二、四象限内,且在第二、四象限内,y 随x 的增大而增大.因为12x x <,所以12y y <.因为33(,)x y 在第四象限,而11(,)x y ,22(,)x y 在第二象限,所以31y y <.所以312y y y <<.【总结升华】已知反比例函数ky x=,当k >0,x >0时,y 随x 的增大而减小,需要强调的是x >0;当k >0,x <0时,y 随x 的增大而减小,需要强调的是x <0.这里不能说成当k >0,y 随x 的增大而减小.例如函数2y x =,当x =-=-11时,y =-=-22,当x =1时,y =2,自变量由-,自变量由-11到1,函数值y 由-由-22到2,增大了.所以,只能说:当k >0时,在第一象限内,y 随x 的增大而减小.的增大而减小.举一反三:【变式】已知2(3)m y m x-=-的图象在第二、四象限,的图象在第二、四象限,(1)(1)求求m 的值.的值.(2)(2)若点若点若点((-2,1y )、(-1,2y )、(1(1,,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:解:(1)(1)(1)由已知条件可知:此函数为反比例函数,且由已知条件可知:此函数为反比例函数,且2130m m -=-ìí-¹î,∴,∴ 1m =.(2)(2)由由(1)(1)得此函数解析式为:得此函数解析式为:2y x=-. ∵ ( (--2,1y )、(-1,2y )在第二象限,-在第二象限,-22<-<-11,∴,∴ 120y y <<. 而(1(1,,3y )在第四象限,30y <. ∴ 312y y y << 类型四、反比例函数综合4、已知点A(0A(0,,2)2)和点和点B(0B(0,-,-,-2)2)2),点,点P 在函数1y x=-的图象上,如果△的图象上,如果△PAB PAB 的面积是6,求P 点的坐标.点的坐标. 【答案与解析】解:如图所示,不妨设点P 的坐标为00(,)x y ,过P 作PC PC⊥⊥y 轴于点C.∵ A(0 A(0,,2)2)、、B(0B(0,-,-,-2)2)2),, ∴ AB AB==4. 又∵又∵ 0||PC x =且6PABS=△,∴01||462x =,∴,∴ 0||3x =,∴,∴ 03x =±. 又∵又∵ 00(,)P x y 在曲线1y x =-上,∴ 当当03x =时,013y =-;当03x =-时,013y =.∴ P 的坐标为113,3P æö-ç÷èø或13,3æö-ç÷èø.【总结升华】通过三角形面积建立关于0x 的方程求解,同时在直角坐标系中,点到坐标轴的距离等于相应坐标的绝对值.的距离等于相应坐标的绝对值.举一反三:作AC AC⊥⊥y 轴于C ,连BC BC,则△】解:由双曲线与正比例函数y 1322AOCABCSS ==△△.A 点坐标为点坐标为((A x ,A y ),而于是1113||||2222AOCA A AASAC OC x y xy ===-=△,3A y =-,kx =得A A x y k =,所以所以反比例函数解析式为3y -=.。
反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。
通常我们把它写成y = k/x+b,其中 b 为常数。
2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。
当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。
例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。
当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。
反比例函数也不具有最大值或最小值。
4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。
例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。
5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。
这可以通过已知的点对、图像或其他信息来确定。
以上是反比例函数的知识点梳理,希望对您有所帮助。
初中数学:反比例函数的概念,真简单反比例函数是数学中一个基本的函数类型,它的特点是当自变量增大时,函数值减小;当自变量减小时,函数值增大。
下面,我们将会深入探讨反比例函数的概念以及它的相关知识点。
一、反比例函数的定义反比例函数,简称反比函数,指的是若一函数 y 与另一函数 x 成反比例关系,即 y = k/x(k为常数),则称 y 为 x 的反比函数。
其中,k 为反比例函数的比例系数,通常用正数表示。
二、反比例函数的图像特点反比例函数的图像呈现出 x 轴的非零实数的全体是定义域,y 轴的非零实数的全体是值域的形态,其图像是一个对称于第二象限和第四象限的双曲线。
三、反比例函数的性质1. 反比函数的定义域为 R - {0},值域也是 R - {0}。
2. 当 x > 0 时,反比例函数单调递减;当 x < 0 时,反比例函数单调递增。
3. 反比例函数在原点处不存在定义,但是可以趋近于无穷大或无穷小。
4. 当 x 的值增加,k 不变时 y 的值逐渐减小,表现出反比例函数的反比例关系。
四、反比例函数的应用反比例函数是数学中非常重要的函数类型,具有广泛的应用。
下面我们列举一些实际中应用反比例函数的例子:1. 银行利率:银行将存款金额与利息之间的关系建立为反比例关系,可以使用反比例函数来描述。
2. 太阳能电池板:当太阳光照射到电池板上时,电压和电流成反比例关系,可以使用反比例函数来描述。
3. 计算机处理速度:计算机的处理速度与处理任务的复杂程度呈反比例关系。
4. 等比例速度问题:有时需要研究物体在不同速度下的行驶时间,这时可以使用反比例函数来描述。
以上是反比例函数的定义、图像特点、性质及应用的详细介绍。
相信通过对反比例函数的学习,我们可以更好地理解数学中的基本概念。
反比例函数知识讲解具体来说,当x≠0时,反比例函数的定义域为R\{0},值域为R。
当x=0时,函数的值将无法定义,因为在分母为零的情况下,函数没有意义。
1.当x趋近于正无穷大或负无穷大时,y趋近于零。
2.当x趋近于零时,y趋近于正无穷大或负无穷大。
3.函数图像不会与坐标轴相交。
1.比例定律:在一定条件下,两个量之间的比值始终保持不变。
如果该比值为常数k,我们可以写成y=k/x的形式,其中自变量x和因变量y之间呈现出反比例关系。
2.电阻和电流关系:根据欧姆定律,电阻R与电流I之间的关系为R=k/I,其中k为电阻常数。
根据这个关系,可以推导出电压和电流之间的关系为V=kI,其中V为电阻上的电压。
3. 速度和时间关系:根据路程与时间的关系式 S = vt,可以得到时间和速度之间呈现出反比例的关系。
要求提高反比例函数的知识理解,可以进一步研究以下几个方面:1.反比例函数的图像特点:观察不同常数k值的情况下函数图像的变化情况。
通过画出函数图像来理解反比例函数的性质。
2.反比例函数的性质:研究反比例函数的性质,例如定义域、值域、单调性等。
了解函数图像的变化对应的函数性质的变化。
3.反比例函数的应用:研究反比例函数在实际问题中的应用,例如物理学、经济学、生物学等领域中的应用。
需要注意的是,在应用反比例函数的过程中,需要将模型与实际问题相结合,并针对具体问题来确定函数中的常数。
总之,反比例函数是一类重要的函数形式,具有特殊的数学特征和实际应用背景。
通过进一步的研究和探索,可以提高对反比例函数的理解和应用能力。
反比例函数概念与性质反比例函数的概念与性质一、反比例函数的概念1.反比例函数可以写成y=k/x的形式,其中自变量x的指数为-1.在解决有关自变量指数问题时,应特别注意系数。
2.反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
3.反比例函数的自变量不能为0,故函数图象与x轴、y轴无交点。
二、反比例函数的图象1.在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。
2.反比例函数的图象是双曲线。
随着k的增大,图象的弯曲度越小,曲线越平直;随着k的减小,图象的弯曲度越大。
3.反比例函数的图象与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
当k>0时,图象的两支分别位于第一、第三象限内,在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于第二、第四象限内,在每个象限内,y随x的增大而增大。
4.反比例函数的图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
5.反比例函数的k值的几何意义是:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B 点,则矩形PBOA的面积是k;如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则三角形PQC的面积也是k。
6.反比例函数的增减性需要将两个分支分别讨论,不能一概而论。
7.直线y=k与双曲线y=k/x的关系:当k>0时,两图象必有两个交点,且这两个交点关于原点成中心对称;当k=0时,两图象有一个公共点O;当k<0时,两图象没有交点。
8.反比例函数与一次函数的联系:当k=0时,反比例函数变为一次函数y=0.求反比例函数的解析式的方法主要有三种:待定系数法、反比例函数k的几何意义、实际问题。
四、反比例函数解析式的确定一、反比例函数的定义:反比例函数是指函数表达式为y=k/x的函数,其中k为非零常数。
初中数学反比例函数知识点整理反比例函数是初中数学中的一个重要知识点。
在初中阶段,学生通过学习反比例函数的相关特性、图像和应用,培养对数学的抽象思维和数学建模能力。
下面将对反比例函数的相关知识点进行整理。
一、概念反比例函数是指两个变量之间的关系呈现出一种反比例的关系,即:一个变大,另一个变小;一个变小,另一个变大。
一般来说,反比例函数的定义域为定义在非零实数集上的实函数。
反比例函数可以表示为y=k/x,其中k≠0。
x和y分别为自变量和因变量,k为比例常数。
反比例函数的图像通常为一个经过原点的拋物线,斜率随着x的变化而改变。
二、性质1.当x=0时,函数无定义。
因此,反比例函数的定义域为R*(非零实数集),值域为R*。
2.k的正负决定了反比例函数的开口方向。
-当k>0时,函数的图像开口向上。
-当k<0时,函数的图像开口向下。
3.当x不等于0时,反比例函数的图像经过第一象限和第三象限。
4.当x>0时,y>0;当x<0时,y<0。
反比例函数在第一象限和第三象限的值都是正数。
5.反比例函数在x轴和y轴上都不存在渐近线。
三、图像根据反比例函数的性质,可以绘制出函数的图像。
在第一象限和第三象限,我们可以选择几个不同的x值,利用函数的公式计算相应的y值,然后将两者连接起来,得到一系列点,最后将这些点连成一条曲线。
需要注意的是,由于反比例函数的性质,我们需要选择比例常数k的不同正负情况,从而确定图像的开口方向。
四、应用反比例函数在生活中有着广泛的应用。
1.比例尺:地图上通常有一个比例尺,用来表示地图上的距离与实际距离的比例关系。
比例尺就是一个反比例函数,地图上的距离和实际距离呈现反比例关系。
2.速度和时间:物体的速度与所用时间呈现反比例关系。
例如,当车辆速度增加时,所需时间减少;当车辆速度减慢时,所需时间增加。
3.工作时间和人数:一个任务所需的时间与人员数量呈现反比例关系。
当人员数量增加时,所需时间减少;当人员数量减少时,所需时间增加。
第一讲:反比例函数概念 一、一般地,形如xky =(k 为常数,且0≠k )的函数称为反比例函数。
注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。
反比例函数表达式的三种形式① xky =②kx y =1-③ k xy =二、求函数解析式的方法:待定系数法 对于解析式xky =,中只有一个待定系数,因此只需要一对对应的x 、y 的值即可。
例1:下列函数中,是反比例函数的有①x y 5=; ②x y 4.0=; ③2x y =; ④2=xy ; ⑤πx y =; ⑥xy 5-=;⑦12-=x y ; ⑧31-=xy ; ⑨)0(2≠=a a xay 为常数且; ⑩x y 52-=;例2:如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是 ;如果自变量取值为—1时,函数值为2,次反比例函数的关系式是 ; 例3:计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗? 解:因为 ,所以y 是x 的反比例函数;例4:一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么,列出a 关于b 的函数关系式为例5:在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值。
思考:你还能举出哪些生活中的反比例函数例子?提升训练:1.已知:,21y y y +=1y 与2x 成正比例,2y 与x 成反比例,且当3,1==y x ;当1,1=-=y x ,求21-=x 时,y 的值?2.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。
3.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.第二讲:反比例函数的图像和性质 1.通过描点法画x y 2=和xy 3-=的函数图像 2.反比例函数的图像是双曲线。
《反比例函数》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
例如,在路程 s 一定的情况下,速度 v 和时间 t 之间的关系为 v =s/t,当 s 为常数时,v 就是 t 的反比例函数。
需要注意的是,反比例函数中,x 作为分母不能等于 0,所以函数的定义域是x≠0 的一切实数。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。
2、 xy = k(k 为常数,k≠0),变形可得 y = k/x。
3、 y = kx^(-1)(k 为常数,k≠0),这里的 x^(-1)表示 1/x。
三、反比例函数的图象反比例函数的图象是双曲线。
当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小;当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。
例如,函数 y = 2/x,因为 k = 2>0,所以图象的两支分别在第一、三象限,在每个象限内,y 随 x 的增大而减小。
再比如,函数 y =-3/x,由于 k =-3<0,图象的两支就在第二、四象限,在每个象限内,y 随 x 的增大而增大。
为了更准确地画出反比例函数的图象,我们可以采用以下步骤:1、列表:选取一些 x 的值,计算出相应的 y 值,列出表格。
2、描点:根据表格中的数值,在平面直角坐标系中描出对应的点。
3、连线:用平滑的曲线将这些点连接起来。
四、反比例函数的性质1、对称性反比例函数的图象关于原点对称。
这意味着如果点(a,b)在反比例函数的图象上,那么点(a,b)也在图象上。
它的图象还是关于直线 y = x 和 y = x 对称的。
2、增减性当 k>0 时,在每个象限内,y 随 x 的增大而减小;当 k<0 时,在每个象限内,y 随 x 的增大而增大。
初中数学《反比例函数》说课稿初中数学《反比例函数》说课稿(精选5篇)作为一名为他人授业解惑的教育工作者,时常会需要准备好说课稿,说课稿有助于学生理解并掌握系统的知识。
怎么样才能写出优秀的说课稿呢?下面是小编为大家收集的初中数学《反比例函数》说课稿(精选5篇),欢迎阅读与收藏。
初中数学《反比例函数》说课稿篇1各位评委,你们好:我今天说课的内容是华东师大版八年级下册第十八章第四节第一课时反比例函数。
一、说教学内容:(一)、本课时的内容、地位及作用:本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)本课题的教学目标:教学目标是教学的出发点和归宿。
因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:1、知识目标(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
(3)、会判别反比例函数。
2、能力目标(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(3)、让学生会求反比例函数关系式3、情感目标(1)通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键:重点:反比例函数的意义;难点:求反比例函数的解析式;关键:如何由实际问题转化为数学模型。
二、说教学方法:本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。
高一数学上册:反比例函数定义及知识要点
高一数学上册:反比例函数定义及知识要点
新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。
以下是为大家分享的高一数学上册:反比例函数定义及知识要点,供大家参考借鉴,欢迎浏览!
反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的.图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)。
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。