同济大学C++课件 第五章
- 格式:ppt
- 大小:263.00 KB
- 文档页数:58
同济大学高等数学C 教材高等数学C教材是同济大学为理工科相关专业学生编写的一本重要教材。
它涵盖了许多数学的重要概念、定理和方法,帮助学生建立起扎实的数学基础,为他们未来的学习和研究打下坚实的基础。
第一章导数与微分高等数学C教材的第一章主要讲述了导数与微分的概念与性质。
在这一章中,学生将学习如何计算函数的导数,以及导数在几何和物理问题中的应用。
通过学习导数的性质,学生将掌握函数的极值、凹凸性以及函数图像的性质等重要概念。
第二章不定积分第二章主要介绍了不定积分的基本概念和计算方法。
学生将学习如何求出函数的不定积分,并了解积分的线性性质和曲线下面积的计算方法。
此外,该章还会讨论反常积分以及更高级的积分方法,如分部积分和换元积分等。
第三章定积分与其应用第三章主要讲述了定积分的概念与性质。
学生将学习如何计算函数在给定区间上的定积分,并了解定积分的几何和物理应用。
在该章中,学生将遇到求曲线长度、曲线面积和旋转体体积等问题,并学会通过定积分解决这些实际问题。
第四章微分方程第四章介绍了微分方程的基本理论和解法。
学生将学习如何求解一阶和二阶常微分方程,并了解微分方程在自然科学和工程科学中的广泛应用。
此外,该章还涵盖了一些重要的高阶微分方程及其特殊解法。
第五章无穷级数第五章着重讲述了无穷级数的定义和性质。
学生将学习如何判断级数的敛散性,以及如何计算常见级数的和。
此外,该章还讨论了幂级数的性质以及如何利用幂级数求解常微分方程的解。
第六章空间解析几何与向量代数第六章主要介绍了三维空间解析几何和向量代数的基本概念和方法。
学生将学习如何计算向量的模、方向和数量积,并了解向量在平面和空间几何问题中的应用。
此外,该章还会介绍向量的叉乘、混合积以及直线和平面的方程和性质等内容。
第七章多元函数微分学第七章讲述了多元函数的导数和微分。
学生将学习如何计算多元函数的偏导数以及全微分,并了解多元函数的极值和条件极值的判定方法。
此外,该章还讨论了多元函数的隐函数和参数方程,以及二重积分的计算方法。
第五章 定积分及其应用本章开始讨论积分学中的另一个基本问题:定积分.首先我们从几何学与力学问题引进定积分的定义,之后讨论它的性质与计算方法.最后,来讨论定积分的应用问题.第1节 定积分的概念与性质定积分问题举例曲边梯形的面积 曲边梯形设函数)(x f y =在区间[]b a ,上非负、连续由直线0,,===y b x a x 及曲线)(x f y =所围成的图形称为曲边梯形 其中曲线弧)(x f y =称为曲边求曲边梯形的面积的近似值将曲边梯形分割成一些小的曲边梯形每个小曲边梯形的面积都近似地等于小矩形的面积则所有小矩形面积的和就是曲边梯形面积的近似值 具体方法是在区间[]b a ,中任意插入若干个分点(图5-1),1210b x x x x x a n n =<<<<<=-Λ把[]b a ,分成n 个小区间[],,10x x [],,21x x [],,32x x [],,,1n n x x -Λ它们的长度依次为.,,,1122011--=∆-=∆-=∆n n n x x x x x x x x x Λ 经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n 个窄曲边梯形在每个小区间[]i i x x ,1-上任取一点,i ξ 以[]i i x x ,1-为底、)(i f ξ为高的窄矩形近似替代第i 个窄曲边梯形,n i ,,3,2,1Λ=,把这样得到的n 个窄矩形面积之和作为所求曲边梯形面积A 的近似值 即 ∑=∆=∆++∆+∆≈ni i i n n x f x f x f x f A 12211.)()()()(ξξξξΛ求曲边梯形的面积的精确值显然 分点越多、每个小曲边梯形越窄所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值 因此 要求曲边梯形面积A 的精确值 只需无限地增加分点 使每个小曲边梯形的宽度趋于零 记{},,,,m ax 21n x x x ∆∆∆=Λλ于是 上述增加分点使每个小曲边梯形的宽度趋于零相当于令.0→λ所以曲边梯形的面积为∑=→∆=ni i i x f A 1.)(lim ξλ图5-11.1.2 变速直线运动的路程 设物体作直线运动已知速度)(t v v =是时间间隔[]21,T T 上t 的连续函数且,0)(≥t v 计算在这段时间内物体所经过的路程S求近似路程我们把时间间隔[]21,T T 分成n 个小的时间间隔i t ∆ 在每个小的时间间隔i t ∆内物体运动看成是均速的其速度近似为物体在时间间隔i t ∆内某点i τ的速度)(i v τ 物体在时间间隔i t ∆内 运动的路程近似为.)(i i i t v s ∆=∆τ把物体在每一小的时间间隔i t ∆内 运动的路程加起来作为物体在时间间隔[]21,T T 内所经过的路程S 的近似值 具体做法是在时间间隔[]21,T T 内任意插入若干个分点,21210T t t t t t T n n i =<<<<<=-Λ[]21,T T 分成n 个小段 [][][],,,,,,12110n n t t t t t t -Λ各小段时间的长依次为.,,,1122011--=∆-=∆-=∆n n n t t t t t t t t t Λ相应地在各段时间内物体经过的路程依次为.,,,21n s s s ∆∆∆Λ在时间间隔[]i i t t ,1-上任取一个时刻),(1i i i i t t <<-ττ 以i τ时刻的速度)(i v τ来代替[]i i t t ,1-上各个时刻的速度得到部分路程i s ∆的近似值即).,,2,1()(n i t v s i i i Λ=∆=∆τ于是这n 段部分路程的近似值之和就是所求变速直线运动路程S 的近似值即∑=∆≈ni ii t v S 1)(τ 求精确值记{},,,,m ax 21n t t t ∆∆∆=Λλ当0→λ时 取上述和式的极限 即得变速直线运动的路程∑=→∆=ni ii t v S 10)(lim τλ定积分的概念抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括就抽象出下述定积分的定义定义 设函数)(x f y =在[]b a ,上有界在[]b a ,中任意插入若干个分点,1210b x x x x x a n n =<<<<<=-Λ把区间[]b a ,分成n 个小区间[],,10x x [],,21x x [],,32x x [],,,1n n x x -Λ各小段区间的长依次为.,,,1122011--=∆-=∆-=∆n n n x x x x x x x x x Λ在每个小区间[]i i x x ,1-上任取一个点,i ξ作函数值)(i f ξ与小区间长度i x ∆的乘积),,2,1()(n i x f i i Λ=∆ξ并作出和∑=∆=ni ii x f S 1)(ξ记{},,,,m ax 21n x x x ∆∆∆=Λλ如果不论对[]b a ,怎样分法也不论在小区间[]i i x x ,1-上点,i ξ怎样取法 只要当0→λ时 和S 总趋于确定的极限I 这时我们称这个极限I 为函数)(x f 在区间[]b a ,上的定积分 记作⎰ba dx x f )( 即∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ其中)(x f 叫做被积函数 dx x f )(叫做被积表达式x 叫做积分变量 a 叫做积分下限 b叫做积分上限[]b a ,叫做积分区间根据定积分的定义曲边梯形的面积为⎰=badxx f A )(变速直线运动的路程为dt t v S T T )(21⎰=说明(1)定积分的值只与被积函数及积分区间有关而与积分变量的记法无关即⎰⎰⎰==ba ba ba duu f dt t f dx x f )()()((2)和∑=∆n i i i x f 1)(ξ通常称为f (x )的积分和(3)如果函数)(x f 在[]b a ,上的定积分存在 我们就说)(x f 在区间[]b a ,上可积函数)(x f 在[]b a ,上满足什么条件时 )(x f 在[]b a ,上可积呢 定理1 设)(x f 在区间[]b a ,上连续 则f (x ) 在[]b a ,上可积定理2 设)(x f 在区间[]b a ,上有界 且只有有限个间断点则)(x f 在[]b a ,上可积定积分的几何意义设)(x f 是[]b a ,上的连续函数,由曲线)(x f y =及直线0,,===y b x a x 所围成的曲边梯形的面积记为A .由定积分的定义易知道定积分有如下几何意义:(1)当0)(≥x f 时,A dx x f b a =⎰)( (2)当0)(≤x f 时,A dx x f b a-=⎰)((3)如果)(x f 在[]b a ,上有时取正值,有时取负值时,那么以[]b a ,为底边,以曲线 )(x f y =为曲边的曲边梯形可分成几个部分,使得每一部分都位于x 轴的上方或下方.这时定积分在几何上表示上述这些部分曲边梯形面积的代数和,如图所示,有321)(A A A dx x f b a+-=⎰其中321,,A A A 分别是图5-2中三部分曲边梯形的面积,它们都是正数.图5-2例1. 利用定义计算定积分dxx 210⎰解 把区间[0 1]分成n 等份分点和小区间长度分别为ni x i =(i 1 2n1) nx i 1=∆(i 1 2 n )取),,,2,1(n i niiΛ==ξ作积分和 ∑∑∑===⋅=∆=∆ni in i i i ni i n ni x x f 121211)()(ξξ)12)(1(61113123++⋅==∑=n n n n i n ni )12)(11(61n n ++=因为n1=λ 当0→λ时∞→n 所以31)12)(11(61lim )(lim 10210=++=∆=∞→=→∑⎰n n x f dx x n n i i i ξλ图5-3例2 用定积分的几何意义求⎰-10)1(dxx解 函数x y -=1在区间[]1,0上的定积分是以x y -=1为曲边以区间[]1,0为底的曲边梯形的面积因为以x y -=1为曲边以区间[]1,0为底的曲边梯形是一直角三角形其底边长及高均为1所以211121)1(10=⨯⨯=-⎰dx x图5-4例3利用定积分的几何意义,证明21112π=-⎰-dx x .证明 令]1,1[,12-∈-=x x y,显然0≥y ,则由21x y -=和直线1,1=-=x x ,0=y 所围成的曲边梯形是单位圆位于x 轴上方的半圆.如图5-5所示. 因为单位圆的面积π=A ,所以半圆的面积为2π. 由定积分的几何意义知:21112π=-⎰-dx x .图5-5定积分的性质 两点规定(1)当b a =时 0)(=⎰ba dx x f (2)当b a>时 ⎰⎰-=ab ba dx x f dx x f )()(性质1 函数的和(差)的定积分等于它们的定积分的和(差) 即⎰⎰⎰±=±ba ba ba dxx g dx x f dx x g x f )()()]()([证明:⎰±badx x g x f )]()([∑=→∆±=ni i i i x g f 10)]()([lim ξξλ∑∑=→=→∆±∆=ni i i n i i i x g x f 1010)(lim )(lim ξξλλ⎰⎰±=bab adxx g dx x f )()(性质2 被积函数的常数因子可以提到积分号外面 即⎰⎰=ba b a dxx f k dx x kf )()(这是因为∑⎰=→∆=ni i i b ax kf dx x kf 10)(lim )(ξλ⎰∑=∆==→bani i i dxx f k x f k )()(lim 10ξλ性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即⎰⎰⎰+=bcca ba dxx f dx x f dx x f )()()(这个性质表明定积分对于积分区间具有可加性值得注意的是不论c b a ,,的相对位置如何总有等式⎰⎰⎰+=bc c a b a dx x f dx x f dx x f )()()(成立例如当c b a <<时由于 ⎰⎰⎰+=cb ba ca dxx f dx x f dx x f )()()(于是有⎰⎰⎰-=cb ca ba dx x f dx x f dx x f )()()(⎰⎰+=bc c a dxx f dx x f )()(性质4 如果在区间[]b a ,上f (x ) 1 则ab dx dx ba b a -==⎰⎰1性质5 如果在区间[]b a ,上 f (x )则⎰≥ba dx x f 0)((ab )推论1 如果在区间[]b a ,上 f (x )g (x ) 则⎰⎰≤b a ba dx x g dx x f )()((ab )这是因为g (x )f (x )0 从而⎰⎰⎰≥-=-ba ba ba dx x f x g dx x f dx x g 0)]()([)()(所以⎰⎰≤b a ba dxx g dx x f )()(推论2 ⎰⎰≤b abadx x f dx x f |)(||)(|(ab )这是因为|f (x )| f (x ) |f (x )|所以⎰⎰⎰≤≤-ba b a b a dxx f dx x f dx x f |)(|)(|)(|即⎰⎰≤babadx x f dx x f .)(|)(|性质6 设M 及m 分别是函数)(x f 在区间[]b a ,上的最大值及最小值则⎰-≤≤-ba ab M dx x f a b m )()()((a b )证明 因为 mf (x ) M所以⎰⎰⎰≤≤ba ba ba Mdxdx x f mdx )(从而⎰-≤≤-ba ab M dx x f a b m )()()(性质7 (定积分中值定理) 如果函数)(x f 在闭区间[]b a ,上连续 则在积分区间[]ba ,上至少存在一个点使下式成立⎰-=ba ab f dx x f ))(()(ξ这个公式叫做积分中值公式证明 由性质6⎰-≤≤-ba ab M dx x f a b m )()()(各项除以a b - 得⎰≤-≤ba Mdx x f ab m )(1再由连续函数的介值定理在[]b a ,上至少存在一点使⎰-=ba dxx f ab f )(1)(ξ于是两端乘以a b -得中值公式⎰-=ba ab f dx x f ))(()(ξ注意不论b a <还是ba > 积分中值公式都成立并且它的几何意义是:由曲线)(x f y =,直线b x a x ==,和x 轴所围成曲边梯形的面积等于区间],[b a 上某个矩形的面积,这个矩形的底是区间],[b a ,矩形的高为区间],[b a 内某一点ξ处的函数值)(ξf ,如图5-6所示.图5-6习题 5-11.利用定积分的概念计算下列积分. (1)()axb dx +⎰01; (2)a dx x 01⎰ (a >0).2.说明下列定积分的几何意义,并指出它们的值. (1)dx x ⎰+1)12(; (2)dx x r rr ⎰--22; (3)dx x ⎰3; (4)dx x ⎰--3329.3.不经计算比较下列定积分的大小 (1)dx x⎰12与dx x ⎰13; (2)dx x ⎰40sin π与dx x ⎰40cos π;(3)dx x ⎰1与dx x ⎰+10)1ln(; (4)dx x ⎰10与dx x ⎰12.4.设)(x f 为区间[]b a ,上单调增加的连续函数,证明:))(()())((a b b f dx x f a b a f ba-≤≤-⎰5.用定积分定义计算极限)21(lim 22222nn nn n n n n ++++++∞→Λ微积分基本公式变速直线运动中位置函数与速度函数之间的联系设物体从某定点开始作直线运动在t 时刻所经过的路程为)(t S 速度为),0)()(()(≥'==t v t S t v v 则在时间间隔[]21,T T 内物体所经过的路程S 可表示为)()(12T S T S -及dtt v TT )(21⎰ 即)()()(1221T S T S dt t v T T -=⎰上式表明速度函数)(t v 在区间[]21,T T 上的定积分等于)(t v 的原函数)(t S 在区间[]21,T T 上的增量这个特殊问题中得出的关系是否具有普遍意义呢积分上限函数及其导数定义 设函数)(x f 在区间[]b a ,上连续并且设x 为[]b a ,上的一点我们把函数)(x f 在部分区间[]x a ,上的定积分dx x f xa )(⎰称为积分上限的函数它是区间[]b a ,上的函数记为dxx f x xa)()(⎰=Φ 或dtt f x xa)()(⎰=Φ定理1 如果函数)(x f 在区间[]b a ,上连续 则函数dt t f x xa)()(⎰=Φ在[]b a ,上具有导数并且它的导数为)()()(x f dt t f dxd x xa ==Φ'⎰)(b x a ≤≤ 证明 若),(b a x ∈取x ∆使).,(b a x x ∈∆+)()(x x x Φ-∆+Φ=∆Φdt t f dt t f xa xx a)()(⎰⎰-=∆+ dt t f dt t f axxx a)()(⎰⎰+=∆+xf dt t f xx x∆==⎰∆+)()(ξ应用积分中值定理有,)(x f ∆=∆Φξ其中ξ在x 与x x ∆+之间0→∆x 时 x →ξ 于是),()(lim )(lim lim00x f f f x x x x ===∆∆Φ→→∆→∆ξξξ即)()(x f x =Φ'若a x =取0>∆x 则同理可证)()(a f x =Φ'+ 若b x= 取0<∆x 则同理可证)()(b f x =Φ'-推论 如果)(x ϕ可导,则)()]([])([])([)()(x x f dt t f dt t f dx d x x a x aϕϕϕϕ'='=⎰⎰更一般的有[][]).()()()()()()(x x f x x f dt t f x x ψψϕϕϕψ'-'=⎰例1 计算tdt e dxd x tsin 0⎰-. 解 tdt e dx d x t sin 0⎰-=]sin [0'⎰-tdt e x t=x e x sin -. 例2 求极限42sin limxtdt x x ⎰→.解 因为0lim4=→x x ,⎰⎰==→20sin sin lim x x tdt tdt ,所以这个极限是型的未定式,利用洛必达法则得42sin limx tdt x x ⎰→=32042sin lim x x x x ⋅→=2202sin lim xx x → =220sin lim 21x x x → =21. 例3 设)(x f 在[)+∞,0内连续且0)(>x f 证明函数⎰⎰=xxdtt f dt t tf x F 00)()()(在),0(+∞内为单调增加函数证明)()( 0x xf dt t tf dx d x =⎰)()(0x f dt t f dx d x =⎰ 故2000))(()()()()()(⎰⎰⎰-='xxxdt t f dtt tf x f dt t f x xf x F 200))(()()()(⎰⎰-=xxdt t f dt t f t x x f按假设当x t<<0时,0)()(,0)(>->t f t x t f 所以0)(0>⎰dt t f x)()(0>-⎰dt t f t x x从而),0(0)(>>'x x F 这就证明了)(x F 在),0(+∞内为单调增加函数定理2 如果函数)(x f 在区间[]b a ,上连续则函数dt t f x xa)()(⎰=Φ就是)(x f 在[]b a ,上的一个原函数定理的重要意义一方面肯定了连续函数的原函数是存在的另一方面初步地揭示了积分学中的定积分与原函数之间的联系牛顿莱布尼茨公式定理3 如果函数)(x F 是连续函数)(x f 在区间[]b a ,上的一个原函数则)()()(a F b F dx x f ba -=⎰此公式称为牛顿莱布尼茨公式也称为微积分基本公式证明 已知函数)(x F 是连续函数)(x f 的一个原函数又根据定理2积分上限函数dt t f x xa)()(⎰=Φ也是)(x f 的一个原函数于是有一常数C 使).()()(b x a C x x F ≤≤=Φ-当a x =时有C a a F =Φ-)()(,而0)(=Φa ,所以)(a F C = 当b x =时)()()(a F b b F =Φ-所以)()()(a F b F b -=Φ 即)()()(a F b F dx x f ba -=⎰ 为了方便起见可把)()(a F b F -记成b ax F )]([ 于是)()()]([)(a F b F x F dx x f ba ba -==⎰该公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系例4 计算⎰102dxx解 由于331x 是2x 的一个原函数所以31031131]31[33103102=⋅-⋅==⎰x dx x例5 计算2311x dx+⎰-解 由于x arctan 是211x +的一个原函数 所以 31231][arctan 1--=+⎰x x dx)1arctan(3arctan --=πππ127)4 (3 =--=例6 计算⎰--121dxx解1212|]|[ln 1----=⎰x dx x ln 1ln 2ln 2例7 求dx x ⎰--312.解dx x ⎰--312=⎰⎰⎰⎰---+-=-+-21322132)2()2(|2||2|dx x dx x dx x dx x=322212)221()212(x x x x -+--=2129+=5.例8 计算正弦曲线ysin x 在[0 ]上与x 轴所围成的平面图形的面积解 这图形是曲边梯形的一个特例 它的面积 ππ0]cos [sin x xdx A -==⎰(1)(1)2习题5-21.设0()d xf x t t =⎰,求2()4f π';2.设30()cos d xf x x t t =⎰,求()f x '';3.求下列函数的导数 (1)dt e x f xt ⎰-=0)(; (2)dt t x f x ⎰+=121)(; (3)dt t f ⎰=θθθcos sin )(; (4)dt t x f x ⎰+=221)(.4.计算下列导数(1)2220d d d x t t e t x ⎰; (2)22d d 1x x t x t +⎰; (3)220d ()sin d d x t x t t x -⎰. 5.求下列极限(1))cos(1)sin(lim11t dtt xx ππ+⎰→; (2)dtte dt e xt xt x ⎰⎰→02222)(lim.6.计算下列定积分 (1)dx x x )1(212-+⎰; (2)dx x x )2(210+⎰; (3)dx x⎰211;(4)dx x ⎰πcos ; (5)dx x ⎰π20sin ; (6)10e d x x ⎰;(7)dx x ⎰-1)cos 32(; (8)dx x⎰1100; (9)dx x x ⎰+-12211; (10)dx x ⎰+π2cos 1; (11)dx x x ⎰+41)1(; (12)dx x⎰+331211; (13)dx x⎰-210211; (14)1100d xx ⎰; (15)dx x x x ⎰-+++012241133;(16)dx x e ⎰---+2111; (17)dx x ⎰402tan π; (18)10max{,1}d x x x -⎰8.设()21,11,12x x f x x x +≤⎧⎪=⎨>⎪⎩,求()20d f x x ⎰.定积分的计算定积分的换元积分法定理 假设函数)(x f 在区间[]b a ,上连续 函数)(t x ϕ=满足条件(1);)(,)(b a ==βϕαϕ(2) )(t ϕ在[]βα, (或[]αβ,)上具有连续导数且其值域不越出[]ba ,则有dtt t f dx x f ba )()]([)(ϕϕβα'=⎰⎰这个公式叫做定积分的换元公式证明 由假设知)(x f 在区间[]b a ,上是连续因而是可积的 [])()(t t fϕϕ'在区间[]βα, (或[]αβ,)上也是连续的因而是可积的假设)(x F 是)(x f 的一个原函数则).()()(a F b F dx x f ba-=⎰另一方面因为[]{}[][])()()()()(t t f t t F t F ϕϕϕϕϕ'=''=' 所以F [(t )]是[])()(t t f ϕϕ'的一个原函数 从而[]dt t t f ⎰'βαϕϕ)()([][]).()()()(a F b F F F -=-=αϕβϕ因此dtt t f dx x f ba )()]([)(ϕϕβα'=⎰⎰例1 求dx xx ⎰+301.解 令t x =+1,则12-=t x ,tdt dx 2=,当0=x 时,1=t ,当3=x 时,2=t ,于是dx xx ⎰+301=tdt tt 21212⋅-⎰=dt t ⎰-212)1(2=213]31[2t t -=38例2 求dx e x ⎰-2ln 01.解 令t e x =-1,则)1ln(2t x +=,dt t tdx 212+=,当0=x 时,0=t ;当2ln =x 时,1=t ,于是dx e x⎰-2ln 01=dt t t t ⎰+⋅10212=dt t t ⎰+102212=dt t )111(2102⎰+- =10]arctan [2t t -=22π-.例3 计算⎰-adx x a 022(a >0)解 令t a x sin =,则t a t a a x a cos sin 22222=-=-,.cos tdt a dx = 当0=x时0=t 当a x =时2π=t⎰⎰⋅-=20sin 022cos cosπtdt a t a dx x a ta x a令⎰⎰+==2022022)2cos 1(2cos ππdt t atdt a220241]2sin 21[2a t t a ππ=+=例4 计算xdxx sin cos 520⎰π解:令,cos x t =则当0=x 时1=t 当2π=x 时0=txxd xdx x cos cos sin cos 520520⎰⎰-=ππ61]61[ 106105015cos ===-⎰⎰=t dt t dt t tx 令 或x xd xdx x cos cos sin cos 52052⎰⎰-=ππ610cos 612cos 61]cos 61[66206=+-=-=ππx例5 计算⎰-π53sin sin dxx x解dx x x dx x x |cos |sin sin sin 230053⎰⎰=-ππ⎰⎰-=πππ2232023cos sin cos sin xdx x xdx x⎰⎰-=πππ2232023sin sin sin sin x xd x xd54)52(52]sin 52[]sin 52[2252025=--=-=πππx x提示 |cos |sin )sin1(sin sin sin 232353x x x x x x =-=-在]2 ,0[π上,cos cos x x =在] ,2[ππ上.cos cos x x -=例6 计算dx x x ⎰++40122解 令,12t x =+则212-=t x , ,tdt dx =当0=x 时1=t 当4=x 时3=t⎰⎰⎰+=⋅+-++=+312312124)3(21221 122dt t tdt t t dx x x t x 令322)]331()9327[(21]331[21313=+-+=+=t t例7设)(x f 在区间],[a a -上连续,证明: (1)如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; (2)如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.证明 由定积分的可加性知x d x f x d x f x d x f a aaa⎰⎰⎰+=--0)()()(,对于定积分⎰-0)(adxx f ,作代换tx -=,得⎰-0)(adx x f =⎰--0)(adt t f =⎰-adt t f 0)(=⎰-a dx x f 0)(,所以⎰⎰⎰-+-=aaaadx x f dx x f dx x f 0)()()(=⎰-+adx x f x f 0)]()([(1)如果)(x f 为奇函数,即)()(x f x f -=-,则0)()(=-+x f x f , 于是⎰-=aadx x f 0)(.(2)如果)(x f 为偶函数,即)()(x f x f =-,)(2)()()()(x f x f x f x f x f =+=-+, 于是⎰⎰-=aaadx x f dx x f 0)(2)(.例8 若)(x f 在[]1,0上连续 证明 (1)⎰⎰=2020)(cos )(sin ππdxx f dx x f (2)⎰⎰=πππ00)(sin 2)(sin dxx f dx x xf证明 (1)令tx -=2π 则dt t f dx x f )]2[sin()(sin 0220--=⎰⎰πππ⎰⎰⎰==-=20202)(cos )(cos )]2[sin(ππππdxx f dt t f dt t f(2)令t x -=π则⎰⎰---=0)][sin()()(sin ππππdt t f t dx x xf ⎰⎰-=--=πππππ00)(sin )()][sin()(dt t f t dt t f t⎰⎰-=πππ0)(sin )(sin dt t tf dt t f ⎰⎰-=πππ0)(sin )(sin dxx xf dx x f所以⎰⎰=πππ00)(sin 2)(sin dx x f dx x xf例9 设函数⎪⎩⎪⎨⎧<<-+≥=-01 cos 11)(2x xx xe x f x 计算⎰-41)2(dxx f解 设t x =-2 则;dt dx =当1=x 时1-=t当4=x 时2=t⎰⎰⎰⎰---++==-200121412cos 11)()2(dt te dt t dt t f dx x f t 212121tan ]21[]2[tan 420012+-=-=---e e t t定积分的分部积分法设函数)()(x v x u 、在区间[]b a ,上具有连续导数)()(x v x u ''、 由v u v u uv '+'=')(得v u uv v u '-='式两端在区间[]b a ,上积分得vdx u uv dx v u ba ba ba '-='⎰⎰][ 或vduuv udv bab a ba⎰⎰-=][这就是定积分的分部积分公式分部积分过程][][⋅⋅⋅='-=-=='⎰⎰⎰⎰vdx u uv vdu uv udv dx v u ba ba ba ba ba ba例10 计算xdx arcsin 21⎰解xdx arcsin 21⎰x xd x x arcsin ]arcsin[210210⎰-=dx x x 22101621--⋅=⎰π)1(1121122221x d x --+=⎰π212]1[12x -+=π12312-+=π例11 计算⎰1dxe x解 令t x = 则⎰⎰=10102tdt e dx e t x ⎰=102t tde ⎰-=1010 2 ][2dt e te t t 2][2210 =-=t e e例12求⎰21ln xdx x .解⎰21ln xdx x =⎰212)(ln 21x xd =)(ln 21ln 21212212x d x x x ⎰-=⎰-21212ln 2xdx =212412ln 2x -=432ln 2-.例13求⎰πsin xdx x .解 ⎰πsin xdx x =⎰-πcos x xd =⎰+-ππ0cos cos xdx x x=ππ0sin x +=π.例14 设⎰=20sin πxdx I n n 证明(1)当n 为正偶数时22143231π⋅⋅⋅⋅⋅--⋅-=n n n n I n(2)当n 为大于1的正奇数时 3254231⋅⋅⋅⋅--⋅-=n n n n I n证明 ⎰=20sin πxdx I n n ⎰--=201cos sin πx xd n ⎰--+-=2012 01sin cos ]sin[cos ππx xd x x n n⎰--=2022sin cos )1(πxdx x n n ⎰--=-202)sin (sin )1(πdx x x n n n⎰⎰---=-20202sin )1(sin )1(ππxdx n xdx n n n(n 1)I n2(n 1)I n由此得 21--=n n I n n I02214342522232212I m m m m m m I m ⋅⋅⋅⋅--⋅--⋅-=112325432421222122I m m m m m m I m ⋅⋅⋅⋅--⋅--⋅+=+而2200ππ==⎰dx I 1sin 201==⎰πxdx I因此22143425222322122π⋅⋅⋅⋅⋅--⋅--⋅-=m m m m m m I m 32543242122212212⋅⋅⋅⋅--⋅--⋅+=+m m m m m m I m定积分的近似计算虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限 性的。