2020-2021学年初中数学精品课程:第8讲-一元一次方程初步(上)
- 格式:doc
- 大小:176.50 KB
- 文档页数:4
初中数学一元一次方程说课稿人教版初中数学一元一次方程说课稿作为一名教职工,常常要根据教学需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
说课稿应该怎么写才好呢?下面是小编帮大家整理的人教版初中数学一元一次方程说课稿,希望能够帮助到大家。
初中数学一元一次方程说课稿1在过去的几年中,开展素质教育已取得了一定的成绩,众多教育工作者对教学方法、教学结构、教学评价等问题作出了深刻的反思和改革。
尤其是99年6月份召开的第三次全国教育工作会议,中共中央、国务院颁发了《关于深化教育改革,全面推进素质教育的决定》,进一步明确了教育改革的实质,并赋予了素质教育时代的特征和新的内涵。
素质教育的核心是创新教育和学生实践能力的培养。
新的九年义务教育全日制初级中学《数学教学大纲》明确指出,“能够解决实际问题”是指:能够解决有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题;能够使用数学语言表达问题、展示交流,形成用数学的意识。
又增设“初中数学中要培养的创新意识”主要在是指:对自然界和社会中的现象具有好奇心,不断追求新知、独立思考,会从数学的角度发现问题和提出问题,并用数学方法加以探索、研究和解决。
要在学校教育过程中,贯彻这一精神。
课堂教育就必须有创新的情景和学生主动参与学习的积极诱因。
也就是说,课堂教育必须创设一个符合学生身心发展特点的、适合教育规律的和生动活泼,让学生积极主动发展的情境。
因此,近期我们不断探索新形势下的课堂教学,下面就让我通过“一元一次方程的应用——追及问题”的教学设计,展示我们对问题的思考和实践,向在座的领导、专家请教,并衷心的希望你们给我提出宝贵的意见,改进我们的教学,进一步提高教学效益。
我们这堂课主要有五个特色:1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
一、学而时习之。
“学而时习之”就是说,通过反复地、多次地进行对知识的复习、巩固,提高学习能力,使知识学习呈螺旋式结构。
一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
人教版七年级数学上册:3.1.1《一元一次方程》说课稿1一. 教材分析《一元一次方程》是人教版七年级数学上册第三章第一节的内容。
这部分内容是在学生已经掌握了有理数、方程和不等式的基础知识上进行的。
一元一次方程是数学中基本的方程形式,它在实际生活中的应用非常广泛。
通过学习一元一次方程,学生可以进一步理解数学与实际生活的联系,提高解决实际问题的能力。
二. 学情分析初中的学生已经具备了一定的数学基础,但是对于一元一次方程的应用可能还不够熟练。
因此,在教学过程中,我们需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
同时,我们也要激发学生的学习兴趣,让他们主动参与到学习过程中来。
三. 说教学目标1.知识与技能目标:使学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:一元一次方程的概念,一元一次方程的解法。
2.教学难点:一元一次方程在实际生活中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。
2.教学手段:利用多媒体课件、教学道具、黑板等。
六. 说教学过程1.引入新课:通过生活中的实际问题,引导学生思考如何用数学方法解决问题。
2.讲解概念:讲解一元一次方程的概念,解释一元一次方程的特点。
3.演示解法:通过示例,演示一元一次方程的解法。
4.练习巩固:学生独立完成练习题,巩固一元一次方程的解法。
5.应用拓展:引导学生运用一元一次方程解决实际问题。
6.总结反馈:学生总结一元一次方程的学习心得,教师进行点评。
七. 说板书设计板书设计要清晰、简洁,能够帮助学生理解和记忆一元一次方程的概念和解法。
可以设计如下板书:一元一次方程:形式:ax + b = 0解法:移项、合并同类项、化简八. 说教学评价通过课堂表现、练习题完成情况、实际问题解决能力等方面进行评价。
第08讲一元一次方程的概念与解法(8大考点)一、方程和一元一次方程的概念 1)方程:含有未知数的等式。
如何判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含一个未知数,且未知数的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 二、方程的解与解方程1)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程 三、等式的性质1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a cb c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=2-2x 3x+7+2x=2-2x+2x 3x+7+2x-7=2-2x+2x-7 5x=-5 5x ÷5=-5÷5 x=-13)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
四、合并同类项解一元一次方程(1)合并同类项:将同类项合并在一起的过程 方法:1)合并同类项;2)系数化为1 五、移项解一元一次方程 (1)移项 例:2x-3=4x-72x-3+3=4x-7+3(利用等式的性质) (左边的﹣3变到右边变成了+3) 2x=4x-4考点考向2x-4x=4x-4-4x (利用等式的性质) (右边的4x 变到左边变成了-4x ) -2x=-4 x=24−− x=2①我们发现,利用等式两边同加或同减一个数(式子),等式不变的性质,可以将方程化为同类项在同一边的情形(即未知数在一边,数值在另一边)。
第8课时 一元一次方程及其应用一、【教学目标】1. 掌握方程、一元一次方程的有关概念;2. 理解等式的基本性质;3. 掌握一元一次方程的解法,并能运用一元一次方程的有关知识解应用题.二、【重点难点】重点:一元一次方程的解法和应用.难点:一元一次方程的应用.三、【主要考点】(一)、等式的性质1.如果a =b ,那么a ±c =b ±c .2.如果a =b ,那么ac =bc ,c a =cb (c ≠0). (二)、方程的有关概念含有未知数的等式叫作方程;使方程左右两边值相等的未知数的值,叫做方程 的解;求方程的解的过程叫做解方程.(三)、一元一次方程1.定义:只含一个未知数,且未知数的次数为1的整式方程,叫做一元一次方程. 一般形式是ax +b =0(a ,b 是常数,a ≠0).2.解法、步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1.3.列一元一次方程解应用题的一般步骤:⑴审题;⑵设未知数;⑶寻找等量关系, 列方程;⑷求出方程的解;⑸验根并作答.四、【经典题型】【8-1A 】 若x =2是关于x 的方程2x+3m -1=0的解,则m 的值为( ).A .-1B .0C .1D .31解:将x =2代入2x +3m -1=0,得2×2+3m -1=0,即3m =-3,解得m =-1.选A. 温馨提示: 在已知方程的解时,常用代入法。
【8-2A 】 若关于x 的方程(a -1)122-a x +3=0是一个一元一次方程,则a = .解:⑵由题意,得⎪⎩⎪⎨⎧≠-=-.011122a a , 解得a =-1. 温馨提示: 在运用一元一次方程的定义时,要时注意两点:一是未知数x 的指数1, 二是未知项的系数不能为0.【8-3A 】解方程:1615312=--+x x . 解: 去分母,得2(2x +1)-(5x -1)=6,去括号,得4x +2-5x +1=6,移项,合并同类项,得-x =3,系数化为1,得x =-3.温馨提示: 去分母时,要注意方程的左右两边的每一项都要乘以最简公分母;去括号时,要注意去括号法则的正确运用;移项时要注意改变符号.【8-4B 】为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?解:当5月份用电量为x 度≤200度,6月份用电(500﹣x )度,由题意,得0.55x +0.6(500﹣x )=290.5解得:x =190,∴6月份用电500﹣x =310度.当5月份用电量为x 度>200度,六月份用电量为(500﹣x )度,由题意,得0.6x +0.6(500﹣x )=290.5300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.【8-5B 】情景:试根据图中信息,解答下列问题:图1(1)购买6根跳绳需多少元?购买12根跳绳需多少元?(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.解:(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解.25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x 根,则25×0.8x =25(x ﹣2)﹣5,解得x =11.故小红购买跳绳11根.温馨提示: 列方程解应用题的关键是建立等量关系,这里必须把握三个重要环节:一是整体地、系统地审题,二是找出问题中的等量关系,三是正确地解方程并检验解的合理性.列方程解应用题也有多种方法,但最关键的是找出等量关系.五、【点击教材】【8-6B 】 (七上P89)已知2a-b=4,m+n=1,请利用等式性质求n m b a 2221---的值. 解:当2a-b=4,m+n=1时t x t x 3)1(2--+t x t x 3)1(2--+tx t x 3)1(2--+ 原式=)(222n m b a +--=1224⨯-=0 【8-7B 】(七上P97)当x=-2时,代数式 的值是—1,求当x=2时,该代数式的值.=()()131)2(22-=--⨯-+-t t 解:当x=-2时, t=57 =53573157222=⨯-⎪⎭⎫ ⎝⎛-⨯+ 当x=2时, 六、【链接中考】 【8-8A 】(2015无锡)方程2x ﹣1=3x+2的解为( )A . x=1B . x=﹣1C . x=3D . x=﹣3解:D【8-9B 】(2015大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为( )A . 880元B . 800元C . 720元D . 1080元解:设1月份每辆车售价为x 元,则2月份每辆车的售价为(x ﹣80)元,依题意 得 100x =(x ﹣80)×100×(1+10%),解 得 x =880.即1月份每辆车售价为880元.故选:A .【8-10A 】(2014娄底)已知关于x 的方程052=-+a x 的解是2=x ,则a 的值 为 .解:1【8-11B 】(2015湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票 张.解:设当日售出成人票x 张,儿童票(100﹣x )张,依题意 得:50x +30(100﹣x )=4000,解得: x =50答:当日售出成人票50张.故答案为:50.七、【课时检测】(一)、选择题: (时量:3分钟,满分:9分,每小题3分)【8-12A 】 若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6【8-13A 】(2015大连)方程4)1(2x 3=-+x 的解是( )A. 52=xB. 65=x C.2=x D.1=x 【8-14B 】某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元(二)、填空题: (时量:8分钟,满分:12分,每小题3分)【8-15A 】方程2x ﹣4=0的解是x = .【8-16A 】已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是 .【8-17B 】定义运算“*”,规定x *y =ax +y ,其中a 为常数,且1*2=5,则2*3=_________【8-18B 】方程2(1-x )=x-1的解与方程m x m x +=-23的解相同,则m= . (三)、解答题:(时量:20分钟,满分:33分,第19题6分,第20-22题各9分,)【8-19A 】 解方程:2﹣21132x x ++= 【8-20A 】 为促进教育均能发展,A 市实行“阳光分班”,某校七年级一班共有新生45 人,其中男生比女生多3人,求该班男生、女生各有多少人.【8-21B 】 为增强市民的节水意识,某市对居民用水实行阶梯收费:规定每户每月不超过月用水标准部分的水价为1.5元/t ,超过月用水标准量部分的水价为2.5元/t .该市小明家5月份用水12 t ,交水费20元.请问:该市规定的每户月用水标准量是多少吨?【8-22B 】 某天,一蔬菜经营户用114元钱从蔬菜批发市场购进黄瓜和土豆共40 kg 到/kg )如下表所示:(2)黄瓜和土豆全部卖完后,他能赚多少钱?【课时检测答案】【8-12】B 【8-13】C 【8-14】B 【8-15】2【8-16】4 【8-17】9 【8-18】45- 【8-19】1 【8-20】男24,女 21 【8-21】10【8-22】黄瓜10kg ,土豆30kg 。
七年级上册数学网课人教版一元一次方程一、什么是一元一次方程一元一次方程,也称简单一元方程,是最基本的代数方程形式,它是关于一个未知数的方程,形式为 ax+b=0 或ax+b=c( a≠0,b,c 为常数)。
本课程中,我们将讨论一元一次方程 x+2=5 的解法,以及解决其它一元一次方程的基本方法。
二、解一元一次方程的方法1、情况一:ax+b=0,此时只有一个解 x=-b/a。
2、情况二:ax+b=c,此时有两种解法:(1)通过“加减法”:先分别加上b和c,使右边变为0,得到:ax=−b+c,再将两边同乘以a的倒数,得到 x = (c-b)/a。
(2)通过“乘除法”:先将两边同除以a,得到 x + b/a=c/a,再将两边同加b/a,得到 x = c/a-b/a。
三、解一元一次方程的技巧1、利用模式:当出现常见方程形式时,可利用相应模式去解,以提高效率。
比如开头无系数和以系数1开头的一元一次方程都可以用“加减法”去解。
2、错题巩固:针对一些主观性题目,由于其特殊性,需要考生熟记一些模式及其解法方法,以减少出错的几率。
3、把问题转化为容易解的形式:当出现一些比较复杂的一元一次方程时,可以尝试把新的问题转形为两步去解,第一步在原方程中消去未知数,第二步再利用该方程两边相加得到答案。
四、一元一次方程的应用一元一次方程在日常生活中广泛应用,尤其是在财务管理、物价调研、文体活动绩效评估、人口统计、理财投资等方面,都会用到一元一次方程。
比如我们在购买衣服时,以某件衣服的售价减去优惠的金额,得到所付的金额:假设某件衣服的售价为50元,优惠的金额为20元,我们只需要把50减去20,就可以得到最后要付的金额30元,可以用一元一次方程的形式表示为“50 - x = 30”,x等于20。
2020-2021初中数学方程与不等式之一元一次方程知识点训练含答案(1)一、选择题1.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x 人,则下列方程正确的是( )A .50+x =3×30B .50+x =3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.2.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A .赚16元B .赔16元C .不赚不赔D .无法确定 【答案】B【解析】【分析】要知道赔赚,就要算出两件衣服的进价,再用两件衣服的进价和两件衣服的售价作比较,即可得出答案.【详解】解:设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =; 设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元,所以卖这两件衣服总共赔了4024=16-(元).故选B.【点睛】本题考查了一元一次方程的应用,正确理解题意,计算出两件物品的原价是解题的关键.3.小明在某个月的日历中圈出三个数,算得这三个数的和为36,那么这三个数的位置不可能是()A.B.C.D.【答案】C【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+1+x+8=36,x=9.故本选项可能.B、设最小的数是x.x+x+8+x+16=36,x=4,故本选项可能.C、设最小的数是x.x+x+8+x+2=36,x=263,不是整数,故本项不可能.D、设最小的数是x.x+x+1+x+2=36,x=11,故本选项可能.因此不可能的为C.故选:C.【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.锻炼了学生理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.4.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间100254⨯+,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.5.如图,有一内部装有水的直圆柱形水桶,桶高20dm ;另有一直圆柱形的实心铁柱,柱高30dm ,直立放置于水桶底面上,水桶内的水面高度为12dm ,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为( )A .4.5dmB .6dmC .8dmD .9dm【答案】D【解析】【分析】 由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm 2),水桶底面积为4a(dm 2),于是得到水桶底面扣除铁柱底面部分的环形区域面积为4a-a=3a(dm 2),,根据原有的水量为3a×12=36a (dm 3),列出方程,即可得到结论.【详解】∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm 2),则水桶底面积为4a(dm 2),∴水桶底面扣除铁柱底面部分的环形区域面积为4a−a=3a(dm 2),∴原有的水量为:3a×12=36a (dm 3),设水桶内的水面高度变为xdm ,则4ax=36a ,解得:x=9,∴水桶内的水面高度变为9dm .故选D .【点睛】本题主要考查用一元一次方程解决圆柱体的等积变形问题,掌握圆柱体的体积公式是解题的关键.6.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.7.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得8.若关于x的方程(m-3)x|m|-2 -m+3=0是一元一次方程,则m的值为()A.m=3 B.m=-3 C.m=3或-3 D.m=2或-2【答案】B【解析】【分析】根据一元一次方程的定义得到|m|-2=1且m-3≠0,解得m的取值范围即可..【详解】解:有题意得:|m|-2=1且m-3≠0,解得m=-3,故答案为B.【点睛】本题考查了一元一次方程的概念和解法.掌握一元一次方程的未知数的指数为1且一次项系数不等于0是解答本题的关键.9.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的5 4倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x分钟两人第一次相遇,所列方程为()A.580100804x x+=⨯B.580300804x x+=⨯C.580100804x x-=⨯D.580300804x x-=⨯【答案】B【解析】【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可.【详解】解:设经过x 分钟两人第一次相遇,由题意得: 80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.11.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( )A .43B .98C .65D .2【答案】B【解析】【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.12.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.13.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.14.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
一元一次方程的说课稿一、教材分析1、教材的地位与作用从《课程标准》看,一元一次方程是“数与代数”领域中一块重要的内容,它是所有代数方程的基础.一元一次方程也是中学数学的主要内容之一,在初中数学中占有重要地位.通过一元一次方程的学习,可以对已学过的实数、整式、方程等知识加以巩固,同时又是今后学习一次函数、一元二次方程等知识的基础.“一元一次方程”是人教版《义务教育课程标准试验教科书·数学·七年级(上)》第三章第一节的内容,共四课时.本节是第一课时,是一元一次方程的导入课,主要内容是培养学生将实际问题转化成数学问题的能力,归纳出一元一次方程的概念,为进一步学习一元一次方程的解法及应用起到了铺垫作用.2、教学目标知识目标:使学生充分了解一元一次方程的概念,并能对实际问题列出相应的方程.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系.能力目标:使学生获得将实际问题转化为数学问题的能力.情感目标:增强用数学的意识,激发学习数学的热情.3、教学重点与难点重点:一元一次方程的概念,正确列出一元一次方程.难点:正确列出一元一次方程.二、教学方法及手段1、教法本节课主要采用新课标所倡导的教学模式:“问题情境—建立数学模型—解释,应用与拓展”,并采用启发式、引导式教学方法为主,讲解式教学方法为辅,注重体现以学生为主体的教学方法.老师通过提出问题,激发学生求知的欲望,引导他们解决问题,并掌握解决问题的规律和方法;对教学内容进行系统的讲述与分析.2、学法本节课将引导学生进行自主探究,让他们亲身经历知识的产生、发展、形成的认知过程.通过观察、比较、思考、探索、交流、应用等活动,在潜移默化中领会学习方法.使学生从看中学、讲中学、做中学,从“学会”到“会学”,最后到“乐学”.3、教学手段师生互动,采用电脑多媒体/小黑板辅助教学,及时反馈相关信息.三、教学过程在教学过程中,以问题的形式为主要的引导方式,引导学生探索新知识.这样能很好的体现学生的主体性和教师的主导地位.1、创设情境,引入新课出示问题,让同学们猜猜老师的体重.引导学生从题目中获取信息.设未知数,找等量关系,列出方程.引出要学习的课题:一元一次方程.设计意图:创设贴近学生的问题情境,拉近老师和学生之间的距离,引起学生的注意和兴趣,为下一步的学习营造了轻松愉快的学习氛围.2、合作探索,获得新知展示例1,老师先通过引导学生从分析这些问题入手,列出含未知数的式子表示有关的量,并进一步根据相等关系列出方程,为探索一元一次方程的概念做准备.同时严格板书解题格式,以规范同学们的书写格,然后和同学们一起观察这三个方程,并思考这三个方程有什么共同特点,最终归纳出一元一次方程的概念,板书一元一次方程的概念,以加深同学们对概念的认识.在观察时,我设计了以下几个问题,以使同学们更好的认识这三个方程,找到它们的共同特点,以便归纳出一元一次方程的概念.(1)这三个方程中各有几个未知数,是一个未知数吗?(2)含未知数的式子都是我们上章所学的整式吗?(3)未知数的次数是几,都是1吗?设计意图:通过例题讲解,老师和同学们一起列出方程.然后让同学们自己观察所列方程,讨论寻找方程的特点,老师加以引导得出一元一次方程的概念.目的是为了培养同学们的观察分析、归纳的能力;让同学们亲身经历知识的产生、发展、形成的认知过程.3、归纳总结,巩固发展给出练习题,抽同学上台做练习,让同学说出自己的解题思路,然后给出正确的评价和指导.设计意图:通过上台练习,学生亲身体验列方程的过程,从而掌握列方程时,我们先把要求的量设为未知数,然后根据题中的相等关系列出方程,已达到对所学的知识及时巩固的目的.4、回顾,小结本节课我们学习了什么是一元一次方程和怎么列一元一次方程.让同学回答:什么是一元一次方程?我们怎么列一元一次方程?设计意图:通过小结,使学生把所学知识进一步系统化.让学生及时复习巩固所学内容,从而养成及时复习、总结的良好学习习惯.5、布置作业,分层落实必做题:习题3.1第1、5题,选做题:习题第6题.预习下一节的内容:试猜:15131=-x 中x 等于多少? 设计意图:面向全体学生,注重个体差异,加强作业的针对性,同时兼顾学有困难的同学和学有余力的同学,使不同的学生各得其所,培养学生的学习兴趣.四、板书设计设计意图:这样的板书设计有利于学生对本节内容的总结和反思,使学生对本节课的学习形成清晰的思路.同时还有利于规范学生解题的书写格式.。
一元二次方程一、内容和内容解析(一)内容一元二次方程的概念,一元二次方程的一般形式.(二)内容解析一元二次方程是方程在一元一次方程基础上“次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础.针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式.在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足“二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机.二、目标和目标解析(一)教学目标1.体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;2.了解一元二次方程的一般形式,会将一元二次方程化成一般形式.(二)目标解析1.通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.三、教学问题诊断分析一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现“次”的提升.学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念.培养建模思想,进一步提升数学符号语言的应用能力,让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的.本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫.本课的教学难点是一元二次方程的概念.四、教学过程设计(一)创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?(二)拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有______场若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.由此,我们可以列出方程______________,化简得________________.问题3.这些方程是几元几次方程?问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.1.一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.2.一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.(三)辨析应用,加深理解问题5.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛的参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?问题6.下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).问题7.指出下列方程的二次项、一次项和常数项及它们的系数.例2.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2)例3.关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程.(四)巩固概念,学以致用教科书第4页:练习(五)归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.(六)布置作业:教科书习题21.1复习巩固:第1,2,3题.五、目标检测设计1.下列方程哪些是关于x的一元二次方程(1);(2);(3);(4).2.关于的方程是一元二次方程,则().A.B.C.D.3.将关于的一元二次方程化为一般形式,并指出二次项系数.。
初一上册数学知识点之一元一次方程1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2.初步学会如何查找问题中的相等关系,列出方程,了解方程的概念;3.培养学生猎取信息,分析问题,处理问题的能力。
二、重点从实际问题中查找相等关系;建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx= c类型的一元一次方程。
三、难点从实际问题中查找相等关系;分析实际问题中的差不多量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。
四、知识框架五、知识点、概念总结1.一元一次方程:只含有一个未知数,同时未知数的次数是1,同时含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a 0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍旧成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍旧成立。
等式的性质三:等式两边同时乘方(或开方),等式仍旧成立。
解方程差不多上依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍旧成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数运算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一样步骤:使方程左右两边相等的未知数的值叫做方程的解。
一样解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b /a.8.同解方程假如两个方程的解相同,那么这两个方程叫做同解方程。
2020-2021学年初中数学精品课程
一元一次方程初步(上)
等式的概念:用等号来表示相等关系的式子,叫做等式
恒等式:无论用什么数值代替等式中的字母,等式总能成立
条件等式:只能用某些数值代替等式中的字母,等式才能成立
矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立
等式性质1:等式两边都加上(或减去)同一个数(或式子),所得结果仍是等式
等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0),结果仍是等式
方程:含有未知数的等式
方程的解:使方程左、右两边相等的未知数的值,叫做方程的解
解方程:求方程的解的过程方程中的已知数:一般是具体的数值
方程中的已知数:一般是具体的数值
方程中的未知数:是指要求的数,未知数通常用x、y、z等字母表示
一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程
最简形式:方程ax=b(a≠0,a,b为已知数)的形式叫一元一次方程的最简形式
标准形式:方程ax+b=0(a≠0,a,b是已知数)的形式叫一元一次方程的标准形式
一元一次方程的判定:化简后再判断
【例1】
下列各式中,哪些是等式?是等式的请指出类型。
【例2】
根据等式的性质填空:
【例3】
已知等式325a b =+,则下列等式中不一定成立的是( )
A .352a b -=
B .3126a b +=+
C .325ac bc =+
D .2533
a b =+ 【例4】
下列变形中,根据等式的性质变形正确的是( )
A .由1233
x -=,得2x = B .由3222x x -=+,得4x = C .由233x x -=,得3x =
D .由357x -=,得375x =-
【例5】
1.下列式子:①3251x x +=-;② 213124⎛⎫-+= ⎪⎝⎭
;③235x +≤;④212y y -=,其中方程的个数为( )个。
A .1
B .2
C .3
D .4
2.①44x x +=+;②12x
=;③44x x -=-;④23x =;⑤2(2)3x x x x +=++,是一元一次方程的有______。
3.下列方程中解是x =2 的一共有( )
①480x -=;②480+x =;③840x -=;④240x -=
A .1个
B .2个
C .3个
D .4个
【例6】
1.若3223k kx k -+=是关于x 的一元一次方程,则k =_______。
2.若23(2)5m m x --=是关于x 的一元一次方程,则m 的值是_______。
3.若(1)5a a x a -+=是关于x 的一元一次方程,则a 的值是_______。
4.已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m =_______。
5.方程||(1)2m m x m n -=+是关于x 的一元一次方程,若n 是它的解,则n m -=( )。
A .
14 B .54 C 34 D .54
-
附送
名师心得
做一名合格的高校教师,应做好以下三个方面:
1. 因材施教,注重创新所讲授的每门课程应针对不同专业、不同知识背景的学生来调整讲授的内容和方法。
不仅重视知识的传授,更要重视学生学习能力、分析和解决问题能力的培养,因为这些才是学生终生学习的根本。
注重教学过程创新,不仅要体现在教学模式、教学方法方面,更主要的是体现在内容的创新与扩充、实践环节的同步改革上。
2. 学高为师,身正为范做一名高校教师不但要有崇高的师德,还要有深厚而扎实的专业知识。
要做一名让学生崇拜的老师,就要不断的更新知识结构,拓宽知识视野,自己不断的钻研学习,加强对教材的驾御能力才能提高自己的教学方法,才能在学生心目中树立起较高的威信。
因此,必须树立起终身学习的观念,不断的更新知识、总结经验,取他人之长来补己之短,才能使自己更加有竞争力和教育教学的能力,才能以己为范,引导学生保持对知识的惊异与敏锐。
3. 爱岗敬业,教书育人教师肩负着教书育人的重任,一言一行。