光纤传输的波动理论
- 格式:ppt
- 大小:6.91 MB
- 文档页数:73
光纤传输中的电磁场原理一前言:光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。
传输原理是‘光的全反射’。
光纤的在光纤中的传输原理可用二种不同的观点或理论分析,即:波动理论和几何光学射线理论。
波动理论是分析光纤导光传输原理的基准理论,它是从说明电磁波行为的基本方程—-麦克斯韦方程组出发,求解满足初始条件的波动方程。
这种分析方法适合于任何情况,能够精确地描述光纤传输特性。
而几何光学射线理论是用几何光学的分析方法,将光看成是传播的“光线”,物理描述直观。
二光在均匀介质中的反射与折射特性光波是电磁波又是由光子组成的粒子流。
光波在空间是沿着直线传播的。
当光波遇到两种不同介质的交界面时会发生反射和折射现象并遵循斯奈尔定律。
1.斯奈尔反射定律:入射光在两种介质的界面发生反射时,反射光线位于入射光线和法线NN’所决定的平面内,反射光线和入射光线分居法线的两侧,反射角θ2等于入射角θ1,即θ1=θ 22.斯奈尔折射定律:入射光在两种介质的界面发生折射时,折射光线位于入射光线和法线NN’所决定的平面内,折射光线和入射光线分居法线的两侧,入射角θ1和折射角Φ2有这样的关系:n1sinθ1=n2sinΦ2或sinθ1/sinΦ2=n2/n1光产生折射的原因是由于光波在两种介质(n1,n2)中的传播速度发生了变化.假设:光在第一种介质中的传播速度为v1,在第二种介质中的传播速度v2,由上式可得:n1/n2=v2/v1由上几个式子可得:sinθ1/sinΦ2=v1/v2 根据光的波动理论也可证明:两种介质中传播速度的比等于它们的入射角正弦与折射角正弦之比。
3 光的全反射当光线从折射率大的介质进入折射率小的介质时,根据折射理论,折射角将大于入射角,当入射角θ1增大时,折射角也随之增大。
当入射角增大到某一角度θC时,折射角Φ2=900,折射角为900 时,对应的入射角θ1称为临界角θC。
这时折射定律变为:sinθC/sin900=n1/n2sinθC=n2/n1当入射角θ1大于临界角θC时,即θ1>θC时,光由两种介质的界面按θ2=θ1的角度全部反射回第一种介质中,这种现象称为光的全反射。
三、光纤传输原理分析光波在光纤中的传输可应用两种理论:射线理论和波动理论。
前者是一个近似的分析方法,但简单直观,对定性理解光的传播现象很有效,而且对光纤半径远大于光波长的多模光纤能提供很好的近似,但在应用上有它的局限性。
后者是严密的解析方法,为了全面分析光纤中光的传播、信号失真、功率损耗,特别是分析单模光纤和得出全面的定量结果,就必须采用波动理论方法,即求解麦克斯韦方程并满足光波导的边界条件。
光纤传播原理的理论分析是复杂的,这里只是粗糙地进行概念性描述,并引出与光纤传输特性有关的参量。
1. 光学中的反射、折射原理光波是波长极短的电磁波,因此可采用光波长λ→0时的几何光学进行分析。
于是一条很细很细的光束,它的轴线就是光射线,简称射线,它代表光能量传输的方向。
光在同一媒质中传播时是直线前进,在不同媒质传播时,在媒质交界面处要发生反射和折射。
如图3-12,媒质Ⅰ和Ⅱ的折射率分别是n1和n2,当光射线从媒质Ⅰ入射到界面上时,则一部分能量被反射,另一部分能量进入媒质Ⅱ发生折射,由于光波本质上是电磁波,这时可利用平面电磁波的电磁场方程式和无穷大平面交界面边界条件,求得光波的反射和折射定律(这里仅考虑传播方向的),即式中θ1和θ1′分别是射线的入射角和反射角,二者相等;θ2是射线的折射角;v1、v2和n1、n2分别为媒质Ⅰ、媒质Ⅱ中的光速及其折射率,二者关系为n=,c是光在真空中的传播速度(c≈3×108m/s),媒质的折射率(v)越大,在其中的光速(v)就愈低。
根据式(3-2),假设n1>n2,则sinθ2>sinθ1,必有θ2>θ1。
现在逐渐增大入射角θ1,当增大到一定程度时,θ2就变为90°,光不能进入媒质Ⅱ,此时的入射角称为临界角θc(θ1=θc),这时(3-3)下面考虑折射与反射的两种情况:①在假设的n1>n2条件下,当θ1≥θc时,能量全部被反射,不发生折射,这种现象称为全反射。
《光纤通信》第二章光纤光缆讲课提纲浙江传媒学院 陈柏年一、光纤(Fibel ):圆柱形介质光波导,作用是引导光能沿着轴线平行方向传输。
1、导光波(guided wave ):光纤中携带信息、由纤芯和包层的界面引导前进的光波。
2、光纤的传导模:在光纤中既满足全反射条件又满足相位一致条件的光线束。
3、光纤的三层结构:(1)纤芯(core ),(2)包层(coating ),(3)涂覆层(jacket ):包括一次涂覆层、缓冲层和二次涂覆层。
纤芯折射率为n 1,包层折射率为n 2,纤芯包层相对折射率差121n n n -D =4、光纤的分类:有多种分类的方法。
(1)按照光纤截面折射率分布:SIF (小容量、短距离,光线以折线形状沿纤芯中心轴线方向传输),GIF (中等容量、中等距离,光线以正弦形状沿纤芯中心轴线方向传输)、双包层光纤(色散平坦光纤DFF 、色散移位光纤DSF )、三角芯光纤(非零色散长距离光纤);(2)按照光纤中传输模式数量:MMF ,SMF (光线以直线形状沿纤芯轴线方向传输);(3)按照按光纤的工作波长:短波长(850 nm )光纤,长波长(1310 nm 、1550 nm )光纤;(4)按套塑(二次涂覆层):松套光纤,紧套光纤。
二、光的两种传输理论(一)光的射线传输理论1、几何光学方法:基于射线方程,依据光线的斯奈耳反射定律和折射定律,研究光线的运动轨迹。
2、光纤的几何导光原理:光纤是利用光的全反射特性导光;3、突变型折射率多模光纤主要参数:(1)光线轨迹: 限制在子午平面内传播的锯齿形折线。
光纤端面投影线是过园心交于纤壁的直线。
(2)光纤的临界角θc :只有在半锥角为θ≤θc 的圆锥内的光束才能在光纤中传播。
(3)数值孔径NA :入射媒质折射率与最大入射角(临界角)的正弦值之积。
与纤芯与包层直径无关,只与两者的相对折射率差有关。
它表示光纤接收和传输光的能力, NA 通常为0.18~0.23。
分析光纤中的传输,可用两种理论:射线光学(即几何光学)理论和波动光学理论。
根据光纤横截面上折射率分布的情况来分类,光纤可分为阶跃折射率型和渐变折射率型。
数值孔径NA=,表示光纤的集光能力。
最大时延差 L 为光纤的长度相对折射率差 单位长度光纤的最大群时延差 损耗和色散是光纤的两个主要的传输特性。
色散可分为:模式色散、材料色散、波导色散。
采用内包层的作用:1减小基模的损耗,2得到纤芯半径较大的单模光纤。
0.85μm ,1.3μm 和1.55μm 左右是光纤通信中常用的低损耗窗口。
色散可分为模式色散,材料色散以及波导色散。
在所有的导模中,只有HE 11模式的截止频率为0,亦即截止波长为无穷大。
HE 11是任何光纤中都能存在、永不截止的模式,称为基模或主模。
最常用的光源是半导体激光器和发光二极管用半导体激光器的原因:1)半导体光源体积小;2)发射波长适合在光纤中低损耗传输;3)可以直接进行强度调制;4)可靠性较高。
原子中的电子可以通过和外界交换能量的方式发生量子跃迁,或称为能级跃迁,若电子跃迁中交换的能量是热运动的能量,称为热跃迁,若交换的能量是光能,则是光跃迁。
放大媒质:N2>N1,受激辐射占主导地位,r (v )>0,光波经过媒质时强度按指数规律增加,光波被放大。
21N N >的媒质是一中处于非热平衡状态下的反常情况,称之为粒子数反转或布居反转,这种媒质对应于激光型放大的情况。
在半导体物理中,通常把形成共价键的价电子所占据的能带称为价带,把价带上面邻近的空带(自由电子占据的能带)称为导带。
导带和价带之间,被宽度为Eg 的禁带所分开。
原子的电离以及电子与空穴的复合发光等过程,主要发生在价带和导带之间。
光子能量满足 Eg<hv<e0V 的光子有放大作用。
对大量原子组成的体系来说,将同时存在着光的自发发射、受激辐射、和受激吸收3个过程。
自发发射:处于高能级E2上的电子按照一定的概率自发地跃迁到低能级E1上,并发射一个频率为v 、能量为hv=E2—E1的光子,这个过程称为光的自发发射过程。
光的波动理论与解释光是一种电磁波,它的传播既可以用粒子模型来解释,也可以用波动模型来解释。
其中,光的波动理论是广泛被接受的解释光现象的模型。
本文将围绕光的波动理论展开讨论,并对其解释光的性质和现象进行探究。
一、光的波动理论光的波动理论是指,光是一种电磁波,具有波动性质。
这个理论最早被英国科学家哈耳斯特(Thomas Young)和法拉第(Michael Faraday)提出,并得到著名物理学家麦克斯韦(James Clerk Maxwell)的进一步发展。
按照光的波动理论,光波是通过电场和磁场的相互作用而产生的。
光波传播的速度是光速,即299,792,458米每秒。
光波的能量与频率密切相关,能量越高,频率越大。
光波根据频率的大小被分为不同的波长,包括可见光、红外线、紫外线等。
二、波动理论的实验证据为了验证光的波动理论,科学家们进行了一系列的实验证明:1. 杨氏双缝干涉实验:英国科学家杨氏利用双缝干涉实验证明了光的干涉性质,即光波的相长和相消干涉现象。
这一实验被认为是关于光波行为的里程碑之一。
2. 麦克尔逊干涉仪实验:美国物理学家阿尔伯特·麦克尔逊利用干涉仪实验证明了光的波动性质,并通过实验确定了光的速度。
该实验为后来爱因斯坦提出的相对论奠定了基础。
3. 波长测量实验:科学家们通过测量光波的波长,成功地计算出光的频率,并验证了光波的存在和性质。
三、光的波动解释光现象的重要性光的波动理论对于解释各种光现象具有重要意义。
以下是几个光现象的波动解释:1. 光的反射:根据光的波动理论,当光波遇到界面时,部分光波会被反射回来,形成反射现象。
这一理论被广泛应用于镜子、水面反射等实际应用中。
2. 光的折射:光的波动解释了光在介质中的折射现象。
当光通过不同介质界面时,由于介质的密度不同,光的速度会发生变化,从而产生折射现象。
3. 光的干涉:光的干涉现象可以被波动理论解释。
当两条光波相遇时,它们会发生干涉,形成明暗的条纹。
光纤传输中的电磁场原理一前言:光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。
传输原理是‘光的全反射’。
光纤的在光纤中的传输原理可用二种不同的观点或理论分析,即:波动理论和几何光学射线理论。
波动理论是分析光纤导光传输原理的基准理论,它是从说明电磁波行为的基本方程—-麦克斯韦方程组出发,求解满足初始条件的波动方程。
这种分析方法适合于任何情况,能够精确地描述光纤传输特性。
而几何光学射线理论是用几何光学的分析方法,将光看成是传播的“光线”,物理描述直观。
二光在均匀介质中的反射与折射特性光波是电磁波又是由光子组成的粒子流。
光波在空间是沿着直线传播的。
当光波遇到两种不同介质的交界面时会发生反射和折射现象并遵循斯奈尔定律。
1.斯奈尔反射定律:入射光在两种介质的界面发生反射时,反射光线位于入射光线和法线NN’所决定的平面内,反射光线和入射光线分居法线的两侧,反射角θ2等于入射角θ1,即θ1=θ 22.斯奈尔折射定律:入射光在两种介质的界面发生折射时,折射光线位于入射光线和法线NN’所决定的平面内,折射光线和入射光线分居法线的两侧,入射角θ1和折射角Φ2有这样的关系:n1sinθ1=n2sinΦ2或sinθ1/sinΦ2=n2/n1光产生折射的原因是由于光波在两种介质(n1,n2)中的传播速度发生了变化.假设:光在第一种介质中的传播速度为v1,在第二种介质中的传播速度v2,由上式可得:n1/n2=v2/v1由上几个式子可得:sinθ1/sinΦ2=v1/v2 根据光的波动理论也可证明:两种介质中传播速度的比等于它们的入射角正弦与折射角正弦之比。
3 光的全反射当光线从折射率大的介质进入折射率小的介质时,根据折射理论,折射角将大于入射角,当入射角θ1增大时,折射角也随之增大。
当入射角增大到某一角度θC时,折射角Φ2=900,折射角为900 时,对应的入射角θ1称为临界角θC。
这时折射定律变为:sinθC/sin900=n1/n2sinθC=n2/n1当入射角θ1大于临界角θC时,即θ1>θC时,光由两种介质的界面按θ2=θ1的角度全部反射回第一种介质中,这种现象称为光的全反射。