第二章 近世代数简介
- 格式:ppt
- 大小:182.50 KB
- 文档页数:36
近世代数是数学的一个重要分支和学科,是20世纪初期形成的代数学结构体系, 也是当今代数化的最基础的研究对象和研究内容。
它是以基本代数学为工具来进行分析和研究, 以研究代数系统的性质与构造为中心的一门学科, 是现代数学各个分支的基础。
我觉得近世代数的基本思想、基本理论与方法已经渗透到科学领域的各个领域与实际应用的各个方面, 据调查近世代数在编码和信息安全方面的应用更被认为是近几十年来纯粹数学应用的一个成功而光辉的典范。
近世代数是我们大学数学系的重要基础课之一, 它具有严密的逻辑性和特有的抽象性。
从我们师范教育的角度看,中学数学教学内容绝大部分是属于代数的,在一些难题中都必须用到近世代数相关知识。
因此, 近世代数成为数学系数学与应用数学师范与非师范类专业以及信息与计算科学专业的重要的专业必修课程之一。
在大一学习了高等代数后,我觉得近世代数这门课程是继学生学习完了高等代数后一门继续深人的课程。
在这门课程中, 不仅积聚了大量的概念和定理,课后还汇集了大量的证明题。
我觉得学好它有助于完善学生的知识结构体系、培养学生的抽象思维能力和严格的逻辑推理能力、提高学生的综合素质与运用创新能力。
可以让学生展开想象的翅膀, 吸取理论的精华, 培养自己的创造性思维能力。
署名曾凤香 2010-11-24。
近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。
下面让我们一起来了解一些近世代数的关键知识点。
首先是群的概念。
群是近世代数中最基本的结构之一。
简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。
比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。
群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。
环也是近世代数中的重要概念。
一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。
加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。
常见的环有整数环、多项式环等。
接下来是域。
域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。
比如有理数域、实数域和复数域。
同态和同构是近世代数中用来比较不同代数结构的重要工具。
同态是指两个代数结构之间存在一种保持运算的映射。
如果这个映射还是一一对应的,那就是同构。
同构的两个代数结构在本质上可以看作是相同的。
在近世代数中,子群、子环和理想也具有重要地位。
子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。
再来说说商群和商环。
以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。
商群中的元素是由N 的陪集构成的。
近世代数中的重要定理也不少。
比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。
该定理指出,子群的阶整除群的阶。
最后,我们谈谈近世代数的应用。
在密码学中,群和环的理论被广泛用于加密和解密算法的设计。
近世代数引言近世代数是数学中一个重要的分支,研究代数结构及其性质的理论体系。
通常包括群论、环论、域论等内容。
近世代数的发展对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
群论群论是近世代数的一个基础概念和重要分支。
群由三个基本要素组成:集合、运算和满足一定性质(结合律、封闭性、单位元、逆元)的公理。
群论研究集合中的元素如何进行运算,并研究这些运算的性质。
•子群:给定一个群,若一个集合中的元素满足群的性质和封闭性,则称其为一个子群。
•循环群:由一个元素生成的群称为循环群,循环群的结构相对简单。
•群的同态:将一个群的元素映射到另一个群中,并保持运算结构,称为群的同态。
同态的研究对于理解群之间的关系和性质非常重要。
环论环论是近世代数的另一个重要分支,研究满足特定性质的运算集合和运算规则。
环由两个基本要素组成:集合和满足一定性质(结合律、封闭性、零元、乘法交换律、分配律)的公理。
环论的研究主要关注集合中的元素之间的加法和乘法运算。
•子环:给定一个环,若一个集合中的元素满足环的定义和封闭性,则称其为一个子环。
•理想:一个环中的子集,满足特定运算性质(左右理想、乘法吸收律)的集合。
•商环:对于一个环和其中的一个理想,可以通过模运算构建一个新的环,称为商环。
商环中的元素相当于原环中的一个等价类。
域论域论是近世代数中的一个重要分支,研究满足一定性质的运算集合和运算规则。
域是一个满足加法和乘法交换律、分配律以及存在加法和乘法的单位元和乘法的逆元的环。
域是一种结构相对简单但非常重要的代数结构。
•子域:给定一个域,若一个集合中的元素满足域的定义和封闭性,则称其为一个子域。
•拓展域:给定一个域F,在F中添加一个新的元素,并扩展运算规则,得到的新的集合和运算称为拓展域。
•有限域:域中的元素个数是有限的,则称该域为有限域。
有限域具有特殊的性质和应用。
应用领域近世代数的研究对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
近世代数
近世代数是数学中的一个分支,它研究的对象是代数结构,如群、环、域等,以及它们之间的关系和性质。
这个领域的主要目标是揭示这些结构的本质和共性,并开发出一些通用的技术和方法来处理这些结构和它们之间的关系。
近世代数主要研究群、环、域等代数结构的性质和关系。
群是一种代数结构,它由一个集合以及一个二元运算组成,满足封闭性、结合律、存在单位元素以及每个元素都有逆元素等性质。
环是另一种代数结构,它由一个集合以及两个二元运算组成,分别满足加法和乘法的封闭性、结合律、分配律、存在单位元素和每个元素都有加法和乘法的逆元素等性质。
域是群和环的进一步推广,它不仅满足群和环的所有性质,还满足乘法的交换律。
近世代数的研究方法主要是利用抽象代数的思想,即将一些常见的代数概念抽象出来,从而得到一些通用的性质和方法来处理这些抽象的代数结构。
例如,通过将群、环、域等代数结构抽象出来,我们可以得到一些通用的定理,如拉格朗日定理、卡氏定理、高斯引理等,它们在处理各种具体的代数问题时都具有广泛的应用价值。
总之,近世代数是数学中的一个重要分支,它研究的对象是代数结构及其性质和关系,通过抽象代数的思想和方法,揭示了这些结构的本质和共性,为解决各种具体的代数问题提供了一些通用的技术和方法。
近世代数内容近世代数是数学发展中的一个重要领域,它涉及到了许多重要的数学概念和定理。
在近世代数的发展中,许多数学家通过研究代数结构的性质和规律,推动了数学的发展。
本文将从多个角度介绍近世代数的一些重要内容。
一、群论群论是近世代数的基石之一,它研究的是集合上的一种代数结构。
群由一个集合和一个运算组成,这个运算满足封闭性、结合律、存在单位元和存在逆元等性质。
群论的研究对象可以是任意集合,如整数集、矩阵集等。
群论的研究内容包括子群、正规子群、同态映射等,它对于研究对称性和变换具有重要的意义。
二、环论环论是近世代数的另一个重要分支,它研究的是集合上的两个运算。
环由一个集合和两个运算组成,这两个运算分别满足封闭性、结合律、交换律和分配律等性质。
环论的研究对象可以是整数集、多项式集等。
环论的研究内容包括理想、素环、域等,它对于研究代数方程和代数几何等领域具有重要的影响。
三、域论域论是近世代数的另一个重要分支,它研究的是集合上的四个运算。
域由一个集合和四个运算组成,这四个运算满足环的所有性质,并且除法运算有定义。
域论的研究对象可以是有理数集、实数集、复数集等。
域论的研究内容包括子域、域扩张、代数闭域等,它对于研究代数方程和代数几何等领域起到了重要的推动作用。
四、线性代数线性代数是近世代数的一个重要分支,它研究的是向量空间和线性变换。
线性代数的研究内容包括向量的线性组合、线性方程组的解、矩阵的特征值和特征向量等。
线性代数在几何学、物理学和工程学等领域有着广泛的应用,它是许多数学分支的基础。
五、代数几何代数几何是近世代数与几何学的结合,它研究的是代数方程的几何性质。
代数几何的研究内容包括代数曲线、代数曲面、射影空间等。
代数几何在解析几何、拓扑学和数论等领域有着广泛的应用,它为研究几何形体和曲线提供了重要的数学工具。
近世代数涵盖了群论、环论、域论、线性代数和代数几何等多个重要的数学分支。
这些数学概念和定理的研究推动了数学的发展,并在实际应用中发挥着重要作用。
近世代数引言近世代数是数学中的一个分支,是研究代数结构的一种方法。
它主要研究了群、环、域等代数结构,以及它们之间的关系和性质。
本文将介绍近世代数的基本概念和一些重要的定理。
群群是近世代数的基础概念之一,它是一个集合和一个二元运算的组合。
这个二元运算满足封闭性、结合律、单位元存在性和逆元存在性等性质。
封闭性对于群中的任意两个元素a和b,它们的运算结果ab也必须属于群中的元素。
结合律群中的运算满足结合律,即对于群中的任意三个元素a、b 和c,满足(a·b)·c = a·(b·c)。
单位元存在性群中存在一个元素e,称为单位元,对于群中的任意元素a,满足a·e = e·a = a。
逆元存在性对于群中的任意元素a,存在一个元素a’,称为逆元,满足a·a’ = a’·a = e,其中e是单位元。
环环是一种比群更一般的代数结构,它是一个集合和两个运算的组合。
这两个运算分别是加法和乘法,并且满足封闭性、结合律、分配律和单位元存在性等性质。
封闭性对于环中的任意两个元素a和b,它们的加法和乘法结果a+b和a·b也必须属于环中的元素。
结合律环中的加法和乘法满足结合律,即对于环中的任意三个元素a、b和c,满足(a+b)+c = a+(b+c)和(a·b)·c = a·(b·c)。
分配律环中的加法和乘法满足分配律,即对于环中的任意三个元素a、b和c,满足a·(b+c) = a·b + a·c和(b+c)·a = b·a + c·a。
单位元存在性环中存在一个元素0,称为加法的单位元,对于环中的任意元素a,满足a+0 = 0+a = a。
同时,环中存在一个元素1,称为乘法的单位元,对于环中的任意元素a,满足a·1 = 1·a = a。
近世代数发展简史近世代数发展简史根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。
一、近世代数的定义代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。
二、近世代数的发展代数学的起源较早,在挪威数学家阿贝尔(Abel,.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。
然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。
由于李(Lie,.)对连续群和弗罗贝尼乌斯(Frobenius,.)对群表示的系统研究,对群论发展产生了深刻的影响。
同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,)、外尔(Weyl,(.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。
域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,.)与亨廷顿(Huntington,.)于19世纪初才独立给出。
近世代数近世代数是数学中的一个重要分支,它主要研究代数结构及其应用。
近世代数产生于19世纪中叶,一开始被视为是整数理论的一部分,但随着研究的深入,近世代数逐渐发展成为一门独立的数学分支。
在这篇文章中,我们将对近世代数的概念、发展以及主要结论进行探讨。
一、近世代数的概念近世代数是指从巴格-瓦列理公式出发,发展起来的一种代数学,它主要研究代数结构的一般理论。
在近世代数中,我们主要研究群、环和域这三种代数结构,这三种代数结构都可以看作一组数以及对这些数进行运算的一种集合。
群:群是一种代数结构,它包含了一组有限或无限个元素以及一种二元运算。
这种运算满足结合律、单位元素存在和逆元素存在的条件,这里的逆元素指的是一个元素与之相乘可以得到单位元素。
环:环是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。
这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律和分配律。
域:域是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。
这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律、交换律、单位元素存在以及逆元素存在的条件。
此外,对于任意的非零元素,都有其乘法逆元素存在。
二、近世代数的发展1、伽罗华理论伽罗华理论是19世纪中期出现的一种代数理论,该理论最初的研究对象是方程的根式解。
伽罗华理论的主要思想是利用群论的方法研究方程的根的性质。
2、李群和黎曼猜想20世纪初,李群的概念被引入到了数学中。
李群是一种具有光滑结构和群结构的数学对象,它将代数和几何联系起来,是现代微分几何和物理学中不可或缺的数学工具之一。
黎曼猜想是数论中的一个著名猜想,它关于大约150年前被提出,至今尚未证明。
其主要内容是,对于任意正整数n,大于1的所有素数p都满足:p的虚部等于n的平方根。
3、格罗滕迪克定理格罗滕迪克定理是当代近世代数的一个重要定理,该定理表明,任何有限群都可以表示为一些简单有限群的直积。
第二章群论 20第二章群论本章讨论具有一个代数运算的代数结构——半群与群,但重点是群的基本知识及典型的两个群-变换群和循环群.群是概括性比较强的一个概念,是近世代数中比较丰富的一个分支,它产生于19世纪初人们对高次方程根号解问题的研究,发展到现在,群论已经应用到数学许多其它分支及一些别的科学领域.如在近世几何中,利用群的观点,把几何加以科学分类;在晶体学中,利用群论的方法,解决了空间晶体的分类问题;在现代通讯理论中,利用群来进行编码,有所谓的群码.我们先从半群开始来研究群.§1 群的定义及基本性质2.1 半群的定义设S是具有一个代数运算的集合,为了方便,将此代数运算叫S的乘法,并且仍用通常的乘法记号“·”来表示,把S的两个元素ba,关于“·”运算结果ba∙简记为ab.当然,这样被叫做乘法不一定就是指数的乘法,还可表示像矩阵、函数、向量的乘法,但一般来说它们都不是数的乘法.定义1如果代数结构(S,·)的乘法适合结合律,即ba∈c∀)有,S,,ab=,则称S关于它的乘法是一个半群,简称Sac(bc()是一个半群.2关于数的乘法是一个半群.关于数的加法也是一例1 偶数集Z个半群.n⨯矩阵作成的集合M n(F),关于矩阵乘法例2数域F上的所有n是一个半群.例3 A 是一个非空集合,A 的幂集}|{A x x A P ⊆=)(关于∩、∪分别是半群.例4 +Z (正整数)关于数减法不能作成一个半群,因为数的减法不是+Z 的一个代数运算;Z 虽然关于数的减法是Z 的代数运算,但结合律不成立,故),(-Z 不是一个半群.注 由于一个半群),(⋅S 的乘法适合结合律,故可以在半群),(⋅S 中可以引进一个元素a 的正整数次幂的概念,规定:, 个n n a aa a =那么,易见半群里有以下指数运算规律:ba ab b a ab a a a a a n n n nm m n n m n m =⋅===⋅+当,)(,)(,,这里+∈Z n m ,。