第七章第三节室内声场和吸声PPT课件
- 格式:ppt
- 大小:404.00 KB
- 文档页数:31
第三讲 吸声材料和吸声结构第一节 吸声材料和吸声结构概述一.定义:吸声材料和吸声结构,广泛地应用于音质设计和噪声控制中。
对建筑师来说,把材料和结构的声学特性和其他建筑特性如力学性能、耐火性、吸湿性、外观等结合起来综合考虑,是非常重要的。
通常把材料和结构分成吸声的、或隔声的、或反射的,一方面是按材料分别具有较大的吸声、或较小的透射、或较大的反射,另一方面是按照使用时主要考虑的功能是吸声、或隔声、或反射。
但三种材料和结构没有严格的界限和定义。
吸声材料:材料本身具有吸声特性。
如玻璃棉、岩棉等纤维或多孔材料。
吸声结构:材料本身可以不具有吸声特性,但材料经打孔、开缝等简单的机械加工和表面处理,制成某种结构而产生吸声。
如穿孔FC 板、穿孔铝板吊顶等。
在建筑声环境的设计中,需要综合考虑材料的使用,包括吸声性能以及装饰性、强度、防火、吸湿、加工等多方面,根据具体的使用条件和环境综合分析比较。
二.作用吸声材料最早应用于对听闻音乐和语言有较高要求的建筑物中,如音乐厅,剧院,播音室等,随着人们对居住建筑和工作的声环境质量的要求的提高,吸声材料在一般建筑中也得到了广泛的应用。
三.分类:吸声材料和吸声结构的的种类很多,根据材料的不同,可以分为以下几类吸声材料(结构)多孔吸声材料共振吸声结构特殊吸声结构纤维状吸声材料颗粒状吸声材料泡沫状吸声材料薄板共振结构亥姆霍兹共振吸声器穿孔吸声结构薄膜共振结构吸声尖劈空间吸声体第二节多孔吸声材料一.吸声原理多孔吸声材料中有许多连通的间隙或气泡,声波入射时,声波产生的振动引起小孔或间隙的空气运动,由于与孔壁或纤维表面摩擦和空气的粘滞阻力,一部分声能转变为热能,使声波衰减;其次,小孔中空气与孔壁之间还不断发生热交换,也使声能衰减。
二.吸声特性主要吸收中、高频声三.多孔性吸声材料必须具备以下几个条件:(1)材料内部应有大量的微孔或间隙,而且孔隙应尽量细小且分布均匀;(2)材料内部的微孔必须是向外敞开的,也就是说必须通过材料的表面,使得声波能够从材料表面容易地进入到材料的内部;(3)材料内部的微孔一般是相互连通的,而不是封闭的。