四种傅里叶变换
- 格式:docx
- 大小:205.15 KB
- 文档页数:5
常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。
5 傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。
14
15
16 a>0
17
变换本身就是一个公式。
常见傅里叶变换傅里叶变换是一种常见的数学方法,用来把一个信号从时域(time domain)变换到频域(frequency domain),即从时间变换成周期,为信号分析和处理提供理论。
从量子物理学到电路设计,从数字图像处理到数字信号处理,傅里叶变换都发挥着重要作用。
一般来说,傅里叶变换可分为离散傅里叶变换(Discrete Fourier Transform,DFT)和连续傅里叶变换(Continuous Fourier Transform,CFT)。
离散傅里叶变换是对某类数字信号进行频率谱分析的方法,用于表达在某一时刻及其之前的信号。
例如,它可以用来分析歌曲中的某些音调,或者某个难以分析的电路中的某些信号。
另一方面,连续傅里叶变换是一种从时域变换到频域的数学技术,它可以计算信号的振幅和相位,以及其他用于检测特定频率信号的信息。
它广泛应用于音频处理,天文观测,射电望远镜等领域。
傅里叶变换也可以用来表示函数和操作,比如傅里叶级数、小波变换等。
傅里叶变换可以帮助人们实现更高精度的信号处理,提高信号处理效率。
它有助于确定信号构成,也可以探索不同信号之间的关系。
举个例子,当电台收到许多不同频率的电视信号时,傅里叶变换可帮助把这些信号的相位分开,避免它们混合在一起。
此外,傅里叶变换也有助于把复杂的数据简化为简单的数学形式,比如利用傅里叶级数来解决非线性方程。
除离散傅里叶变换和连续傅里叶变换外,还有一类受欢迎的傅里叶变换,它在信号处理领域也有广泛的应用。
它包括快速傅里叶变换(Fast Fourier Transform,FFT)、中心矩形法(Central Momentum Method)、矩形变换(Rectangular Transform)、拉普拉斯变换(Laplace Transform)等。
快速傅里叶变换几乎在所有的数字信号处理系统中都有应用,它可以以更少的时间来完成傅里叶变换,从而使信号处理变得更有效率。
傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种极其重要的工具,它能够将复杂的时域信号转换为频域表示,从而帮助我们更好地理解和分析各种信号的特性。
而常用傅里叶变换表则为我们提供了一系列常见函数的傅里叶变换结果,方便我们在实际应用中快速查找和使用。
首先,让我们来了解一下什么是傅里叶变换。
简单来说,傅里叶变换是一种数学变换,它将一个函数从时域(以时间为变量)转换到频域(以频率为变量)。
通过这种转换,我们可以将一个信号分解为不同频率的正弦和余弦波的组合,从而揭示出信号中所包含的频率成分。
在常用傅里叶变换表中,有一些基本的函数及其对应的傅里叶变换值得我们熟悉。
单位冲激函数(也称为狄拉克δ函数)是一个非常特殊的函数。
它在某一时刻有一个无限大的值,而在其他时刻的值都为零。
其傅里叶变换是常数 1。
这意味着单位冲激函数包含了所有频率的成分,且各个频率成分的幅度相同。
单位阶跃函数,它在 t < 0 时取值为 0,在t ≥ 0 时取值为 1。
其傅里叶变换是 1 /(jω) +πδ(ω) ,其中 j 是虚数单位,ω 是角频率,δ(ω) 是狄拉克δ函数。
正弦函数sin(ω₀t) 的傅里叶变换是jπδ(ω ω₀) δ(ω +ω₀) 。
这表明正弦函数只包含两个频率成分,即±ω₀。
余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀) 。
指数函数 e^(jω₀t) 的傅里叶变换是2πδ(ω ω₀) 。
矩形脉冲函数,即在某个时间段内取值为 1,其他时间段为 0 的函数,其傅里叶变换是一个 sinc 函数。
这些常见函数的傅里叶变换在信号处理、通信、控制工程等领域有着广泛的应用。
例如,在通信系统中,我们需要对信号进行调制和解调。
调制过程可以看作是将原始信号与一个高频载波信号相乘,而解调过程则需要通过傅里叶变换将调制后的信号转换到频域,然后提取出原始信号的信息。
在图像处理中,傅里叶变换可以用于图像的滤波、增强和压缩等操作。
8个典型信号的傅里叶变换1. 常数信号(直流信号)这个常数信号啊,就像一个超级稳定的家伙,一直保持一个值不变。
它的傅里叶变换可有趣啦,就是一个冲激函数(狄拉克函数)在频率为0的地方。
你可以想象啊,常数信号就只有一个频率成分,那就是0频率,就像一个静止不动的状态在频率域里的表示呢。
2. 正弦信号。
正弦信号就像一个有规律的摇摆舞者。
它的傅里叶变换呢,是在正负它的角频率处有两个冲激函数。
比如说一个正弦函数Asin(ω_0t),在频率ω = ω_0和ω=-ω_0的地方有两个冲激。
这就好像在说,正弦信号就只有一个频率在那欢快地跳动,这个频率就是它自己的角频率ω_0,一正一负就像在频率轴上对称地站着两个代表它的小尖刺。
3. 余弦信号。
余弦信号跟正弦信号是近亲呢。
Acos(ω_0t)的傅里叶变换也是在正负它的角频率处有两个冲激函数。
不过和正弦信号有点小区别,就像是两个风格相似但又有点不同的舞者。
余弦信号的傅里叶变换,那两个冲激函数就像是在频率轴上标记着它自己独特的角频率ω_0的两个小灯塔。
4. 单位冲激信号(狄拉克函数)这个单位冲激信号啊,就像一个超级突然的小爆炸,瞬间爆发然后就没了。
它的傅里叶变换可神奇了,是一个常数1。
你想啊,这个小爆炸包含了所有频率成分,就像一个超级大杂烩,在频率域里就变成了一个平坦的1,就好像所有频率都被它平等对待,一股脑儿地全在里面了。
5. 矩形脉冲信号。
矩形脉冲信号就像一个突然冒出来又突然消失的小方块。
它的傅里叶变换是Aτ Sa((ωτ)/(2)),这里的A是脉冲的幅度,τ是脉冲的宽度,Sa函数是(sin x)/(x)。
这个变换就像是把矩形脉冲信号这个小方块在时间域的信息,分散到了频率域里,就像把一个集中的小方块打散成了好多频率成分,那些频率成分按照Sa函数的规律分布着。
6. 三角脉冲信号。
三角脉冲信号就像一个小山峰。
它的傅里叶变换是Aτfrac{Sa^2((ωτ)/(2))}{ω^2}。
傅里叶变换的四种形式
傅里叶变换的四种形式包括:
1.连续傅里叶变换(Continuous Fourier Transform):这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
其逆变换为:一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
对于周期函数,其傅里叶级数是存在的。
2.离散时域傅里叶变换(Discrete Time Fourier Transform,DTFT):DTFT在时域上是离散的,在频域上则是周期的。
DTFT可以被看作是傅里叶级数的逆变换。
3.离散傅里叶变换(Discrete Fourier Transform,DFT):DFT 是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
4.离散傅里叶级数(Discrete Fourier Series,DFS):对于周期性离散信号,可以使用离散傅里叶级数(DFS)进行表示。
傅里叶变换公式
傅里叶变换(Fourier Transform)是一种数学运算,用于将一个函数从时域(时间域)转换到频域。
傅里叶变换的基本公式如下:
离散傅里叶变换(DTFT):X(k) = Σ[n=0, N-1] x(n) * e^(-j * 2π * k * n / N) 其中,X(k)表示频域中的复数值,k表示频域的离散频率,x(n)表示时域中的复数值,n表示时域的离散时间,N表示时域采样点数。
如果是连续信号,可以使用连续傅里叶变换(CTFT):
X(ω) = ∫[−∞,+∞] x(t) * e^(-j * ω * t) dt 其中,X(ω)表示频域中的复数值,ω表示频域的连续角频率,x(t)表示时域中的复数值,t表示时域的连续时间。
傅里叶变换将信号从时域变换到频域,可以揭示信号中不同频率成分的强度和相位信息,对于频谱分析、滤波、信号处理等具有重要意义。
傅里叶变换的逆变换可以将信号从频域重新转换回时域,以便还原原始信号。
需要注意的是,上述公式是傅里叶变换的基本形式,而傅里叶变换还有一些特殊形式和性质,如快速傅里叶变换(FFT)等。
这些公式和性质在信号处理、图像处理、通信等领域中有着广泛的应用。
五种傅里叶变换解析标题:从简到繁:五种傅里叶变换解析引言:傅里叶变换是数学中一种重要且广泛应用于信号处理、图像处理和物理等领域的工具。
它的基本思想是将一个信号或函数表示为若干个不同频率的正弦波的叠加,从而揭示信号或函数的频谱特性。
本文将展示五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开,帮助读者逐步理解傅里叶变换的原理与应用。
第一部分:离散傅里叶变换(DFT)在此部分中,我们将介绍离散傅里叶变换的基本概念和算法。
我们将讨论DFT的离散性质、频域和时域之间的关系,以及如何利用DFT进行频域分析和滤波等应用。
此外,我们还将探讨DFT算法的时间复杂度,以及如何使用DFT来解决实际问题。
第二部分:快速傅里叶变换(FFT)在这一部分中,我们将深入研究快速傅里叶变换算法,并详细介绍其原理和应用。
我们将解释FFT如何通过减少计算量和优化计算过程来提高傅里叶变换的效率。
我们还将讨论FFT算法的时间复杂度和几种不同的FFT变体。
第三部分:连续傅里叶变换(CTFT)本部分将介绍连续傅里叶变换的概念和定义。
我们将讨论CTFT的性质、逆变换和时频分析的应用。
进一步,我们将引入傅里叶变换对信号周期性的描述,以及如何利用CTFT对信号进行频谱分析和滤波。
第四部分:离散时间傅里叶变换(DTFT)在这一章节中,我们将介绍离散时间傅里叶变换的基本原理和应用。
我们将详细讨论DTFT的定义、性质以及与DFT之间的关系。
我们还将探讨DTFT的离散频率响应、滤波和频谱分析的相关内容。
第五部分:傅里叶级数展开最后,我们将深入研究傅里叶级数展开的原理和应用。
我们将解释傅里叶级数展开如何将周期函数分解为多个不同频率的正弦波的叠加。
我们还将讨论傅里叶级数展开的收敛性和逼近性,并探讨如何利用傅里叶级数展开来处理周期信号和周期性问题。
结论:综上所述,本文介绍了五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开。
傅里叶变换
一、定义:傅里叶变换的核心思想就是所有的波都可以用多个正弦波叠加表示。
傅里叶变换提供了一种从时域到频率域的变换规则。
时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。
其动态信号x(t)是描述信号在不同时刻取值的函数。
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。
频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
时域是真实世界唯一存在的域。
频率不是真实存在的,而是一个数学构造,频率是遵循特定规则的数学范畴。
二、公式:
(1)一维连续傅里叶变换:
(2)一维连续傅里叶逆变换:
(3)二维连续傅里叶变换:
(4)二维连续傅里叶逆变换:
三、图像引入傅里叶变换的意义:
傅立叶变换是数字信号处理领域一种很重要的算法。
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。
从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。
从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。
换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立
叶逆变换是将图像的频率分布函数变换为灰度分布函数。
常用的傅里叶变换对总结
傅里叶变换是数学中一种十分重要的变换方法,广泛应用于信号处理、图像处理、物理学等领域。
在许多应用中,我们经常会使用几种常见的傅里叶变换技术,下面将对它们进行概括总结。
首先,傅里叶级数是将周期函数分解为一系列正弦和余弦函数的和的过程。
它可以将周期信号在频域中表示,得到频谱信息。
傅里叶级数有助于我们理解信号的频率组成,对于信号分析和合成都具有重要作用。
其次,离散傅里叶变换(DFT)是将离散序列转换为离散频谱的过程。
它可用于对数字信号进行频域分析和处理。
DFT将时域离散信号通过计算得到其频域表示,可以实现滤波、频谱分析、频谱修正等。
另外,快速傅里叶变换(FFT)是计算DFT的高效算法。
通过利用信号序列的特性,FFT可以在O(n log n)的时间复杂度内计算得到信号的频谱信息,极大地提高了计算效率。
FFT广泛应用于信号处理、图像处理、通信等领域。
此外,傅里叶变换还有连续傅里叶变换(CFT),它将连续时域信号转换为连续频域信号,用于分析连续信号的频域特性。
CFT的应用包括电路分析、信号传输等。
CFT和DFT的关系可以通过采样定理联系起来,即采样后的信号可以通过DFT逆变换得到原始信号。
总而言之,傅里叶变换是一种重要的数学工具,能够将时域信号转换为频域信号,帮助我们理解信号的频率特性。
通过使用傅里叶级数、离散傅里叶变换、快速傅里叶变换和连续傅里叶变换等技术,我们可以对信号进行频谱分析、滤波处理、合成重建等操作,促进了信号处理和科学研究的发展。
五种傅里叶变换傅里叶变换是一种在信号处理和图像处理领域广泛应用的数学工具,它能够将一个函数分解为不同频率的正弦和余弦函数的组合。
在这篇文档中,我们将深入探讨五种常见的傅里叶变换,揭示它们在不同领域的应用以及各自的特点。
1. **离散傅里叶变换(DFT)**:离散傅里叶变换是傅里叶变换的离散形式,通常用于处理离散信号。
它将信号从时域转换到频域,使得我们能够分析信号的频率成分。
DFT在数字信号处理、通信系统以及图像处理中扮演着重要的角色。
2. **快速傅里叶变换(FFT)**:快速傅里叶变换是一种高效计算DFT的算法,通过减少计算复杂度,使得大规模信号处理变得可行。
FFT广泛应用于数字信号处理、图像处理、音频处理等领域,提高了计算效率,使得实时处理成为可能。
3. **连续傅里叶变换(CTFT)**:连续傅里叶变换是傅里叶变换的连续形式,适用于处理连续信号。
它通过将信号分解为无限个频率成分,展示了信号在频域中的频谱特性。
CTFT在通信系统、信号分析以及电力系统等领域有着广泛的应用。
4. **带通傅里叶变换**:带通傅里叶变换是一种特殊形式的傅里叶变换,用于分析信号在一定频率范围内的成分。
它对于滤波和频率选择性分析非常有用,常见于通信系统中的调制与解调过程以及音频处理中的滤波器设计。
5. **二维傅里叶变换**:二维傅里叶变换扩展了一维傅里叶变换的概念,广泛应用于图像处理领域。
它能够将图像分解为不同空间频率的成分,为图像增强、压缩以及模式识别等任务提供了强大的工具。
这五种傅里叶变换在不同场景下展现了出色的性能,为信号和图像处理提供了深刻的数学基础。
它们的应用范围涵盖了通信、医学图像处理、声音处理等多个领域,为科学研究和工程应用提供了重要的支持。
傅里叶变换常用公式大全
傅里叶变换是一种将时域信号转换为频域信号的数学工具。
以下是傅里叶变换的常用公式:
1. 傅里叶变换公式:
F(ω) = ∫[−∞,+∞] f(t) e^(-jωt) dt
f(t) = ∫[−∞,+∞] F(ω) e^(jωt) dω
2. 傅里叶变换的线性性质:
F(a*f(t) + b*g(t)) = a*F(ω) + b*G(ω)
3. 傅里叶变换的频移性质:
F(f(t - τ)) = e^(-jωτ) F(ω)
4. 傅里叶变换的时移性质:
f(t - τ) = F^(-1)(ω) e^(jωτ)
5. 傅里叶变换的尺度变换性质:
F(f(a*t)) = (1/|a|) F(ω/a)
6. 傅里叶变换的对称性质:
F(-t) = F^*(ω)
f(-ω) = F^*(-t)
7. 傅里叶变换的卷积定理:
F(f * g) = F(f) * F(g)
8. 傅里叶变换的相关定理:
∫[−∞,+∞] f(t)g*(t) dt = 1/2π ∫[−∞,+∞]
F(ω)G^*(ω) dω
9. 傅里叶变换的能量守恒性质:
∫[−∞,+∞] |f(t)|^2 dt = 1/2π ∫[−∞,+∞]
|F(ω)|^2 dω
10. 傅里叶变换的Parseval定理:
∫[−∞,+∞] f(t)g*(t) dt = 1/2π ∫[−∞,+∞]
F(ω)G^*(ω) dω
以上是傅里叶变换的一些常用公式,可以用于分析和处理信号的频谱特性。
在实际应用中,根据具体问题选择合适的公式进行计算和推导。
五种傅里叶变换方法标题:探究五种傅里叶变换方法摘要:傅里叶变换在信号处理、图像处理和通信等领域中发挥着重要的作用。
本文将深入探讨五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CFT)、反射谱傅里叶变换(RFT)和多维傅里叶变换(MDFT)。
通过分析每种方法的原理、特点和应用领域,我们将能够更好地理解傅里叶变换的概念和实际应用。
第一节:离散傅里叶变换(DFT)1.1 原理和定义1.2 算法与实现1.3 应用场景和优缺点第二节:快速傅里叶变换(FFT)2.1 原理和特点2.2 快速傅里叶变换算法2.3 应用领域和性能分析第三节:连续傅里叶变换(CFT)3.1 连续傅里叶变换的数学定义3.2 傅里叶级数和傅里叶变换的关系3.3 应用场景和限制第四节:反射谱傅里叶变换(RFT)4.1 RFT的概念和目的4.2 数学定义和算法4.3 在信号处理中的应用案例第五节:多维傅里叶变换(MDFT)5.1 MDFT的概念和性质5.2 空间和频率域的转换5.3 在图像处理和通信中的应用总结和回顾性内容:本文深入探讨了五种傅里叶变换方法,从离散傅里叶变换(DFT)开始,通过介绍快速傅里叶变换(FFT)、连续傅里叶变换(CFT)、反射谱傅里叶变换(RFT)和多维傅里叶变换(MDFT),我们在深度和广度上对傅里叶变换有了更全面、深入的理解。
每种方法都有自己的原理、特点和应用领域,我们可以根据具体需求选择适合的方法。
傅里叶变换在信号处理、图像处理、通信和其他领域中起着关键作用,通过学习这些方法,我们可以更好地应用傅里叶变换来分析和处理实际问题。
个人观点和理解:傅里叶变换是一种重要的数学工具,能够将一个信号分解为一系列不同频率的正弦和余弦函数。
离散傅里叶变换(DFT)是傅里叶变换在数字信号处理中的离散形式,它通过将信号离散化来实现,适用于离散信号的频域分析。
快速傅里叶变换(FFT)是一种高效计算DFT的算法,它通过利用对称性和重叠子问题来减少计算量,广泛应用于信号处理和频谱分析中。
相关函数的傅里叶变换
傅里叶变换是一种将信号从时域转换为频域的数学工具。
在信号处理领域,有许多函数与傅里叶变换密切相关。
以下是一些常见的函数及其傅里叶变换:
1. 正弦函数和余弦函数:这两个函数的傅里叶变换是由一个单
独的脉冲组成,其中脉冲的频率等于正弦或余弦函数的频率。
2. 方波函数:方波函数的傅里叶变换是一组离散的频率分量,
其中每个分量的幅度和相位取决于方波的幅度和周期。
3. 矩形脉冲函数:矩形脉冲函数的傅里叶变换是一个sinc函数,其中sinc函数的宽度取决于脉冲的宽度,而高度取决于脉冲的幅度。
4. 高斯函数:高斯函数的傅里叶变换是另一个高斯函数,其中
幅度和宽度取决于原始高斯函数的幅度和宽度。
这些函数的傅里叶变换在信号处理中广泛应用,并且可以用于多种类型的信号分析和合成。
熟悉这些函数及其傅里叶变换可以帮助信号处理工程师更好地理解和应用傅里叶变换。
- 1 -。
halcon 傅里叶变换的四种基本形式下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Halcon中的傅里叶变换:四种基本形式的应用解析在计算机视觉和图像处理领域,Halcon作为一种强大的机器视觉软件,提供了丰富的图像处理算子,其中包括傅里叶变换。
傅里叶变换
对信号和系统的分析研究可以在时间域进行,也可以在频域进行。
连续时间信号是时间变量t 的函数,连续时间系统在时间域可以用线性常系数微分方程来描述,也可以用冲激响应来描述。
离散时间信号(序列)是序数n 的函数,这里n 可以看成时间参量,离散时间系统在时间域可以用线性常系数差分方程来描述,也可以用单位脉冲响应来描述。
在时间域对信号和系统进行分析研究,比较直观,物理概念清楚,但仅在时间域分析研究并不完善,有些问题研究比较困难。
比如,有两个序列,从时间波形上看,一个变化快,一个变化慢,但都混有噪声,希望用滤波器将噪声滤除。
从信号波形观察,时域波形变化快,意味着含有更高的频率成分,因此这两个信号的频谱结构不同,那么对滤波器的性能要求也不同。
为了设计合适的滤波器,就需要将时域信号转换到频率域,得到其频谱结构,分析其特性,进而得到所要设计的滤波器的技术指标,然后才能进行滤波器的设计。
在连续时间信号与系统中,其频域方法就是拉普拉斯变换与傅里叶变换。
在离散时间信号与系统中,频域分析采用z 变换与傅里叶变换作为数学工具。
现在针对几种傅里叶变换的基本概念、重要特点、相互关系作详细的介绍。
傅里叶变换的几种可能形式
对傅里叶变换的几种可能形式进行总结,再进一步引出周期序列的离散傅里叶级数及傅里叶变换表示。
一. 非周期连续时间信号的傅里叶变换
在“信号与系统”课程中,这一变换对为
⎰∞
∞-Ω-=Ωdt e t x j X t j a a )()( ΩΩ=⎰∞
∞-Ωd e j X t x t j a a )(21)(π
这一变换对的时频域示意图(只说明关系,不表示实际的变换对)如图所示。
可以看出时域上是非周期连续信号,频域上是连续非周期的频谱。
二. 周期连续时间信号的傅里叶级数及傅里叶变换表示
在“信号与系统”课程中,如果)(t x 是一个周期为T 的连续时间信号,则)(t x 可以展开成傅里叶级数,其傅里叶级数的系数为n X ,n X 是离散频率的非周期函数。
)(t x 与n X 组成周期连续时间信号的傅里叶级数变换对为 ⎰-Ω-=22
1)(1T
T t jn n dt e t x T X ∑∞-∞=Ω=n t jn n e X t x 1)(
这一变换对的时频域示意图如图所示。
可以看出时域上是周期连续信
号,频域上是离散非周期的频谱。
也就是说,周期连续信号可以分解成无穷多个谐波分量之和,其中基波频率分量为T π21=
Ω。
另外,周期信号虽然不满足绝对可积条件,但在频域引入冲激函数函数后,其傅里叶变换仍可以表示。
对周期信号)(t x ,其傅里叶变换)(Ωj X 表示为
∑∞-∞=Ω-Ω=Ωn n n X j X )(2)(1δπ
三. 非周期序列的傅里叶变换
周期连续信号及其频谱
p
T 1=Ω非周期连续信号及其频谱
0Ω0
序列的傅里叶变换,即
n j n j e n x e X ωω
-∞-∞=∑=)()(
ωπωωππd e e X n x n j j )(21)(⎰-=
这一变换对的时频域示意图如图所示。
可以看出时域上是非周期离散时间信号,频域上是连续周期的频谱。
序列的傅里叶变换是序列的频谱,也就是时域离散信号的频域特征。
在数字滤波器的设计和信号的频谱分析中经常用到,因此是数字信号处理的重要工具之一。
)(ωj e X 一般是复函数,可以写成模和辐角,或者实部和虚部的形式。
)()()()()(ωωωφωωj I j R j j j e jX e X e e X e X +== (3.2.
5)
其中ωω|~)(|j e X 称为序列的幅度频谱,而ωωϕ~)(称为序列的相位频谱;ωω~)(j R e X 称为序列的实部频谱,ωω~)(j I e X 称为序列的虚部频谱。
经常用ωω|~)(|j e X 和ωωϕ~)(来表示信号的频谱。
四. 周期序列的离散傅里叶级数
上面所讨论的三种傅里叶变换都不能在计算机上实现,因为它们在时域连续或者频域连续,或者时域和频域都是连续的。
如果要用数字计算机对信号进行频谱分析,也就是要计算信号的傅里叶变换,必须要求输入时域信号是离散的,而计算机得到的频谱值也应该是离散的。
由上面三种情况,不难发现以下规律:一个域的连续必然对应另一个域的非周期,一个域的离散必然对应另一个域的周期。
所以,可以大胆推断出第四种情况,也就是周期序列的频谱特征必然是离散周期的。
示意图如图所示。
表1非周期序列及其频谱
ωj
对四种傅里叶变换形式的特点作了简要归纳。
这里所介绍得到傅里叶变换的几种可能形式中,只有第四种形式对于数字信号处理有实用价值。
要使前三种形式能用数字计算机上进行计算,必须针对每一种形式的具体情况,或者在时域和频域同时取样;或者在时域取样;或者在频域取样。
最后都将使原时间函数和频率函数都成为周期离散的函数,那么前三种形式最后都变成第四种形式。
这也就是我们将要提出的周期序列的离散傅里叶级数,也可以认为是后面要重点介绍的离散傅里叶变换(DFT )的过渡形式。
表1 四种傅里叶变换形式的归纳
设)
(~n x
是以N 为周期的周期序列,与连续时间信号的傅里叶级数展开类似,由于)(~
n x 是周期的,必然可以进行傅里叶级数展开。
离散傅里叶级数变换对: kn N j N n e n x n x DFS k X π
210)(~)](~[)(~--
=∑== ∞<<∞-k
周期序列及其频谱
kn N j N k e k X N k X IDFS n x π
210)(~1)](~[)(~∑-=== ∞<<∞-n 这里的)(~n x 和)(~k X 都是以N 为周期的周期序列,
时域和频域都是周期离散的,也是傅里叶变换的第四种形式。
其有很明显的物理意义,它表示周期序列
)(~n x 可以分解成N 次谐波,第k 次谐波频率为k N
π2,1,,2,1,0-=N k ,谐波的幅度为|)(~|1k X N。
其中0=k ,表示直流分量,其幅度为|)(~|1|)0(~|110∑-==N n n x N X N 。