《信号与系统》第二次作业
- 格式:doc
- 大小:84.00 KB
- 文档页数:2
(单选题)1: 当输入信号的复频率等于系统函数的零点时,系统的强迫响应分量为()。
A: 无穷大
B: 不为零的常数
C: 0
D: 随输入信号而定
正确答案: C
(单选题)2: 满足傅氏级数收敛条件时,周期信号f(t)的平均功率()。
A: 大于各谐波分量平均功率之和
B: 不等于各谐波分量平均功率之和
C: 小于各谐波分量平均功率之和
D: 等于各谐波分量平均功率之和
正确答案: D
(单选题)3: 卷积δ(t)*f(t)*δ(t)的结果为()。
A: δ(t)
B: δ(2t)
C: f(t)
D: f(2t)
正确答案: C
(单选题)4: 信号的时宽与信号的频宽之间呈()。
A: 正比关系
B: 反比关系
C: 平方关系
D: 没有关系
正确答案: B
(单选题)5: 设一个矩形脉冲的面积为S,则矩形脉冲的傅氏变换在原点处的函数值等于()。
A: S/2
B: S/3
C: S/4
D: S
正确答案: D
(单选题)6: 线性系统具有()。
A: 分解特性
B: 零状态线性
C: 零输入线性
D: 以上全对
正确答案: D
(单选题)7: 如果一连续时间二阶系统的系统函数H(s)的共轭极点在虚轴上,则它的h(t)应是()。
《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。
解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。
讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。
τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。
解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。
北航《信号与系统》在线作业二
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 30 分)
1. 连续周期信号的傅氏变换是 ________。
A. 连续的
B. 周期性的
C. 离散的
D. 与单周期的相同
满分:3 分
正确答案:C
2. 某系统的系统函数为 H ( s ),若同时存在频响函数 H ( j ω),则该系统必须满足条件 ________。
A. 时不变系统
B. 因果系统
C. 稳定系统
D. 线性系统
满分:3 分
正确答案:A
3. 欲使信号通过系统后只产生相位变化,则该系统一定是 ________。
A. 高通滤波网络
B. 带通滤波网络
C. 全通网络
D. 最小相移网络
满分:3 分
正确答案:C
4. 已知某连续时间系统的系统函数H(s)= 1/(s+1),该系统属于什么类型 ________。
A. 高通滤波器
B. 低通滤波器
C. 带通滤波器
D. 带阻滤波器
满分:3 分
正确答案:B
5. 当输入信号的复频率等于系统函数的零点时,系统的强迫响应分量为 ________。
A. 无穷大
B. 不为零的常数
C. 0。
第10章Z变换习题10.1 试对下列和式,为保证收敛确定在r=|z|上的限制:解:(a)为了保证收敛,需满足即使和式收敛的z均满足,亦即有又因在和式中含有一个正幂项z,故z≠∞。
综上所述,使和式收敛的z的模需满足为了保证收敛,需,即满足|2z|<1,从而知使和式收敛的z的模需满足为了保证收敛,需,即|z|>1;为了保证收敛,需,即|z|>1综上所述,使和式收敛的z的模需满足r>1。
对于上式右端第二项,要保证其收敛,需,即|z|<2。
对于上式右端第三项,要保证其收敛,需,即|z|<2。
对于上式右端第四项,要保证其收敛,需,即。
对于上式右端第五项,要保证其收敛,需,即。
综上所述,要使和式收敛,z的模需满足。
10.2 设信号x[n]为利用式(10-3)求该信号的z变换,并标出对应的收敛域。
解:为使该级数收敛,需,即,于是可得10.3 设信号x[n]为已知它的z变换x(z)的收敛域是试确定在复数α和整数n0上的限制。
解:令x[n]=x1[n]+x2[n],其中x1[n]=(-1)n u[n],x2=αn u[-n-n0]于是有则X(z)=X1(z)+X2(z),1<|z|<|α|由于已知X(z)的收敛域为1<|z|<2,所以α应满足|α|=2,而n0可为任意整数。
10.4 考虑下面信号:对x(z)确定它的极点和收敛域。
解:因为,要使x(z)收敛,显然应有及,即X(z)的ROC为由于故X(z)的两个极点分别为,它们是互为共轭自两个复数极点。
10.5 对下列信号z变换的每个代数表示式,确定在有限z平面内的零点个数和在无限远点的零点个数。
解:(a)由于X(z)的分母多项式的阶数比分子多项式的阶数高1阶,所以X(z)在有限z平面上零点的个数为1(即X(z)的有限零点个数为1),同样在无穷远处的零点个数也为1。
由于x(z)的分母多项式与分子多项式有相同的阶数,所以X(z)仅有2个有限零点,而在无穷远处无零点。
由于X(z)的分母多项式的阶数比分子多项式的阶数高2阶,所以X(z)有1个有限零点,而在无穷远处有2个零点。
第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。
121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。
苏州大学 信号与系统 课程 第2次过程化考试参考答案 共 页一、 简算、填空与作图(每题4分,共40分)1、已知−→−F t f )()(j ωF ,则()(25)()F y t f t Y j ω=+−−→= 。
521()22j j ωF e ω 2、已知频谱)]()([)(00ωωδωωδπω-++=j F ,则原时间信号=)(t f 。
0cos()t ω3、3、已知周期信号()f t 前四分之一周期的波形如图所示,且()f t 是t 的偶函数,其傅里叶级数只有奇次谐波,画出整个周期内()f t 信号的波形。
4、计算222)(ta at f +=的傅里叶变换()F j ω= 。
2a eωπ-5、图中所示电路的频率响应)(ωj H = 。
RR j Lω+6、理想低通滤波器在物理上是否可以实现? ,说明理由: 。
不能实现,因为违背了因果律7、画出图中)(t f 的偶分量波形。
8、简述周期信号频谱的特点: 。
离散性、谐波性、收敛性9、已知系统的幅频特性1)(=ωj H ,信号通过该系统是否会失真? ,理由是 。
不一定失真,该系统相频特性未知,若相频特性是经过原点的直线则不会失真,否则失真。
10、已知理想高通滤波器的系统函数()()00()0 0 j tj Ke H j H j e ωϕωωωωωωω--⎧>⎪==⎨<⎪⎩,则该系统的冲激响应()h t = 。
00000000sin[()]()()[()]()K t t K K t t K t t S t t t t ωωδδαωππ---=----二、 (10分)计算如图所示波形信号)(t f 的频谱函数)(ωj F 。
解: ()()2()()f t t t t ετεετ=+-+- (2分)()'()2()()f t t t t δτδδτ=+-+- (3分)()22cos()24sin()2j j j F j e e ωτωτωτωωωτ-=-+=-=- (3分)()24sin ()2j F j ωτωω=或2cos()2j ωτω-或22()2j S ωττα (2分)三、 (10分)已知1()f t 的频谱函数为121F (),()()j f t f t ω与波形有如图所示的关系,试用1()f t 的频谱函数表示2()f t 的频谱函数)(F 2ωj 。
福师《信号与系统》在线作业二-0006
试卷总分:100 得分:100
一、单选题 (共 25 道试题,共 50 分)
1.在变换域中解差分方程时,首先要对差分方程两端进行( )。
A.拉普拉斯变换
B.傅立叶变换
C.以上答案都不正确
D.Z变换
答案:D
2.信号f(t)与δ(t)的卷积等于( )。
A.δ(t)
B.f(t)δ(t)
C.f(t)
D.0
答案:C
3.在一个周期内绝对可积是周期信号频谱存在的( )条件。
A.必要
B.充要
C.充分
D.以上答案都不正确
答案:A
4.零输入响应是( )。
A.部分零状态响应
B.部分自由响应
C.全部自由响应
D.全响应与强迫响应之差
答案:B
5.信号f(t)=[A+sin(200πt)]cos(2000πt)的归一化功率等于( )。
A.以上答案都不正确
B.A*A/2+1/4
C.A*A/2
D.1/4
答案:B
6.函数f(s)=(s+6)/[(s+2)*(s+5)]逆变换的终值等于( )。
A.6
B.2
C.1
D.0
答案:D。