精馏塔的传质传热设备功能
- 格式:docx
- 大小:21.95 KB
- 文档页数:4
精馏塔毕业论文精馏塔毕业论文精馏塔是化学工程领域中一种重要的设备,广泛应用于石油化工、化学制药、食品加工等行业。
在精馏塔的设计和操作中,涉及到许多理论和实践问题,因此,本文将探讨精馏塔的原理、设计和优化方法,以及一些实际应用案例。
一、精馏塔的原理精馏塔是一种用于分离液体混合物的设备,其基本原理是利用不同组分的挥发性差异,在塔内进行蒸馏和冷凝,从而实现分离。
在精馏塔内,液体混合物被加热至沸腾,产生蒸汽,然后通过填料层或板层进行传质和传热,最终在冷凝器中冷却并分离为不同的组分。
二、精馏塔的设计精馏塔的设计是一个复杂的过程,需要考虑许多因素,如物料性质、操作条件、分离效率等。
常见的设计方法包括理论计算方法和经验公式方法。
在理论计算方法中,常用的有McCabe-Thiele图、Ponchon-Savarit图等,这些图形方法可以帮助工程师快速估算精馏塔的塔板数、回流比等参数。
而在经验公式方法中,常用的有Fenske方程、Underwood方程等,这些公式基于实验数据和经验公式,适用于一些常见的分离系统。
三、精馏塔的优化精馏塔的优化是为了提高分离效率、节约能源和降低成本。
常见的优化方法包括改变操作条件、优化塔板结构和填料选型等。
改变操作条件是一种常见的优化方法,例如调整回流比、塔顶温度和塔底温度等,可以改善分离效果。
此外,优化塔板结构也是一种重要的方法,例如改变塔板孔径、增加塔板数目等,可以提高传质和传热效率。
填料选型也是一个关键的优化因素,合适的填料可以提高液体和气体的接触面积,从而提高分离效率。
四、精馏塔的实际应用精馏塔在许多领域都有广泛的应用。
以石油化工行业为例,精馏塔被用于原油分馏、石油化学产品的提纯等过程。
在化学制药行业,精馏塔用于药物的纯化和提纯。
在食品加工行业,精馏塔则用于酒精的提纯和饮料的生产。
总结精馏塔作为一种重要的分离设备,在化学工程领域具有广泛的应用。
其设计和优化是一个复杂而关键的过程,需要考虑多个因素。
精馏塔的结构、工作原理及分类汇总(附图)精馏塔的功能和分类:基本功能:形成气液两相充分接触的相界面,使质、热的传递快速有效地进行,接触混合与传质后的气、液两相能及时分开,互不夹带。
精馏塔分类:精馏塔的种类很多,按接触方式可分为连续接触式(填料塔)和逐级接触式(板式塔)两大类,在吸收和蒸馏操作中应用极广。
板式塔:在圆柱形壳体内按一定间距水平设置若干层塔板,液体靠重力作用自上而下流经各层板后从塔底排出,各层塔板上保持有一定厚度的流动液层;气体则在压强差的推动下,自塔底向上依次穿过各塔板上的液层上升至塔顶排出。
气、液在塔内逐板接触进行质、热交换,故两相的组成沿塔高呈阶跃式变化。
2、板式塔板式塔通常是由一个圆柱型的壳体及沿塔高按一定的间距水平设置的若干层塔板(或塔盘)所组成。
在塔内沿塔高装有若干层塔板,液体靠重力的作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,有塔底向上依次穿过各塔板上的液层而流向塔顶。
气液两相在塔内进行逐级接触,两相组成沿塔高呈梯级式变化。
板式塔的塔板塔板是板式塔的主要构件,决定塔的性能。
在几种主要类型错流塔板中,应用最早的是泡罩板,目前使用最广泛的筛板塔和浮阀塔板。
同时,各种新型高效塔板不断问世。
按照结构分,板式塔塔板可以分为泡罩塔、筛板塔、浮阀塔和舌形塔等。
按照流体的路径分,可以分为单溢流型和双溢流型。
3.按照两相流动的方式不同,可以分为错流式和逆流式两种。
(1)溢流塔板溢流塔板(错流式塔板):塔板间有专供液体溢流的降液管(溢流管),横向流过塔板的流体与由下而上穿过塔板的气体呈错流或并流流动。
板上液体的流径与液层的高度可通过适当安排降液管的位置及堰的高度给予控制,从而可获得较高的板效率,但降液管将占去塔板的传质有效面积,影响塔的生产能力。
溢流式塔板应用很广,按塔板的具体结构形式可分为:泡罩塔板、筛孔塔板、浮阀塔板、网孔塔板、舌形塔板等。
(2)逆流塔板逆流塔板(穿流式塔板):塔板间没有降液管,气、液两相同时由塔板上的孔道或缝隙逆向穿流而过,板上液层高度靠气体速度维持。
精馏塔设备概述简介精馏塔是一种常用于分离液体混合物的设备,通过不同组分的挥发度差异实现分离和纯化。
它是化工工业中最常用的分离设备之一,广泛应用于石油化工、化学制药、食品加工等领域。
工作原理精馏塔利用液体分子在不同温度下的挥发差异,通过冷凝和蒸发的循环作用,将混合物中的组分逐步分离。
其基本工作原理是将混合物加热至使其中一种组分直接蒸发并进入冷凝器,然后再将液态的组分回流到塔底进行冷却。
这样循环往复,最终实现分离纯化。
构造精馏塔主要由塔体、进料管、蒸发器、冷凝器、塔底总流出口、分馏液流出口、回流管和塔板等组件构成。
塔体塔体是精馏塔的主要支撑部分,通常由金属材料制成。
其长度和直径可以根据实际情况进行设计。
塔体的内壁通常设置为光滑的表面,以减小流体摩擦阻力,提高传质效率。
进料管进料管用于将待分离混合物导入精馏塔。
其位置通常设计在塔体的顶部,便于混合物均匀分布到塔板上。
蒸发器蒸发器位于精馏塔的底部,通过加热的方式将液态混合物加热至蒸发温度。
蒸发器通常采用外加热的方式,如蒸汽加热或电加热,以提高温度控制精度。
冷凝器冷凝器位于精馏塔的顶部,用于冷却和凝结蒸汽相。
冷凝器通常采用冷水或制冷剂循环的方式进行冷却,将蒸汽相转化为液相,并通过管道排出。
塔底总流出口塔底总流出口是精馏塔的最底部出口,用于排出未蒸发的液态组分。
通常通过阀门控制流量和压力。
分馏液流出口分馏液流出口位于精馏塔的中间位置,用于排除已经分离纯化的组分。
也通过阀门进行流量和压力的调控。
回流管回流管从冷凝器中将冷凝的液相通过管道回流到塔底,作为冷却液。
回流液的流量和塔底总流出口的控制可以实现进一步的分离纯化。
塔板塔板是精馏塔内组织分离过程的关键部分,用于实现质量和传质的分离。
塔板通常为水平平板状,上面设置气体和液体的流通孔,以及液体收集槽等构造。
应用领域精馏塔在化工工业中有着广泛的应用,常见的应用领域包括:•石油化工:用于原油的分离和石油产品的精制,如汽油、柴油、润滑油等的提纯。
精馏塔的结构和工作原理精馏塔是一种化工设备,常用于分离液体混合物中不同成分的纯度,可用于提纯化合物、分离混合物中的杂质以及提取组分等。
其结构和工作原理是很重要的,下面将详细介绍。
一、结构精馏塔主要由塔壳、填料和塔盘三部分组成。
1.塔壳:塔壳是整个精馏塔的基础结构,可分为上壳体和下壳体两部分。
上壳体通常设置液位探测器和液位控制器,用于监测和控制塔内液位。
下壳体通常设计有入口和出口,用于将料液引入塔内。
2.填料:填料是塔内的填充物,主要作用是提供大量的表面积和接触面,增加塔内液体与气体之间的接触,从而促进物质的传质和传热。
常用的填料有环形填料、板式填料和筛板填料等。
3.塔盘:塔盘是一种平坦的圆盘结构,可分为穿孔板和筛板两种形式。
穿孔板上布满了数量不等的小孔,而筛板则由多个平行密排的矩形筛孔组成。
塔盘上形成的液膜和气泡共同作用,实现液体与气体的质量传递。
二、工作原理精馏塔的工作原理基于不同组分在不同温度下的沸点差异。
其分离过程主要包括蒸馏、冷凝、回流和分离四个步骤。
1.蒸馏:在塔底施加加热,使混合物中的易挥发组分汽化,形成蒸汽。
蒸汽上升到塔内,与下降的液体接触,并通过填料或塔盘上的小孔进入下一塔层。
2.冷凝:在塔顶设置冷凝器,冷却蒸汽,并将其转化为液体。
冷却过程中,蒸汽中的高沸点组分冷凝成液体,而低沸点组分保持挥发状态。
3.回流:冷凝后的液体通过回流管回流到塔顶,重新进入塔内。
回流液的作用是增加塔壁的液体,并通过填料或塔盘上的孔洞与上升的蒸汽混合。
4.分离:回流液与上升的蒸汽在塔内产生剪切力,使其彼此接触并进一步传质。
不同组分在塔内通过多次挥发和冷凝步骤的重复循环分离,逐渐提纯。
工作原理的关键在于塔内的物质传质和传热。
填料和塔盘提供了大量的表面积和接触面,使液体和气体之间能够充分接触。
高效的传质和传热能够促使组分之间相互转移,达到分离的目的。
总结:精馏塔的结构和工作原理是使得不同成分纯度提高的关键。
通过加热、冷凝和回流等步骤进行反复蒸发和冷凝,最终实现混合物中组分的分离。
精馏塔的工作原理
精馏塔是一种用于分离液体混合物的设备,其工作原理基于不同组分的沸点差异。
在精馏塔内,液体混合物被加热至沸点,然后通过塔内的填料或塔板进行分离。
本文将介绍精馏塔的工作原理及其应用。
首先,精馏塔内的液体混合物被加热至沸点。
在加热的过程中,液体混合物中
沸点较低的组分首先蒸发,形成蒸汽。
蒸汽与塔内填料或塔板接触,发生传质和传热过程。
其次,填料或塔板的设计能够提供大量的表面积,使得蒸汽和液体之间能够充
分接触。
这种充分接触使得液体混合物中沸点较低的组分易于从液相转移到蒸汽相,从而实现分离。
最后,蒸汽在塔内上升时,逐渐冷却凝结成液体,这些液体被收集并成为产品。
而未被蒸发的液体则向下流动,经过多次回流和再沸馏,最终得到所需的产品。
精馏塔的工作原理可以应用于许多领域,例如石油化工、化学工程、食品加工等。
在石油化工中,精馏塔被广泛用于原油的分馏,将原油中的不同碳链长度的烃类分离出来,得到汽油、柴油、煤油等产品。
在化学工程中,精馏塔可用于分离和提纯化学品,如酒精、醋酸等。
在食品加工中,精馏塔可用于提取天然香料和酒精等。
总之,精馏塔的工作原理基于不同组分的沸点差异,通过加热、蒸发、冷凝等
过程,实现了液体混合物的分离。
它在化工领域有着广泛的应用,为生产提供了重要的分离技术支持。
传质过程及塔设备介绍1. 传质过程简介传质是指物质在两相界面上的传递过程,即在两个相互接触的相中,从一个相传递到另一个相的物质传递。
在化工过程中,传质过程是非常重要的,它涉及到多种物质的拆分、合成、分离等操作。
传质过程的效率直接影响到化工过程的效果和经济性。
一般来说,传质过程包括质量传递和热量传递两个方面。
质量传递是指物质的传递,而热量传递是指通过传热介质的传递。
传质过程的方式有多种,常见的包括扩散、对流、吸附等。
传质过程在化工工艺中有广泛的应用,例如在化学反应中的溶解、吸附过程中的质量传递、萃取过程中的相互传质等。
在化工过程设计中,正确选择传质方式以及相应的设备,对于提高化工过程的效率和经济性至关重要。
2. 塔设备介绍在化工过程中,塔设备是实现传质过程的关键设备之一。
不同的传质过程需要采用不同的塔设备,下面介绍几种常见的塔设备。
2.1 吸收塔吸收塔是一种用于气液吸收的设备。
其原理是通过将气体通过填充物与液体相接触,使气体中的物质被液体吸收。
吸收塔在化工过程中应用广泛,例如石油化工中的气体脱硫、环保领域中的废气处理等。
2.2 萃取塔萃取塔是一种用于液体相萃取的设备。
其原理是通过将萃取剂与待处理液体相接触,使其中的特定组分被相对亲和力更强的萃取剂萃取出来。
萃取塔在化工过程中常用于提取纯度高的物质或分离混合物中的不同组分。
2.3 脱硫塔脱硫塔是一种用于脱除硫化物的设备,在石油化工等领域广泛应用。
其原理是通过将硫化物所在气体与溶液相接触,使硫化物被溶液吸收,从而达到脱硫的效果。
脱硫塔在燃煤电厂、石油炼制等领域中起着重要作用。
2.4 蒸馏塔蒸馏塔是一种用于液体蒸馏的设备。
其原理是将混合液体加热至其中的组分沸腾,然后凝结回液体,通过蒸馏塔的不同区域实现组分之间的分离。
蒸馏塔在化工领域广泛应用,例如在石油炼制中提炼石油产品时的分馏过程中就需要使用蒸馏塔来分离不同碳链长度的烃类化合物。
3. 总结传质过程是化工过程中非常重要的一环,在许多操作中都扮演着关键角色。
关于精馏塔的名词解释精馏塔是一种常见的化工设备,其主要功能是将混合物中的不同成分分离出来,通过蒸发和冷凝的过程,实现不同成分的纯度提高。
精馏塔的原理是利用不同物质的沸点差异,将混合物中的液体组分分离。
精馏塔通常由塔壳、填料、塔板和冷凝器等部分组成。
塔壳是一个封闭的容器,填料则是位于塔壳内部的一种支撑物,用来增加塔的表面积,方便混合物与蒸汽的接触,促进分离。
塔板则是放置在塔内的一个平台,用来支撑填料和提供蒸汽与液体的接触面。
冷凝器则是利用冷却水或其他冷却介质,将蒸汽冷凝成液体的装置。
在精馏过程中,原料混合物首先被加热,使得其中的液体蒸发生成蒸汽。
蒸汽随后进入精馏塔,与塔内的填料或塔板接触,发生传质和传热反应。
在传质过程中,不同成分的分子将在填料或塔板上相互传递,由于不同成分之间的沸点差异,会出现沸点较低的成分先蒸发出来的情况。
传热则是指蒸汽和液体之间的热量交换,蒸汽通过冷凝器冷却后变成液体,称为凝结液。
塔内的填料或塔板起到一个重要的作用,增加了物质之间的接触面积,加快了传质传热的速度,提高了分离效果。
填料通常是一些由树脂、金属或陶瓷等制成的小颗粒,具有较大的表面积。
而塔板则是通过孔洞和波纹等结构实现蒸汽与液体的接触。
根据不同的用途和分离要求,精馏塔又可以分为多种类型。
例如,常见的有平板塔、浮阀塔、填料塔等。
平板塔由多个水平放置的塔板组成,液体在塔板间穿梭,与蒸汽反复接触,实现分离。
而浮阀塔则是在塔板上设置了可移动的阀门,使得液体在塔板上形成一层液池,提高了传质效果。
填料塔则是通过填充填料的方式,在塔内形成了大量的表面积,实现了效率更高的传质传热过程。
精馏塔在石油化工、化学工程、制药等领域中得到了广泛应用。
例如,在石油炼制过程中,精馏塔被用于将原油中的不同组分,如汽油、柴油、液化气等分离出来,以满足各种燃料的需求。
在化学工程中,精馏塔则被用于分离混合物中的溶剂、酒精等有机物质,以实现纯度的提高。
在制药行业中,精馏塔则被用于分离和提纯药物原料。
精馏塔内部结构你了解吗精馏塔是一种重要的分离设备,广泛应用于石油、化工、制药等领域。
它通过利用不同组分的沸点差异实现对混合物的分离和纯化。
精馏塔的内部结构设计是为了优化物质传质和物质传热的效率,下面将介绍精馏塔的内部结构及其功能。
一、塔板塔板是精馏塔的核心组件之一,它位于塔内垂直于塔轴线的位置,可将塔蓝分为多个平行的水平层。
塔板上通常有一系列的孔洞或称为塔板孔,通过这些孔洞可以让物质在塔板之间垂直流动。
塔板的主要功能有两个方面:一是提供载流体的流动路径,确保物质在塔内均匀流动;二是提供物质的接触界面,促进物质之间的传质。
二、填料填料是塔内另一个重要的组件,它位于塔板上方,并填充整个塔的体积。
填料可以增加塔内界面的面积,增强物质的接触和传质效果。
常见的填料有环形填料、网状填料、球状填料等。
填料的选择需要考虑物质特性、操作条件等因素。
填料的主要功能包括增加塔内传质面积、增加物质接触机会、提高萃取效率等。
三、塔壁塔壁是塔的外壳,它起到了支撑和保温的作用。
塔壁通常由金属材料制成,如碳钢、不锈钢等。
对于特殊的工艺要求,塔壁还可能进行内衬,用以保护塔壁免受腐蚀或其他物质的侵蚀。
四、塔顶塔顶是精馏塔的顶部结构,它通常包括顶板、挡水器、减压装置等。
塔顶的设计是为了实现较高纯度的蒸汽或液体的分离和采集。
塔顶内部的挡水器可以减少蒸汽中液滴的含量,确保顶板区域的纯度。
五、塔底塔底是精馏塔的底部结构,它通常包括底板、液体回流装置、出料装置等。
塔底的设计是为了收集并分离塔内的液滴和气体。
液体回流装置可以将部分液体重新引导到塔板上,以提高传质效率。
出料装置用于顶出纯净的产物和废液。
总的来说,精馏塔的内部结构设计旨在提高传质和传热效率,以实现对混合物的有效分离和纯化。
通过塔板、填料、塔壁、塔顶和塔底的协同作用,不同组分的混合物可以在塔内进行分馏,达到预期的分离效果。
板式精馏塔工作原理
板式精馏塔是一种常用的分离设备,用于在石化、化工等工业领域中进行精馏和分馏操作。
其工作原理如下:
1. 进料:混合物通过塔底进入精馏塔。
混合物可以是不同沸点的液体,如原油经预处理后的馏分。
2. 液体上升:混合物进入塔底后,被喷淋到塔内。
液体通过底部的冷凝器冷却,形成饱和蒸汽。
3. 气液分离:饱和蒸汽与液体混合物在塔底的反流板上发生气液分离。
液体从反流板上流下塔底,而蒸汽则继续向上流动。
4. 传质传热:蒸汽从塔底逐渐上升,途中与下方的液体反应,实现质量传递。
同时,蒸汽与塔内壁面接触,进行热量传递。
5. 分馏过程:蒸汽逐渐上升,经过塔内多个水平的板层。
在每个板层上,再次发生气液分离,重复传质传热过程。
6. 产品收集:在塔顶部,蒸汽进一步冷却,形成液体产品。
这些产品通过凝冷器冷却后被收集、分离,并用于下游工艺。
7. 废物处理:在塔顶部,未完全冷凝的气体由顶盖排出,这些气体可能是未分离的轻组分或废料,需要进行排放或经过进一步处理。
通过使蒸汽和液体在塔内多次反复接触和分离,板式精馏塔能
够实现混合物中不同沸点组分的有效分离。
塔内的板层提供了更大的接触面积和更好的传质传热条件,有助于提高分离效率。
传
质
设
备
环境与化学工程学院
化学工程与工艺二班
王立丹
41204070223
最常见的精馏塔设备为板式塔和填料塔两大类。
作为主要运用于传质过程的塔设备,首先必须使气液两相充分接触,以获得较高的传质效率。
此外,为满足工业生产的需要,塔设备还必须满足以下要求:1、生产能力大;2、操作稳定,弹性大;3、流动阻力小;4、结构简单,材料耗用量少,制造和安装容易;5‘耐腐蚀和不易阻塞,操作方便,调节和检修容易。
精馏设备指的是精馏操作设备,主要包括精馏塔及再沸器和冷凝器。
关键词:
精馏塔主体设备包括精馏塔及再沸器和冷凝器
形状圆筒形用途精馏操作
1精馏塔
完成精馏操作的主体设备。
塔体为圆筒形,塔内设有供汽液接触传质用的塔板(见板式塔)或填料(见填充塔)。
在简单精馏塔中,只有一股原料引入塔中,从塔顶和塔底分别引出一股产品。
随化工生产的发展,出现了多股进料和多股出料或有中间换热的复杂塔。
在实际生产中,常有组分相同而组成不同的几宗物料都需要分离。
如果把这些物料混合以后进行分离,则能耗较大。
为此可在塔体适当位置设置多个进料口,将各宗物料分别加入塔内。
例如裂解气深冷分离的脱甲烷前冷流程,就是将四宗组成和温度都不相同的液化裂解气在不同位置送入脱甲烷塔进行精馏的。
在精馏塔内,汽液两相的组成沿塔高逐渐发生变化。
因此,在塔体不同高度上设置出料口,可以得到组成不同的产品,这称为侧线出料。
石油炼制工业中的常压塔和减压塔,就是通过侧线出料得到不同产品的实例。
在精馏塔内汽液两相的温度自上而下逐渐增加,塔顶最低,塔底最高。
如果塔底和塔顶的温度相差较大,可在精馏段设置中间冷凝器,在提馏段设置中间再沸器,以降低操作费用。
供热费用取决于传热量和所用载热体的温位。
在塔内设置的中间冷凝器,可用温位较高、价格较便宜的冷却剂,使上升气体部分冷凝,以减少塔顶低温冷却剂的用量。
同理,中间再沸器可用温位较低的加热剂,使下降液体部分汽化,以减少塔底再沸器中高温加热剂的用量。
精馏设备
2再沸器
用以将塔底液体部分汽化后送回精馏塔,使塔内汽液两相间的接触传质得以进行。
小型精馏塔的再沸器,传热面积较小,可直接设在塔的底部,通称蒸馏釜。
大型精馏塔的再沸器,传热面积很大,与塔体分开安装,以热虹吸式和釜式再沸器最为常用。
热虹吸式再沸器是一垂直放置的管壳式换热器。
液体在自下而上通过换热器管程时部分汽化,由在壳程内的载热体供热。
它的优点是液体循环速度快,传热效果好,液体在加热器中的停留时间短;但是,为产生液体循环所需的压头,这种精馏塔的底座较高。
釜式再沸器通常水平放置在釜内进行汽液分离,可降低塔座高度;但加热管外的液体是自然对流的,传热效果较差,液体在釜内停留时间也长,因而不适于粘度较大或稳定性较差的物料。
3冷凝器
用以将塔顶蒸气冷凝成液体,部分冷凝液作塔顶产品,其余作回流液返回塔顶,使塔内汽液两相间的接触传质得以进行。
最常用的冷凝器是管壳式换热器。
小型精馏塔的冷凝器可安装在精馏塔顶部;大型的冷凝器则单独安装,并设有回流槽,回流液用泵送至塔顶。
参考文献
网络类:百度
书籍类:夏清贾绍义《化工原理》(下册)天津大学出版社。