利用导数研究函数的图像
- 格式:ppt
- 大小:525.00 KB
- 文档页数:13
导数的基本定义与解析几何的关系导数是微积分中的重要概念,它描述了函数在某一点的变化率。
导数的基本定义是通过极限来描述函数的变化率。
在本文中,我们将探讨导数的基本定义,并研究导数与解析几何之间的关系。
一、导数的基本定义导数描述了函数在某一点的瞬时变化率。
对于函数f(x),在x点处的导数可以通过以下极限定义:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,h为一个无限接近于0的数。
这个定义可以理解为当x的增量趋近于0时,函数在x点处的平均变化率。
而导数则描述了函数在x点处的瞬时变化率。
二、导数与函数的图像导数与函数的图像之间有着密切的联系。
在函数的图像中,导数可以表示为函数曲线上某点处的切线斜率。
具体来说,如果函数在某一点的导数为正,那么函数图像在该点上升;如果导数为负,函数图像在该点下降;如果导数为零,函数图像在该点处达到极值。
三、导数与解析几何导数与解析几何之间的关系非常紧密。
通过导数,我们可以研究函数图像的性质,进而对解析几何中的曲线进行分析。
1. 切线与法线导数可以帮助我们确定曲线上某点处的切线方程。
对于函数f(x),在点(x0,f(x0))处的切线方程可以表示为:y - f(x0) = f'(x0)(x - x0)其中f'(x0)为函数在该点处的导数。
而法线方程可以通过切线方程的斜率倒数得到。
2. 曲线的凹凸性导数还可以帮助我们研究曲线的凹凸性。
在函数的图像中,如果导数在某个区间上恒大于零,那么函数在该区间上是凹的;如果导数在某个区间上恒小于零,那么函数在该区间上是凸的。
3. 极值点通过导数,我们可以找到函数的极值点。
对于函数f(x),极值点可以通过导数的零点来确定。
当导数从正数变为负数时,函数图像上的极大值点出现;当导数从负数变为正数时,函数图像上的极小值点出现。
四、导数的应用导数在数学和科学中有着广泛的应用。
以下是一些导数的应用领域:1. 最优化问题导数可以帮助我们解决最优化问题,例如求函数的最大值和最小值。
§3.5 利用导数研究函数(单调性、极值和凸性)一、与函数的单调性有关的一些结论定理 3.11(单调的充分必要条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上递增(或递减)当且仅当在(,)a b 上成立0f '≥(或0f '≤).证: “仅当”.假定f 在[,]a b 上递增.(,)x a b ∀∈,当0h b x <<-时,有()()0f x h f x h +-≥,故0()()()lim 0h f x h f x f x h→++-'=≥,即在(,)a b 上成立0f '≥.“当”.假定在(,)a b 上成立0f '≥.12,[,]x x a b ∀∈,12x x <,12(,)x x ξ∃∈,使得2121()()f x f x x x --()f ξ'=0≥.这说明21()()f x f x ≥,即f 在[,]a b 上递增.□定理 3.12(严格单调的充分条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上成立0f '>(或0f '<),则f 在[,]a b 上严格递增(或严格递减).反之,结论可能不正确.证: 12,[,]x x a b ∀∈,12x x <,12(,)x x ξ∃∈,使得2121()()f x f x x x --()f ξ'= 0>.这说明21()()f x f x >,即f 在[,]a b 上严格递增.□定理 3.13(严格单调的充分条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上除去有限个点后成立0f '>(或0f '<),则f 在[,]a b 上严格递增(或严格递减).反之,结论可能不正确.证:设12,,,n x x x ∃ ,12n a x x x b <<<<< ,在112(,),(,),,(,)n a x x x x b上成立0f '>,故f 在112[,],[,],,[,]n a x x x x b 上严格递增,从而f 在[,]a b 上严格递增.□定理 3.14(严格单调的充分必要条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上严格递增(或严格递减)当且仅当同时成立(1) 在(,)a b 上有0f '≥(或0f '≤);(2) ∀开区间(,)I a b ⊂,|0I f '≠.证: “仅当”.假定f 在[,]a b 上严格递增.定理3.11确保了(1)成立;∀开区间(,)I a b ⊂,因为f 在I 上不是常数,故|0I f '≠,即(2)成立. “当”.假定(1)、(2)同时成立.定理3.11确保了f 在[,]a b 上递增,即12,[,]x x a b ∀∈,12x x <,有12()()f x f x ≤.若12()()f x f x =,则12[,]|x x f 是常数,从而12(,)|0x x f '=,与(2)相矛盾,故12()()f x f x <.□ 命题 (有实用价值) 设函数,f g 都在有限闭区间[,]a b 上连续,在(,)a b 上可导,并且在(,)a b 上成立f g ''≥(或f g ''>),那么(1) 若()()f a g a =,则(,](,]||a b a b f g ≥(或(,](,]||a b a b f g >);(2) 若()()f b g b =,则[,)[,)||a b a b f g ≤(或[,)[,)||a b a b f g <).证: 函数f g -在[,]a b 上递增(或严格递增).(1) (,]x a b ∀∈,有()()()()0f x g x f a g a -≥-=(或()()f x g x -()f a > ()0g a -=),故(,](,]||a b a b f g ≥(或(,](,]||a b a b f g >).(2) [,)x a b ∀∈,有()()()()0f x g x f b g b -≤-=(或()()f x g x -()f b < ()0g b -=),故[,)[,)||a b a b f g ≤(或[,)[,)||a b a b f g <).□例1(必须记住) (0,)2x π∀∈,总成立不等式2sin 1x xπ<<.证: 函数1,0;()sin ,02x f x x x xπ=⎧⎪=⎨<≤⎪⎩ 在[0,]2π上连续,在(0,)2π上可导,并且(0,)2x π∀∈,总有2cos sin ()0x x x f x x-'=<.于是, 222(),()(),[0,)22f f f x x πππππ''<=⇒>∀∈.□ 二、与函数的极值有关的一些结论定理 3.15(极值的充分条件)设f 是开区间...(,)a b 上的连续函数,0(,)x a b ∈.那么(1) 若在0(,)a x 上成立0f '≥(或0f '>),在0(,)x b 上成立0f '≤(或0f '<),则0()f x 是f 在(,)a b 上的最大值(或严格最大值);(2) 若在0(,)a x 上成立0f '≤(或0f '<),在0(,)x b 上成立0f '≥(或0f '>),则0()f x 是f 在(,)a b 上的最小值(或严格最小值). 证: 显然.□定理 3.16(简单情形下极值的充分条件) 设0x 是函数f 的驻点,并且0()f x ''存在,那么(1) 若0()0f x ''<,则0()f x 是f 的严格极大值;(2) 若0()0f x ''>,则0()f x 是f 的严格极小值;(3) 若0()0f x ''=,则各种情形都可能出现.证: (1) 000000()()()0()lim lim x x x x f x f x f x f x x x x x →→'''-''>==--,故0δ∃>,使得当00x x δ<-<时成立0()0f x x x '<-.于是,在00(,)x x δ-上成立0f '>;在00(,)x x δ+上成立0f '<.这说明0()f x 是f 在00(,)x x δδ-+上的严格最大值,即是f 的严格极大值.(2) 与(1)的证明类似.(3) 344,,x x x -说明各种情形都可能出现.□求有限闭区间上连续函数的最大值和最小值的方法 设函数f 在有限闭区间[,]a b 上连续,在(,)a b 上可导.若f 在(,)a b 上只有有限个驻点12,,,n x x x ,则12max ()max{(),(),(),,(),()}n a x bf x f a f x f x f x f b ≤≤= ; 12min ()min{(),(),(),,(),()}n a x b f x f a f x f x f x f b ≤≤= .练习题3.5(172P ) 2(3,4),3,4,5,6,7,8,9(3),11,13,15.问题3.5(175P ) 4,8,10.三、与函数的凸性有关的一些结论定义 3.6 设f 是区间I 上的函数.若12,x x I ∀∈,12x x <,(0,1)λ∈,总成立不等式1212[(1)](1)()()f x x f x f x λλλλ-+≤-+()1212[(1)](1)()()f x x f x f x λλλλ-+<-+或,则称f 是区间I 上的凸函数(或严格凸函数).注意 f 是区间I 上的凸函数(或严格凸函数),区间J I ⊂⇒|J f 是区间J 上的凸函数(或严格凸函数).凸函数的几何意义 f 是区间I 上的凸函数(或严格凸函数)⇔ 12,x x I ∀∈,12x x <,以11(,())x f x 和22(,())x f x 为端点的开线段总是位于(或严格位于)12(,)|x x f 的图像的上方.证: 12(0,1),(,)x x x λ∀∈∃∈使得121x x x x λ-=-;反之亦然.于是 1212[(1)](1)()()f x x f x f x λλλλ-+≤-+⇔2121121221212121()()x x x x x x x x f x x f x f x x x x x x x x x ⎡⎤----+≤+⇔⎢⎥----⎣⎦ 211121()()()()()f x f x f x x x f x x x -≤-+-.□ 注记 3.6' 函数f 是开区间(,)a b 上的凸函数(或严格凸函数)当且仅当同时成立(1) f 在(,)a b 上连续;(2) 12,(,)x x a b ∀∈,12x x <,总成立不等式121211()()222x x f f x f x +⎫⎛≤+ ⎪⎝⎭ 121211()()222x x f f x f x +⎫⎛⎫⎛<+ ⎪⎪ ⎝⎭⎝⎭或. 证: “仅当”.假定f 是开区间(,)a b 上的凸函数.由问题3.5的第1(3)题便知(1)成立;由凸函数的定义便知(2)成立.“当”.假定(1),(2)成立.由(2)的几何意义和f 的连续性,以11(,())x f x 和22(,())x f x 为端点的开线段总是位于12(,)|x x f 的图像的上方.这表明f 是(,)a b 上的凸函数.□注记3.6'' 设I 是以,a b 为左、右端点的区间,那么函数f 是I 上的凸函数(或严格凸函数)当且仅当同时成立(1) f 是(,)a b 上的凸函数(或严格凸函数);(2) 当a I ∈时,lim ()()x a f x f a →+≤;当b I ∈时,lim ()()x b f x f b →-≤. 证: “仅当”.假定f 是I 上的凸函数.由凸函数的定义便知(1)成立.由定理 3.19的推论知,lim ()x a f x →+和lim ()x b f x →-都存在.固定0(,)x a b ∈. 0(,)x a x ∀∈,有00()()()()()f x f a f x x a f a x a-≤-+-⇒lim ()()x a f x f a →+≤;0(,)x x b ∀∈,有0000()()()()()f b f x f x x x f x b x -≤-+-⇒lim ()()x b f x f b →-≤. “当”.假定(1),(2)成立.由凸函数的几何意义,12,x x I ∀∈,12x x <,以11(,())x f x 和22(,())x f x 为端点的开线段总是位于12(,)|x x f 的图像的上方.这表明f 是I 上的凸函数.□定理3.17(J ensen 不等式)若f 是区间I 上的凸函数,则1,,n x x ∀ I ∈, 1,,0n λλ> ,11n λλ++= ,总成立不等式1111()()()n n n n f x x f x f x λλλλ++≤++ .当f 是区间I 上的严格凸函数时,上式等号成立当且仅当12n x x x === .证: 不妨设 12n x x x ≤≤≤ ,显然1111n x x x λλ=++ 11x λ≤+n n x λ+ 1n n n n x x x λλ≤++= .这说明不等式的左边有意义.对n *∈ 应用数学归纳法.(1) 当1n =时,11λ=,故1111()()f x f x λλ=.(2) 假定当n k ≤时结论成立,要证当1n k =+时结论也成立.令1μ= 111,,011k k k k λλμλλ++=>-- ,则11k μμ++= ,故由归纳法假定便得到 1111()k k k k f x x x λλλ+++++11111[(1)()]k k k k k f x x x λμμλ+++=-+++11111(1)()()k k k k k f x x f x λμμλ+++≤-+++11111(1)[()()]()k k k k k f x f x f x λμμλ+++≤-+++1111()()()k k k k f x f x f x λλλ++=+++ .当f 是区间I 上的严格凸函数时,上式等号成立当且仅当12k x x x === ,111k k k x x x μμ+++= ,即121k x x x +=== .□定理3.18 (J ensen 不等式的另一形式) 若f 是区间I 上的凸函数,则1,,n x x ∀ I ∈,1,,0n ββ> ,总成立不等式 1111111()[()()]n n n n n nx x f f x f x ββββββββ++≤++++++ . 当f 是区间I 上的严格凸函数时,上式等号成立当且仅当12n x x x === . 定理3.19 f 是区间I 上的凸函数(或严格凸函数)⇔∀固定的0x I ∈,函数00()()()f x f x x x x ϕ-=-在0\{}I x 上递增(或严格递增). 证: ⇒.假定f 是I 上的凸函数.12,x x ∀0\{}I x ∈,12x x <,下述三个不等式120x x x <<,102x x x <<和01x x <2x <恰有一个成立.由凸函数的几何意义即知12()()x x ϕϕ≤.⇐.假定∀固定的x I ∈,函数()()()f y f x y y xϕ-=-在\{}I x 上递增.12,x x I ∀∈,12x x <,当12(,)x x x ∈时,总成立121212()()()()()()f x f x f x f x x x x x x xϕϕ--=≤=--. 这说明以11(,())x f x 和22(,())x f x 为端点的开线段总是位于12(,)|x x f 的图像的上方.故f 是区间I 上的凸函数.□推论 设f 是开区间(,)a b 上的凸函数,那么(1) 若a ≠-∞,则lim (){}x a f x →+∈+∞ ;若a =-∞,则lim ()x f x ∞→-∞∈ . (2) 若b ≠+∞,则lim (){}x b f x →-∈+∞ ;若b =+∞,则lim ()x f x ∞→+∞∈ . 证: 仅证(1).当a ≠-∞时,对固定的0(,)x a b ∈,00()()()f x f x x x x ϕ-=-在0(,)\{}a b x 递增,00()()()()f x x x x f x ϕ=-+,故0lim ()()lim ()x a x a f x a x x ϕ→+→+=-0(){}f x +∈+∞ .当a =-∞时,只需考虑f 不在(,)b -∞上递增的情形.取12,(,)x x b ∈-∞, 12x x <,使得12()()f x f x >.因为22()()()f x f x x x x ϕ-=-在1(,]x -∞上递增,故1lim ()()0x x x ϕϕ→-∞≤<,从而 2lim ()lim ()()x x f x x x x ϕ→-∞→-∞=-2()f x +=+∞.□ 定理 3.20 设I 是以,a b 为左、右端点的区间.若函数f 在I 上连续,在(,)a b 上可导,则f 是I 上的凸函数(或严格凸函数)当且仅当f '在(,)a b 上递增(或严格递增).证: 仅证严格的情形.“仅当”.假定f 是I 上的严格凸函数.12,x x ∀(,)a b ∈,12x x <和12,(,)x y x x ∈,分别对111()()()f x f x x x x ϕ-=-和222()()()f x f x x x x ϕ-=-应用定理3.19便有 12121212()()()()()()f x f x f x f x f x f y x x x x x y---<<---. 令12,x x y x →+→-,得到211221()()()()f x f x f x f x x x -''<<-.这说明f '在(,)a b 上严格递增.“当”.假定f '在(,)a b 上严格递增.0x I ∀∈,记00()()()f x f x x x x ϕ-=-.则当0(,),x a b x x ∈>时,0(,)x x ξ∃∈使得00()()f x f x x x --()f ξ'=,故 0000()()()()()()0f x f x f x x x f x f x x x x x ξϕ-'-''--'==>--. 当0(,),x a b x x ∈<时,0(,)x x η∃∈使得00()()f x f x x x--()f η'=,故 0000()()()()()()0f x f x f x x x f f x x x x x xηϕ-'-''--'==>--.这说明ϕ在0\{}I x 上严格递增,从而f 是I 上的严格凸函数. 定理 3.21 设I 是以,a b 为左、右端点的区间.若函数f 在I 上连续,在(,)a b 上2阶可导,则f 是I 上的凸函数(或严格凸函数)当且仅当在(,)a b 上成立0f ''≥(或在(,)a b 上成立0f ''≥,并且(,)(,)c d a b ∀⊂都有(,)|0c d f ''≠).证: 由定理3.20和定理3.14.□例2(几何平均不大于算术平均) 12,,,0n x x x ∀> ,有不等式11212()n nn x x x x x x n+++≤ . 等号成立当且仅当12,n x x x === . 证: 在(0,)+∞上成立211(ln )()0x x x'''-=-=>,故ln x -是(0,)+∞上的严格凸函数,从而1212ln ln ln ln n n x x x x x x n n +++----⎫⎛-≤ ⎪⎝⎭, 11212ln()ln n n n x x x x x x n +++⎫⎛≤ ⎪⎝⎭.□ 例3(算术平均不大于均方根) 12,,,0n x x x ∀> ,有不等式12n x x x n +++≤ . 等号成立当且仅当12,n x x x === .证: 在(0,)+∞上成立11322211024x x x --'''⎫⎫⎛⎛-=-=>⎪⎪ ⎝⎝⎭⎭,故12x -是(0,)+∞上的严格凸函数,从而122221212n n x x x x x x n n ⎫⎛++++++-≤-⎪ ⎝⎭ .□ 练习题3.5(172P ) 17,19(2,3,4),20,21,22,23.问题3.5(175P ) 1,2,3,9.§3.6 L ’Hospital 法则L ’Hospital 法则可以认为是连续型的Stolz 定理;Stolz 定理也可以认为是离散型的L ’Hospital 法则.定理3.22和3.23(00型)设,f g 在0x ∈ 的去心邻域上可导,并且,g g '在0x 的去心邻域上处处不取零值.若00lim ()lim ()0,x x x x f x g x →→==0()lim ()x x f x g x →'' {}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.证: 设0δ>是足够小的常数.当00(,)x x x δ∈+时,在0[,]x x 上应用Cauchy 中值定理知,0(,)x x ξ∃∈使得 ()()f x g x 00()()()()()()f x f x fg x g x g ξξ'-+=='-+.故0()lim ()x x f x g x →+l =;同理,0()lim ()x x f x g x →-l =. 对于“x →∞”的情形, 有 2002111()lim lim lim 111()x t t f f f x t t t g x g g t t t →∞→→⎫⎫⎫⎛⎛⎛'- ⎪ ⎪⎪⎝⎝⎝⎭⎭⎭==⎫⎫⎫⎛⎛⎛'- ⎪ ⎪⎪⎝⎝⎝⎭⎭⎭ 01()lim lim 1()t x f f x t l g x g t →→∞⎫⎛' ⎪'⎝⎭==='⎫⎛' ⎪⎝⎭.□ 推论1(00型) 设,f g 在0x ∈ 的去心邻域上n 阶可导,并且,,,g g ' ()n g 在0x 的去心邻域上处处不取零值.若 00lim ()lim ()x x x x f x f x →→'=== 0(1)lim ()n x x f x -→0lim ()x x g x →==00(1)lim ()lim ()0n x x x x g x g x -→→'=== ,0()()()lim ()n n x x f x g x →{}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.定理3.24 (?∞型) 设,f g 在0x ∈ 的去心邻域上可导,并且,g g '在0x 的去心邻域上处处不取零值.若0lim ()x x g x →=∞,0()lim ()x x f x g x →''{}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.证: 仅证l ∈ 和l =∞,并且是0x x →的情形.(1)l ∈ . 0,0εδ∀>∃>,使得当002x x δ<-<时成立()()f x l g x ε'-<'.故当 00(,)x x x δ∈+时, 在0[,]x x δ+应用Cauchy 中值定理知,ξ∃∈0(,)x x δ+使得 00()()()()()()f x f x f l lg x g x g δξεδξ'+--=-<'+-,从而 0000()()()limsuplimsup ()()()x x x x f x f x f x l l g x g x g x δεδ→+→++--=-≤+-. 故 0()limsup0()x x f x l g x →+-=,即0()lim ()x x f x l g x →+=;同理,0()lim ()x x f x l g x →-=. (2)l =∞. 0,0A δ∀>∃>,使得当002x x δ<-<时成立()()f x Ag x '>'.故当 00(,)x x x δ∈+时, 在0[,]x x δ+应用Cauchy 中值定理知, ξ∃∈0(,)x x δ+使得00()()()()()()f x f x f Ag x g x g δξδξ'+-=>'+-,从而 0000()()()liminf liminf ()()()x x x x f x f x f x A g x g x g x δδ→+→++-=≥+-. 故 0()liminf ()x x f x g x →+=+∞,即0()lim ()x x f x g x →+=∞;同理,0()lim ()x x f x g x →-=∞.□ 推论2(?∞型) 设,f g 在0x ∈ 的去心邻域上n 阶可导,并且,,,g g ' ()n g 在0x 的去心邻域上处处不取零值.若 0lim ()x x g x →=0lim ()x x g x →'==0(1)lim ()n x x g x -→=∞,0()()()lim ()n n x x f x g x →{}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.注记 易将“0⋅∞型,∞-∞型,00型,0∞型,1∞型”的极限化成“00型”或“?∞型”的极限,再利用L ’Hospital 法则求出来.例1(必须记住) 对于常数0μ>,有0lim ln 0x x x μ→+=;0lim 1x x x →+=. 解: ()10000ln ln 11lim lim lim lim 0()()x x x x x x x x x x x μμμμμμ----→+→+→+→+'===-='-. 00lim ln lim ln 0x x x x x x →+→+==,故0lim 1x x x →+=.□ 例2(一个错误的循环证明) 利用L ’Hospital 法则来证明0sin lim 1x x x→=是错误的.因为在000sin (sin )cos lim lim lim 1()1x x x x x x x x →→→'==='中,(sin )cos x x '=这一步用到了0sin lim 1x x x →=.□ 例3(问题1.12的第4题,52P ) 证: 10sin (0,)2x x π=∈,故数列{}n x 严格递减收敛于0.由Stolz 定理,2221222111111lim lim lim lim (1)sin n n n n n n n n nn x x x nx n n n x x +→∞→∞→∞→∞-⎫⎛===-⎪ +-⎝⎭ 22011lim sin x x x →+⎫⎛=-= ⎪⎝⎭222222400sin (sin )lim lim sin ()x x x x x x x x x →+→+'--=' 30(2sin 2)lim 4()x x x x →+'-='200(22cos2)4sin 21lim lim 12()243x x x x x x →+→+'-==='.□ 练习题3.6(182P ) 1(6,8,10,12,13),2,3,4.。
导数与函数图像的关系分析导数是微积分中的重要概念,它描述了函数在某一点的变化率。
而函数图像则是函数在平面上的可视化展示。
导数与函数图像之间存在着密切的关系,通过对导数与函数图像的分析,我们可以深入理解函数的性质与行为。
一、导数的定义与计算方法导数的定义是函数在某一点的变化率,可以通过极限的概念进行定义。
对于函数f(x),其在点x处的导数可以表示为f'(x),即f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx。
这个定义可以理解为当Δx趋近于0时,函数在x点附近的变化率。
计算导数的方法有多种,其中最常见的是使用导数的基本公式。
对于常见的函数类型,我们可以通过这些公式来计算导数。
例如,对于多项式函数f(x) = ax^n,其中a为常数,n为整数,其导数为f'(x) = anx^(n-1)。
对于指数函数f(x) = e^x,其导数为f'(x) = e^x。
对于对数函数f(x) = ln(x),其导数为f'(x) = 1/x。
二、导数与函数的增减性导数与函数的增减性密切相关。
通过导数的正负可以判断函数在某一点的增减性。
当导数大于0时,函数在该点上是递增的;当导数小于0时,函数在该点上是递减的;当导数等于0时,函数在该点上取得极值。
通过导数与函数的增减性,我们可以推导出函数的极值点和拐点。
当函数的导数从正变为负时,函数在该点上取得极大值;当函数的导数从负变为正时,函数在该点上取得极小值。
而函数的拐点则是导数的变号点,即导数从正变为负或从负变为正的点。
三、导数与函数的凹凸性导数还可以用来判断函数的凹凸性。
通过导数的二阶导数可以判断函数的凹凸性。
二阶导数表示导数的导数,可以表示为f''(x)。
当二阶导数大于0时,函数在该点上是凹的;当二阶导数小于0时,函数在该点上是凸的;当二阶导数等于0时,函数在该点上可能是拐点。
通过导数与函数的凹凸性,我们可以推导出函数的凹凸区间和拐点。
用导数探讨函数图象的交点问题运用导数进行函数的性质、函数图象的交点和方程根的分布等的综合研究,实际上就是运用导数考查函数图象的交点个数问题。
如何运用导数的知识研究函数图象的交点问题呢?例1 已知函数f(x)=-x 2+8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);(Ⅱ)是否存在实数m ,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m 的取值范围;,若不存在,说明理由。
解:(Ⅰ)略(II )∵函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点, ∵x>0∴函数 (x)=g(x)-f(x) =2x -8x+6ln x+m 的图象与x 轴的正半轴有且只有三个不同的交点。
∵)('x ϕ=2x -8+随x 变化如下表:∴极大值(1)=1-8+m=m-7,x 极小值= (3)=∵当x →0+时, (x )→ ,当x 时, (x ) ∴要使 (x)=0有三个不同的正实数根,必须且只须 ⎩⎨⎧<-=>-=,0153ln 6)(,07)(+极小值极大值m x m x ϕϕ ∴7<m<15-6ln 3. 所以存在实数m ,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m 的取值范围为(7,15—6ln 3). (分析草图见下图1)图1图2 引申1:如果“有且只有三个不同的交点”变为“有且只有一个不同的交点”怎么解答呢?前面相同,只需把后面改为 m+6In3-15>0或 m-7<0,即m>15-6In3 或m<7时,函数y=f(x)与y=g(x)的图象有且只有一个不同的交点(分析草图见图2和图3)。
引申2:如果“有且只有三个不同的交点”变为“有且只有两个不同的交点”怎么解答呢?前面相同,只需把后面改为=极小值)(x ϕm+6In3-15=0或=极大值)(x ϕm-7=0,y=g(x)的图象有且只有两个不同的交点(分析草图见图4和图5)),0()3)(1(268262>--=+-=x x x x x =极小值)(x ϕ=极大值)(x ϕϕϕ∞-+∞→+∞→ϕ)(x ϕϕϕ图4 图5从上题的解答我们可以看出,用导数来探讨函数y=f(x)的图象与函数y=g(x)的图象的交点问题,有以下几个步骤:①构造函数 (x)= f(x)-g(x)②求导 ③研究函数ϕ(x )的单调性和极值(必要时要研究函数图象端点的极限情况)④画出函数ϕ(x )的草图,观察与x 轴的交点情况,列不等式⑤解不等式。
导数的定义及其在图像绘制中的应用导数是微积分中的一个重要概念,用于描述函数的变化率。
本文将详细介绍导数的定义,并探讨它在图像绘制中的应用。
导数的定义:在微积分中,函数$f(x)$在点$x=a$处的导数表示为$f'(a)$,它是函数在该点处的变化率。
以直观的方式来理解,导数可以简单地解释为函数在某一点处的切线斜率。
导数的数学定义可以通过极限表示:$$f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$$这个极限表示了当自变量$x$的变化量$h$趋近于0时,函数$f(x)$在点$x=a$处的平均变化率。
在极限中,分子代表函数值的变化,分母代表自变量的变化量。
导数可以理解为这个极限值,它反映了函数在该点处的瞬时变化率。
导数的应用:导数在图像绘制中有广泛的应用,它能够帮助我们更好地理解函数的性质和特点。
下面将介绍导数在图像绘制中的三个主要应用:切线、凸凹性和极值。
1. 切线:导数可以用来确定函数曲线在某一点处的切线方程。
在给定点$x=a$处,函数$f(x)$的导数$f'(a)$就是曲线在该点处的切线的斜率。
通过将斜率和给定点代入点斜式方程,我们可以得到曲线在这一点处的切线方程。
切线方程可以提供有关曲线在该点附近的行为和变化的重要信息。
2. 凸凹性:根据导数的正负性,我们可以判断函数图像的曲率,即决定曲线是凸还是凹。
当函数的导数为正时,表示函数在该点处逐渐增大,曲线向上凸起;当导数为负时,表示函数在该点处逐渐减小,曲线向下凹陷。
通过这种方式,我们可以描绘出函数图像的弯曲特性和曲率变化。
3. 极值:导数在寻找函数图像的极值点方面也起着重要的作用。
极值点是函数在给定区间内的最大值或最小值。
根据导数的零点和导数的变化规律,我们可以判断函数的极值点。
当导数在某一点处为零时,表示函数在该点处的变化率为0,可能是极值点的候选。
通过导数的变化情况,可以进一步确定极值点的类型(最大值或最小值)。
利用导数探究函数图像的交点问题在解决函数图像的交点问题时,导数起到了关键的作用。
导数能够帮助我们确定函数的变化趋势以及判断图像是否与坐标轴相交。
本文将通过一些具体的例子,来说明如何利用导数来探究函数图像的交点问题。
首先,我们来考虑一个简单的例子:求解函数y=x^2-1与x轴的交点。
我们首先将函数y=x^2-1代入x轴方程y=0,得到方程x^2-1=0。
然后我们可以通过求解这个方程来找到函数与x轴的交点。
为了更方便地解决这个问题,我们可以先求出函数的导数,即y'=2x。
然后,我们观察到导数的符号与函数的增减性息息相关。
根据导数的定义,当x>0时,导数y'>0,表示函数在该区间上是递增的。
当x<0时,导数y'<0,表示函数在该区间上是递减的。
当x=0时,导数y'=0,表示函数在该点取得极值。
综上所述,函数在x<0递减,在x>0递增,并在x=0处取得极值。
而函数y=x^2-1在x<0时,函数值始终小于0,因此不存在交点。
而在x>0时,函数值始终大于0,同样不存在交点。
所以,函数y=x^2-1不与x轴相交。
接下来,我们考虑一个稍复杂一些的例子:求解函数y=x^3-2x与y=x图像的交点。
同样地,我们先求出函数的导数,即y'=3x^2-2、然后我们观察导数的符号。
当x<-√(2/3)时,导数y'<0,表示函数在该区间上是递减的。
当-√(2/3)<x<√(2/3)时,导数y'>0,表示函数在该区间上是递增的。
当x>√(2/3)时,导数y'>0,表示函数在该区间上是递增的。
接下来,我们观察函数在极值点处的行为。
我们可以通过对导数y'=3x^2-2=0求解来找到极值点的横坐标。
解这个方程可以得到两个解:x=-√(2/3)和x=√(2/3)。
我们可以将这两个值代入原函数求解对应的纵坐标。
极限与导数的应用于函数的图像绘制极限与导数是微积分学中重要的概念,它们在函数的图像绘制中具有重要的应用。
在本文中,我将介绍极限与导数在函数图像绘制中的应用,并通过实例进行说明。
首先,让我们回顾一下极限和导数的定义。
极限是指当自变量无限接近某个特定的值时,函数的值趋于稳定的过程。
导数是函数在某个特定点上的变化率,即函数曲线在该点的切线斜率。
在函数的图像绘制中,极限帮助我们找到函数的各种特征,如函数的水平渐近线、垂直渐近线以及奇点。
具体来说,当函数在某个特定值上趋于无穷大或无穷小时,我们可以确定该函数是否存在水平渐近线。
另外,当函数在某个特定值的左侧和右侧趋于不同的值时,我们可以确定该函数是否存在垂直渐近线。
通过计算函数在某个特定值的极限,我们可以得到这些重要的信息,并在图像上画出相应的渐近线。
接下来,我们来看导数在函数图像绘制中的应用。
导数告诉我们函数在某个点上的变化率,从而帮助我们确定函数曲线的方向和凹凸性。
具体来说,当导数为正时,函数曲线在该点上是上升的;当导数为负时,函数曲线在该点上是下降的。
当导数发生变化的时候,函数曲线会出现拐点,即从凹到凸或从凸到凹的点。
通过计算函数的导数,我们可以确定函数曲线的变化趋势,并在图像上标记出相应的特点。
举个例子,考虑函数 f(x) = x^2。
我们可以通过计算该函数的导数来确定函数曲线的变化情况。
首先,计算导数 f'(x) = 2x。
当 x > 0 时,导数为正,说明函数曲线在该点上是上升的;当 x < 0 时,导数为负,说明函数曲线在该点上是下降的。
另外,我们可以计算二阶导数 f''(x) = 2,得知函数 f(x) = x^2 是凸函数,没有拐点。
综上所述,函数 f(x) = x^2 的图像是一个开口向上的抛物线,没有拐点。
类似地,我们可以应用极限和导数的概念来绘制其他类型的函数图像,如三角函数、指数函数和对数函数等。
利用导数求解函数像问题的步骤与技巧导数是微积分中的重要概念,可以用来研究函数的变化率和曲线的性质。
在求解函数相关的问题时,利用导数可以提供有力的帮助。
本文将介绍利用导数求解函数像问题的步骤与技巧。
一、确定问题要利用导数求解函数像问题,首先需要明确所要解决的问题。
例如,可能涉及函数的最值、极值点、拐点、函数的图像形状等。
明确问题后,才能采取相应的求解方法。
二、求解导函数确定了问题后,下一步需要求解函数的导函数。
导函数描述了函数的变化率,可以提供有关函数性质的重要信息。
求导的方法有很多,可以采用基本求导公式、链式法则、反函数求导法等。
三、寻找临界点在求得导函数后,需要找到函数的临界点。
临界点是指导函数等于零或不存在的点。
通过求解导函数等于零的方程,可以得到函数的极值点和拐点。
这些点对于理解函数的增减性、曲线的弯曲程度等具有重要意义。
四、区间划分函数像问题通常需要在给定区间内进行分析。
根据临界点的位置,将区间划分为几个子区间,并分别分析每个子区间中的函数行为。
通过求解导函数的正负性或二阶导数的符号,可以确定函数在不同区间上的增减性、凹凸性等。
五、求解极值点和拐点通过在临界点和区间端点上计算函数值,可以找到函数的极值点和拐点。
极值点是函数的最值点,拐点是函数曲线的转折点。
这些点的存在和位置对函数的图像形状有重要影响。
六、绘制函数图像最后一步是根据得到的信息,绘制函数的图像。
通过掌握函数在各个区间上的增减性、凹凸性、极值点和拐点等特征,可以画出符合问题要求的函数图像。
图像可以直观地展示函数的性质和变化规律。
这些便是利用导数求解函数像问题的基本步骤与技巧。
在实际应用中,可能会遇到更复杂的问题,需要借助更高阶的导数或其他方法来求解。
通过不断练习和深入理解导数的概念与性质,我们可以更加熟练地运用导数解决各种函数相关问题。