经济数学上
- 格式:doc
- 大小:60.00 KB
- 文档页数:2
经济数学知识点总结一、函数与极限1、函数11 函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个数x∈D,按照一定的法则f,变量y 总有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。
111 函数的定义域:使函数有意义的自变量取值的集合。
112 函数的值域:函数值的集合。
113 函数的性质:有单调性、奇偶性、周期性、有界性等。
114 基本初等函数:包括幂函数、指数函数、对数函数、三角函数、反三角函数。
115 复合函数:设 y = f(u),u =φ(x),则称 y =fφ(x)为复合函数。
116 反函数:设函数 y = f(x),其定义域为 D,值域为 R。
对于y∈R,在 D 中存在唯一确定的 x 与之对应,这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f^(-1)(y)。
2、极限21 数列的极限:对于数列{xn},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|xn A| <ε 恒成立,则称常数 A 是数列{xn}的极限,记作lim(n→∞) xn = A。
211 函数的极限:当自变量 x 趋于某个值 x0 (或趋于无穷大)时,函数 f(x) 无限接近于某个确定的常数 A,则称 A 为函数 f(x) 当 x 趋于x0 (或趋于无穷大)时的极限,记作lim(x→x0) f(x) = A 或lim(x→∞)f(x) = A 。
212 极限的性质:唯一性、局部有界性、局部保号性。
213 极限的运算法则:包括四则运算、复合函数的极限法则。
二、导数与微分1、导数11 导数的定义:设函数 y = f(x) 在点 x0 的某个邻域内有定义,当自变量 x 在 x0 处取得增量Δx (点 x0 +Δx 仍在该邻域内)时,相应地函数取得增量Δy = f(x0 +Δx) f(x0) ;如果Δy 与Δx 之比当Δx→0时的极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限为函数 y = f(x) 在点 x0 处的导数,记作 f'(x0) 。
经济数学基础12第二章极限的四则运算法则
在极限都存在的情况下,和差积商的极限,等于极限的和差积商。
用数学的话表达就是:
lim(A+B)limA+limB
lim(A-B)=limA-limB
limAB=limA×limB
lim(A/B)limA/limB
前提是以上各个极限都存在。
极限的四则运算法则是两个函数的极限都存在,并且分母的极限还不等于0的情况下,当这两个条件都满足的,那么两个函数在和、差、积、商的极限和这两个函数的极限的和、差、积、商都相等。
对于一个常数与一个函数的乘积的极限的情况,其结果等于这个常数与这个函数的极限乘积﹔并且一个函数的乘方的极限和这个函数的极限乘方也是相等的。
在解决具体问题时,需要根据实际情况进行运算和解答,重视实际应用。
经济数学前言一、“高等数学”的学科定位“高等数学”,是以极限论为工具研究变量和变量关系的学科,又称为微积分,在数学专业课中又称为“数学分析”。
研究的对象是函数,基础是实数域,运用分析的工具是极限。
以下我们根据课程的特点和内容从不同角度对其进行说明。
1、高等数学初等数学,2、,其主要内容是微分学和积分学两部分。
而它们的基础是函数与极限,我们再根据其对象是一元函数和多元函数将其分为一元微积分和多元微积分。
3、同样是微积分,还有层次的高低问题。
4、在内容的系统上,其主线是运用极限论工具对函数的各特性进行讨论。
这里在内容体系展开上就有一个认识上的矛盾。
因为极限论从认识的角度看要比函数的微积分难得多。
若一开始就深入的徘徊在极限理论之中,必然偏离我们高数的学习目的。
为了解决这个矛盾,我们尽量地简化了极限论的分析,只是罗列了一些要用的必需结论(这也是与数学分析的主要区别之一)。
但是对它的简单化将使我们在运用极限这个工具时,感到有点把握不住,这是很正常的。
希望大家一定要正确对待这一难关。
我们的处理是在后继内容的一些具体问题中去逐步地完善对极限的认识,可能到后面的总结时,才能较好地体会和归纳出它的实质。
二、在学习中要注意的一些思想方法人们往往对数学有一个看法,认为数学很难,这一看法辨证地说既对又不对。
所谓难与不难是相对的,关键在认识方法上,若方法对路,相对较难的内容也能较容易地掌握。
根据高数的特点,我们列举出以下几对矛盾,希望同学们在学习的全过程中,随时多想想,找到问题的症结,对症下药,对学习会有一定的帮助。
1、常量与变量的矛盾2、内容和形式上的矛盾3、感性和理性的矛盾4、有限和无限的矛盾5、局部和整体的矛盾6、连续和离散的矛盾三、准备首先在这里先给两个数学符号,是全课程中大量运用的符号。
1)符号“∀”,即任意选取一个,或说对于每一个∀:即在区域D中任意选取一个Dx∈元素x,或说对于D中的每个x。
2)符号“∃”:至少存在一个∃:即在D中存在一个元素x。
- 1 -
大学网络与继续教育学院课程考试试题卷
类别: 网教 专业:会计、管理、金融 20 年 12 月 课程名称【编号】: 经济数学上 【0177】 A 卷 大作业 满分:100分
一、填空题 选做两题每小题10分,共20分
1、=+--→2
38
lim 2
32x x x x -12 。
2、x
x
y cos 1sin 1++=
,求)2(πy '
3、⎪⎩⎪⎨⎧>+≤=0
0e
)(2
x k
x x x f x
在0=x 处连续,则k 。
4、
=+⎰
dx x x )cos (sin 2
π
2 。
二、计算题 选做两题每小题30分,共60分
1、曲线由参数方程⎩
⎨⎧-=+=t y t
x 11所确定,求在0=t 处的切线方程。
2、
dx x x ⎰-+-213
22
3、设
)1sin(]2)(3[2x dt t t f x
+=+⎰π
,求函数)(x f 。
4、生产某种产品q 件的成本函数为2
01.0702500)(q q q C ++=(元), 问:生产多少件产品时平均成本最小?最小成本为多少?
三、论述题 20分
为何把定积分的牛顿——莱布尼兹公式称为“微积分学基本定理”,它有何重大意义?。