量子电动力学的浅析ppt课件
- 格式:ppt
- 大小:6.86 MB
- 文档页数:22
量子电动力学保罗·狄拉克辐射与物质间相互作用的第一套量子理论,是由英国物理学家保罗·狄拉克提出的,他在1920年代就成功计算出原子的自发发射系数。
狄拉克用一整组的谐振子,加上新开发的粒子创生及消灭算符,成功地描述了电磁场的量子化。
在之后的几年,沃尔夫冈·泡利、尤金·维格纳、帕斯库尔·约当、维尔纳·海森堡都在这方面作出了贡献,还有恩里科·费米更提出了一套优雅的量子电动力学表述,至此物理学家开始相信,原则上他们可以计算出所有涉及光子及带电粒子的物理过程。
然而,费利克斯·布洛赫和阿诺德·诺德西克(Arnold Nordsieck),与维克托·魏斯科普夫于1937年及1939年的后续研究发现,这样的计算只能在一阶摄动理论上获得可靠结果,而这个问题罗伯特·奥本海默早在1930年已经指出了。
在高阶时,数列中出现无限,使得计算完全没有意义,因此物理学家相当怀疑这套理论是否真的具有一致性。
而当时对此并无答案,这个问题的产生,似乎是因为狭义相对论与量子理论在基础上并不相容。
汉斯·贝特这套理论的难度在四十年代末期继续提升。
微波科技的进步,使得物理学家能够更准确地测量出氢原子的能级转移,即现今的兰姆位移及电子磁矩。
这些实验明确地揭露了当时理论所未能解释的差异。
突破的可能点由汉斯·贝特于1940年代末率先提出。
1947年,他在谢尔特岛(Shelter Island)研讨会上讲完有关能级位移的讲座之后,就从纽约乘火车到斯克内克塔迪,期间他成功完成了第一份氢原子线位移的非相对论性计算,这种位移是由威利斯·兰姆与罗伯特·雷瑟福所测量出来的。
尽管这份计算有它的局限,但是计算结果还是与实验相当一致。
在实验中,质量和电荷被定为一个有限值,而这个计算的独创性就在于,直接把无限置于质量和电荷的修正值中。
电磁学是物理学中的一个重要分支,研究电荷和电流所产生的电场和磁场,以及它们之间的相互作用。
电动力学则是电磁学的一个重要分支,研究电荷在电场和磁场中的运动规律,以及由此产生的电磁现象。
量子电动力学则是根据量子力学的原理,研究电荷和光子相互作用的理论,是现代物理学中的重要理论之一。
1. 电磁学电磁学是研究电荷和电流所产生的电场和磁场,以及它们之间的相互作用的物理学分支。
在电磁学中,麦克斯韦方程组是描述电磁现象的基本方程,它包括了电场和磁场的产生和变化规律。
通过麦克斯韦方程组,可以推导出电磁波的传播规律,从而解释了光的本质,使得光和电磁波在物理学上得到了统一的描述。
2. 电动力学电动力学是研究电荷在电场和磁场中的运动规律,以及由此产生的电磁现象的物理学分支。
在电动力学中,库仑定律描述了电荷之间的相互作用规律,电场和电势描述了电荷在空间中的分布和运动规律,洛伦兹力描述了电荷在电场和磁场中受到的力和加速度,这些都是电动力学中的重要概念和定律。
3. 量子电动力学量子电动力学是根据量子力学的原理,研究电荷和光子相互作用的理论。
在量子电动力学中,电荷和光子的相互作用通过量子场论来描述,电子和正电子之间的相互作用通过交换光子来进行,这种相互作用的结果包括了电磁相互作用力的描述和光子的产生和吸收规律。
量子电动力学解释了电磁现象在微观粒子层面上的行为,使得我们对宇宙中的电磁力有了更深刻的理解。
总结:电磁学、电动力学和量子电动力学是物理学中重要的分支,它们从不同的角度研究了电荷和电磁场的相互作用规律,为我们理解电磁现象和应用电磁技术提供了重要的理论基础。
在未来的研究中,电磁学将继续发展,为我们揭示更多微观世界中的奥秘。
电磁学是描述电荷和电磁场之间相互作用规律的物理学分支,它涉及了电场、磁场和它们相互的影响,包括了光的传播规律。
电动力学则是电磁学的一个重要分支,研究了电荷在电场和磁场中的运动规律,以及由此产生的电磁现象,涉及了库仑定律、电场、磁场、电势、洛伦兹力等基本概念。
量子电动力学引言量子电动力学(Quantum Electrodynamics,简称为QED)是研究电磁相互作用的量子理论。
它描述了电荷之间通过光子相互作用的基本过程。
QED是一种量子场论,它是量子力学和相对论的结合体,能够解释微观粒子在电磁场中的行为。
基本原理1. 电磁相互作用在经典物理中,电磁相互作用由麦克斯韦方程组描述。
然而,当我们考虑到微观粒子的量子性质时,经典电动力学就无法很好地描述实验观测到的现象。
因此,我们需要一种更加精确的理论来描述电荷之间的相互作用。
2. 量子力学量子力学是一种描述微观世界的理论。
它将粒子的位置和动量描述为算符,具有离散的能量谱。
在量子力学中,我们用波函数来描述粒子的状态,并用概率分布来描述其测量结果。
3. 相对论相对论描述了高速粒子的运动和相互作用。
在经典物理中,时空是绝对的。
然而,相对论告诉我们,时空是弯曲的,并且不同观测者之间的时间和空间测量是相对的。
4. 量子电动力学量子电动力学是将量子力学和相对论相结合的理论。
它通过量子场论的形式,描述了电荷粒子与电磁场之间的相互作用。
在QED中,电荷粒子通过相互交换光子来相互作用。
主要理论1. 量子场论量子场论是一种描述粒子的理论。
它将粒子视为场的激发,并用场算符来描述粒子的产生和湮灭过程。
在量子场论中,我们用拉格朗日量来描述系统的动力学,并通过路径积分的方法计算物理过程的概率。
2. 费曼图费曼图是用来描述粒子相互作用的图形表示方法。
在费曼图中,粒子被表示为线,而相互作用过程则通过线的连接和顶点来表示。
费曼图是计算QED中各种过程的重要工具。
3. 量子电动力学的重整化量子电动力学中存在一些发散的问题,如自能发散和顶点发散。
重整化是一种处理这些发散问题的方法,它通过引入一些调整参数来消除发散,从而得到有限的物理结果。
实验验证量子电动力学的预测已经经过多年的实验验证。
其中最著名的实验证明是精确地测量了电子的磁矩。
这些实验证明了量子电动力学的准确性和可靠性。
量子电动力学量子电动力学(Quantum Electrodynamics,简称QED)是量子场论的一部分,描述了电磁相互作用的基本规律。
它是量子力学和狭义相对论的结合,被认为是目前最成功的物理理论之一。
QED成功地预言了众多实验结果,并解释了电磁相互作用的微观本质。
1. 简介量子电动力学是由朱利安·施温格(Julian Schwinger)、杰克·吉卜斯(J.S. Schwinger)和理查德·费曼(Richard Feynman)等人在20世纪40年代和50年代初建立起来的。
该理论以量子力学的原理为基础,通过引入电磁场的概念,描述了电子、正电子、光子等粒子之间的相互作用。
2. 量子场论量子电动力学是一种基于量子场论的物理理论。
在量子场论中,电子、正电子等粒子不再被看作是点状粒子,而是被描述为场的激发,即粒子是场激发态的产物。
根据场论的原理,电子场和光子场被量子化,从而得到了描述电磁相互作用的量子电动力学。
3. 电荷与相互作用量子电动力学中的基本粒子包括了带电粒子和无质量的光子。
带电粒子之间的相互作用是通过交换光子实现的。
例如,电子和正电子之间的相互作用可以通过光子的传递来实现。
这种相互作用称为电磁相互作用,是量子电动力学的核心。
4. 拉格朗日量和费曼规则量子电动力学的计算是基于拉格朗日量和费曼规则进行的。
拉格朗日量是描述粒子运动的物理量,通过构建适当的拉格朗日量,可以得到描述电子、光子等粒子相互作用的数学表达式。
而费曼规则则是计算过程中的一些规则和技巧,使得计算得以简化和系统化。
5. 量子修正和裸荷量子电动力学引入了量子修正的概念,即粒子在相互作用过程中会发生虚粒子的产生和湮灭,从而导致物理量的修正。
为了得到实际观测到的物理量,需要将裸荷(裸粒子的电荷)与真空极化和自能修正相抵消。
这一过程被称作重整化,是量子电动力学的一个重要特征。
6. 规范不变性量子电动力学具有规范不变性,即物理结果与规范选择无关。
量子色动力学和量子电动力学
量子色动力学和量子电动力学是现代物理学中的两个重要分支,它们分别研究强相互作用和电弱相互作用的基本规律。
量子色动力学是研究夸克和胶子相互作用的理论,是现代粒子物理学中的基础理论之一。
量子电动力学则是研究电磁相互作用的理论,是现代物理学的另一支重要理论。
量子色动力学和量子电动力学的基本思想都是基于量子场论的
框架,通过场的量子化来描述基本粒子的性质和相互作用。
量子色动力学中,夸克和胶子被描述为色荷载体,它们之间的相互作用通过交换胶子来实现。
量子电动力学中,电子和光子是基本粒子,它们之间的相互作用通过交换光子来实现。
量子色动力学和量子电动力学的理论框架都非常成功,它们可以很好地解释现象和预测实验结果。
例如,量子电动力学预测了电子的磁矩和精细结构常数,这些预测与实验非常吻合。
而量子色动力学则成功地描述了强子的结构和相互作用,例如夸克胶子等离子体的产生和夸克共振态的存在等。
总之,量子色动力学和量子电动力学是现代物理学中不可或缺的两个分支,它们的研究成果不仅推动了粒子物理学和高能物理学的发展,也为我们更深入地理解自然界的基本规律提供了重要的理论基础。
- 1 -。
电路量子电动力学电路量子电动力学(Circuit Quantum Electrodynamics,CQED)是一种应用于研究和探索量子电动力学(Quantum electrodynamics,QED)的新技术。
它是量子光学的另一种形式,采用不同的方法来研究量子光学中的物理现象。
CQED采用两个层面:量子光学和电路电动力学。
量子光学部分介绍了量子光学的基本原理,如自由电子在受到外部激励时的行为,它的性质以及由它衍生的电力学理论。
电路电动力学部分将电路的概念引入量子光学,探讨电路中电磁波的传播、激发以及输出。
CQED可用于研究复杂的量子效应,可以为科学家提供更多有关量子光学特性的知识,以帮助他们解决量子光学中的问题。
CQED用于量子光学的研究可以帮助科学家明确量子波函数、激发的能量和模范化潜在的量子效应的概念。
研究者使用CQED可以模拟特定的电路特性,从而进一步了解电路中的量子效应。
CQED使得研究者可以从电路的角度来分析和研究量子光学中的物理现象,如光子函数的形状、把握量子电动力学的效应等。
CQED技术现已被广泛应用于微尺度技术,如半导体技术、多功能电路线路等,它利用复杂的电路模型实现对量子效应的控制和操作,以及对量子效应所产生的影响进行深入研究。
在半导体光学领域,CQED技术已经用于研究半导体激光器、光纤放大器、相控阵等方面的物理现象,以便更好地理解量子电动力学,实现精确的模拟和控制量子光学中的物理现象。
总之,电路量子电动力学是一种有效的工具,它使研究者能够探索量子光学的特性,可以量化和操作量子系统,还可以用于研究微尺度技术。
CQED技术不仅可以帮助研究者更好地理解量子光学,还可以更好地模拟量子电动力学中的物理现象,用于探索更多有趣的现象,从而为科学家提供更多的有关量子物理的认识。
光子和原子,量子电动力学导论1引言量子电动力学(QED)的研究对象是电磁相互作用的量子性质(光子的发射及吸收),带电粒子的产生及湮没,带电粒子间的散射及带电粒子与光子间的散射等。
在量子力学范围内,将带电粒子与电磁场相互作用当作微扰,来处理光的吸收和受激发射问题,但却不能处理光的自发射问题。
如果把电磁场作为经典场看待,在发射光子以前根本不存在辐射场。
原子中处于激发态的电子是量子力学中的定态,没有辐射场作为微扰,它就不会发生跃迁。
而自发射是确定存在的事实,为了解释该现象并定量地给出它的发生几率,在量子力学中只能用变通的办法来处理。
通常利用对应原理,把原子中处于激发态的电子看成是许多谐振子的总和,把产生辐射的振荡电流认定与量子力学的某些跃迁矩阵元相对应,用以计算自发射的跃迁几率。
从这个处理办法可得到普朗克的辐射公式,以此反过来说明对应原理的处理是可行的。
为了解释兰姆位移,可引入重正化的概念。
通过重正化的概念把发散量确切而不含混地归入电荷与质量的重新定义之中,从而使高阶近似的理论结果都不再包含发散。
发散量的处理利用了相对论协变性及规范不变性。
新理论表述之所以能够作到确切地处理发散量,是因为从一开始就把理论表述严格地建立在相对论协变形式及规范不变要求的基础之上。
对辐射场加以量子化,除了得到光子的波粒二象性的明确表述以外,还解决了上述矛盾。
电磁场在量子化以后,电场强度(E)和磁场强度(H)都成为算符。
在没有光子存在的状态(它被称为是辐射场的真空态)中,E和H 的平均值为零。
但E与H的平均值不为零(否则均方;差就同时为零了)。
这就是量子化辐射场的真空涨落。
它与量子力学中谐振子的零点能十分类似。
场在量子化以后,产生和湮没成为普遍的、基本的过程。
因此在原子处于激发态时,虽然没有光子存在,电子仍能向低能态跃迁并产生光子。
从辐射场量子理论的表述出发,可以计算各种带电粒子与电磁场相互作用基本过程的截面,例如,康普顿效应、光电效应、轫致辐射、电子对产生及电子对湮灭等。