当前位置:文档之家› 02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

连杆动力学方程(牛顿-欧拉递推方法)

将机器人的连杆看成刚体,其质心加速度、总质量、角速度、

角加速度、惯性

张量与作用力矩满足如下关系:

牛顿第二定律 (力平衡方程)

()/ci i ci i ci d m dt m ==f v v

欧拉方程 (力矩平衡方程)()()/c c c ci i i i i d dt ==+?i i i n I ωI ω

ωI ω

连杆动力学方程(牛顿-欧拉递推方法)

欧拉方程公式推导

v 为质心移动速度(移动时与惯性力相关)坐标系旋转时,惯性张量不是常量()()/c c

c ci i i i i

d dt ==+?i i i n I ωI ωωI ω ()() =[()] =[] =()c c c ci i i i c c i i i c

c i i i c c

i i i d d dt dt

S ==+++?+?i i i i i i i i i n I ωI ωωI I ωωωI I ωωωI I ωωI ω ()()g d m dt =?+??+N I ωωI ωρ×v

力和力矩平衡方程

i i+1i-1iP i+1i fi i n i i f i+1i n i+1连杆i 在运动情况下,作用在上面

的合力为零,得力平衡方程式

(暂时不考虑重力):

(将惯性力作为静力来考虑)

1

11f f R f +++=-i i i i ci i i i

力和力矩平衡方程

作用在连杆i 上的合力矩等于零,得力矩平衡方程式:1111111i i i i i i i i i ci i i i ci ci i i i +++++++=-

-?-?n n R n r f P R f 将上式写成从末端连杆向内迭代的形式:111i i i i i i i ci

+++=+f R f f 1111111i i i i i i i i i i i i ci ci ci i i i +++++++=++?+?n R n n r f P R f 利用这些公式可以从末端连杆n 开始,顺次向内递推直至到操作臂的基座。

力和力矩的递推

111f R f f +++=+i i i i i i i ci

111

1111n R n n r f P R f +++++++=++?+?i i i i i i i i i i i i c i ci ci i i i 对于旋转关节,各关节上所需的扭矩等于连杆作用在它相邻连杆的力矩的Z轴分量

i T i i i i

=τn Z i T i i i i

=τf Z

力和力矩的递推

牛顿-欧拉递推方法(具体步骤)

首先从连杆1到n递推计算各连杆的速度和加速度;再由牛顿-欧拉公式计算出每个连杆的惯性力和力矩;

最后,从连杆n到连杆1对推计算各连杆内部相互作用力和力矩,以及关节驱动力和力矩。

牛顿-欧拉递推方法(具体步骤)

综上所述,将递推计算过程的相关公式归纳如下:

()11111111(1)i i i i i i i i i i i i i i i +++++++?++?=?+??R ωθZ ωR ω 对于转动关节对于移动关节1111111111i i i i i i i i i i i i i i i i i i i ++++++++++?+?+?=???R ωR ωθZ θZ ωR ω (转动关节)(移动关节)

牛顿-欧拉递推方法(具体步骤)

()()11111111111111112i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ++++++++++++++++???+?+????????=+?+??????+?+??R v ωP ωωP v R v ωP ωωP ωd Z d Z (转动关节)(移动关节)

()11111111111111i i i i i i i ci i i ci i i ci ++++++++++++++=+?+??v v

ωr ωωr 11111i i ci i ci m +++++=f υ ()1

11111111111i ci i i ci i ci i i i i i ++++++++++++=+?n I ωωI ω

牛顿-欧拉递推方法(具体步骤)

111i i i i i i i ci

+++=+f R f f 111

1111i i i i i i i i i i i i c i ci ci i i i +++++++=++?+?n R n n r f P R f ()i T i i i i i T i i i ??=???n Z τf Z 转动关节(移动关节)

牛顿-欧拉递推方法(具体步骤)计及重力的动力学算法:

02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

连杆动力学方程(牛顿-欧拉递推方法) 将机器人的连杆看成刚体,其质心加速度、总质量、角速度、 角加速度、惯性 张量与作用力矩满足如下关系: 牛顿第二定律 (力平衡方程) ()/ci i ci i ci d m dt m ==f v v 欧拉方程 (力矩平衡方程)()()/c c c ci i i i i d dt ==+?i i i n I ωI ω ωI ω

连杆动力学方程(牛顿-欧拉递推方法)

欧拉方程公式推导 v 为质心移动速度(移动时与惯性力相关)坐标系旋转时,惯性张量不是常量()()/c c c ci i i i i d dt ==+?i i i n I ωI ωωI ω ()() =[()] =[] =()c c c ci i i i c c i i i c c i i i c c i i i d d dt dt S ==+++?+?i i i i i i i i i n I ωI ωωI I ωωωI I ωωωI I ωωI ω ()()g d m dt =?+??+N I ωωI ωρ×v

力和力矩平衡方程 i i+1i-1iP i+1i fi i n i i f i+1i n i+1连杆i 在运动情况下,作用在上面 的合力为零,得力平衡方程式 (暂时不考虑重力): (将惯性力作为静力来考虑) 1 11f f R f +++=-i i i i ci i i i

力和力矩平衡方程 作用在连杆i 上的合力矩等于零,得力矩平衡方程式:1111111i i i i i i i i i ci i i i ci ci i i i +++++++=- -?-?n n R n r f P R f 将上式写成从末端连杆向内迭代的形式:111i i i i i i i ci +++=+f R f f 1111111i i i i i i i i i i i i ci ci ci i i i +++++++=++?+?n R n n r f P R f 利用这些公式可以从末端连杆n 开始,顺次向内递推直至到操作臂的基座。

工业机器人静力及动力学分析

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

焊接机器人建模与仿真

XI’AN TECHNOLOGICAL UN IVERSITY 考核科目:机电系统仿真技术 学生所在院(系):机电工程学院 学生所在学科:机械制造及其自动化 考核题目:焊接机器人的建模与仿真 学生姓名:贾川 学生学号:1402210034 学生班级:S1402001 2015年1月3日

焊接机器人的建模与仿真 以焊接机器人为例,介绍在ADAMS环境中进行模型建模和约束的添加,以及对建立好的模型进行仿真分析,对模型进行优化。 1 模型分析 焊接机器人(如图1所示)由底座、躯干、肩构件、手臂、手腕、机械手六部分构成,各个构件由旋转副联接。本焊接机器人有5个自由度,可以完成对复杂空间位置的工件的焊接工作。 图1 焊接机器人模型 如图所示,机械手的位置由这些构建间旋转副旋转角度决定,每个旋转副将添加旋转驱动,并由电脑程序控制它们的远动。在本章的实例中将介绍怎么在ADAMS 2013中模拟焊接机器人的工作,进行运动学仿真,并测量机械手焊接点的位置变化曲线。 2 创建模型 2.1 启动ADAMS并设置工作环境 (1)启动双击桌面上ADAMS/View的快捷图标,打开ADAMS/View。在欢迎对话框中选择“新建模型”,在模型名称栏中输入:welding_robot ;在重力名称栏中选择“正常重力(-全局Y轴)”;在单位名称栏中选择“MMKS –mm,kg,N,s,deg”。如图3所示。

图3 adams 启动设置界面图图4 网格参数设置对话框 (2)设置工作环境 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置下拉菜单中的工作格栅命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成1000mm和1000mm,间距中的X和Y都设置成25mm。然后点击“确定”确定。如图4所表示。 用鼠标左键点击选择(Select)图标,控制面板出现在工具箱中。

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

焊接机器人的建模与仿真

XI’A N TECHNOLOGICAL UNIVERSITY 考核科目:机电系统仿真技术 学生所在院(系):机电工程学院 学生所在学科:机械制造及其自动化 考核题目:焊接机器人的建模与仿真 学生姓名:贾川 学生学号:1402210034 学生班级:S1402001 2015年1月3日

焊接机器人的建模与仿真 以焊接机器人为例,介绍在ADAMS环境中进行模型建模和约束的添加,以及对建立好的模型进行仿真分析,对模型进行优化。 1 模型分析 焊接机器人(如图1所示)由底座、躯干、肩构件、手臂、手腕、机械手六部分构成,各个构件由旋转副联接。本焊接机器人有5个自由度,可以完成对复杂空间位置的工件的焊接工作。 图1 焊接机器人模型 如图所示,机械手的位置由这些构建间旋转副旋转角度决定,每个旋转副将添加旋转驱动,并由电脑程序控制它们的远动。在本章的实例中将介绍怎么在ADAMS 2013中模拟焊接机器人的工作,进行运动学仿真,并测量机械手焊接点的位置变化曲线。 2 创建模型 2.1 启动ADAMS并设置工作环境 (1)启动双击桌面上ADAMS/View的快捷图标,打开ADAMS/View。在欢迎对话框中选择“新建模型”,在模型名称栏中输入:welding_robot ;在重力名称栏中选择“正常重力(-全局Y轴)”;在单位名称栏中选择“MMKS –mm,kg,N,s,deg”。如图3所示。

图3 adams 启动设置界面图图4 网格参数设置对话框(2)设置工作环境 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置下拉菜单中的工作格栅命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成1000mm和1000mm,间距中的X和Y都设置成25mm。然后点击“确定”确定。如图4所表示。 用鼠标左键点击选择(Select)图标,控制面板出现在工具箱中。 用鼠标左键点击动态放大(Dynamic Zoom)图标,在模型窗口中,点击鼠标左键并按住不放,移动鼠标进行放大或缩小。 2.2 创建底座 (1)打开建模工具栏,单击拉伸按钮,将选项设置成新建部件、轮廓设置成点、勾选闭合、路径设置成向后、长度设置成125mm,然后在图形区依次选择(-200,-200,0)、(200,-200,0)、(200,200,0)和4个位置,在选择完第四个点时,单击右键可创建一个拉伸体。在底座上单击右键,在弹出的菜单【Part:PART_2】→【重命名】,在弹出的修改名称对话框中输入base。如图1(a) 所示。

模型机器人介绍

第一章 模型机器人介绍 在本章中我们学习了解模型机器人常见的的几种系列,以及每种系列机器人的特点。同学们可以通过图片来观察一下,看看你以前在各种场合见过哪几种系列的模型机器人。 注:在我们后续的学习中,我们将采用积木式系列机器人来完成各项任务。 1.1 甲虫系列 特点: 1、入门简单 2、结构固定 3、传感器设置固定 4、编程简单 5、娱乐趣味性强 学习要点: 1、机器人初级入门学习 2、编程原理学习 3、传感器原理学习 1.2 伺服系列 特点: 1、模拟结构 2、肢体语言丰富 3、动作调整细致 甲虫系列机器人属于结构固定的机器人

学习要点: 1、肢体结构研究 2、运动原理研究 3、工业控制原理研究 1.3 积木系列 特点: 1、模块结构 2、端口数量多 3、编程语言多样化 4、具备开放性以及模块化 学习要点: 1、算法和程序原理 2、结构搭建原理 3、机器人制作 4、整体协调能力 我校机器人小组主要选用的就是这种积木系列的模型机器人,通过积木式的组装与程序调试,我们可以让机器人按照我们的意愿去完成各项任务。 伺服系列机器人属于仿生肢体机器人

1.4 DIY 系列 特点: 1、结构组合情况多样 2、功能组合变化丰富 3、材料题材来源丰富 学习要点: 1、动手能力锻炼 2、创造能力锻炼 1.5 虚拟系列 特点: 1、图形编程、C 源代码显示 2、学习成本低廉、全软件教学 3、活动形式多样 AI-CODE SYSTEM 学习要点: 1、编程原理 2、事件处理能力 3、语言学习能力

机器人快车软件——用来编写给机器人运行的命令

简单串联机器人ADAMS仿真

机械系统动力学 简化串联机器人的运动学与动力学仿真分析 学院:机械工程学院 专业:机械设计制造 及其自动化 学生姓名: 学号: 指导教师: 完成日期: 2015.01.09

摘要 在机器人研究中,串联机器人研究得较为成熟,其具有结构简单、成本低、控制简单、运动空间大等优点,已成功应用于很多领域。本文在ADAMS 中用连杆模拟两自由度的串联机器人(机械臂),对其分别进行运动学分析、动力学分析。得出该机构在给出工作条件下的位移、速度、加速度曲线和关节末端的运动轨迹。 关键词:机器人;ADAMS;曲线;轨迹 一、ADAMS软件简介 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.) (现已并入美国MSC公司)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 二、简化串联机器人的运动学仿真 (1)启动ADAMS/View。 在欢迎对话框中选择新建模型,模型取名为robot,并将单位设置为MMKS,然后单击OK。 (2)打开坐标系窗口。 按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐标值。

机器人动力学汇总

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机器人系统建模

一、基于模型控制方式来改进机器人性能 背景: 在学术界多年前就已经对机械臂动态模型化方法论已有深入研究。它作为一个非常有用工具,通常应用在机器人领域和工程实验室领域里研究和开发人形机器人,开发高级控制算法,运动模拟及其他学术进行研发。动态模型化涉及描述机器人惯量,质量,质心动态性能的数学公式和其他不易简单计算取得数值。尽管在理论研究中频繁可见,但使用动态模型化来改进机器人控制的应用大都得不到研发人员和工业机器人生产商的重视。 高创首先考虑用动态模型化解决半导体行业中高速delta机器人所遇到的性能问题。 模型实例: 通过对运动中机器人上力矩和力的预估,以及对过大力矩的阻止,使得机器人提速变得更简单,更安全,同时减少了振动,缩短整定时间。基于模型的控制最终使机器人系统运动更快,更精准,从而提高产量。 轴伽利略球形机器人(GSR-L)在执行动态模式 使用动态模型,客户能迅速获取整定时间,并更好实现轨迹跟踪运动控制。使用动态模型另外一个好处通过随时变动的机械参数,尤其是摩擦常数,可检测系统磨损和撕裂。力矩误差显示计算出的力矩值能准确预估过滤力矩

作用: 基于模型的控制最直接益处是检测并避免冲击,这点在delta机器人案例中清晰可见。负载,工作环境及操作工可得到更好保护。此外,该控制模式不需要力传感器,从而简化系统设计,减少成本。 该控制方式最显著益处是改善机器人运转状态及提高驱动器性能。要求获取位置的力矩值可被计算得出,且能精确地控制,因此路径得到大幅度地优化。因为通过计算得到电流,并非简单由反馈环获得,所以要求的电流更平缓,从而取得更好速度控制,减少颤抖和抖动。 对于太阳能硅片处理应用机器人,需具备高加速度和高精确度。Delta机器人结构本就脆弱,所以机械臂易损。此外,它还对贵重负载及生产材料受到冲击及损坏带来威胁。 Delta机器人存在损坏自身及负载的风险 Delta动力学基于由球状关节连起来的力的平行四边形,在一些系统中,这些平行四边形连接到移动平台和机械臂连轴。若超过一定位置或角度时,需要力来分解,机器人则大幅度减速,即使是一个小碰撞或强震动也可使机器人解体。更复杂的是,这些断裂点典型地位于伸出位置,碰到障碍物风险更高。机器人折断后,留存的撞击未被检测出,会增加潜在破损机率。 为解决以上隐患并提供delta机器人更好的控制性能,高创工程师采纳并改善科研中原有的动态模式,从而为delta机器人提供更好的控制。 体会: 二、矢量喷水推进式水下机器人的建模仿真与验证 背景: 为提高小型水下航行器的机动性与可控性,构建了一种基于矢量喷水推进系统的新型多自由度水下机器人。为使该机器人具有理想的运动特性和优异的操控性能,对其进行了理论建模、数值仿真与实验验证。首先建立其运动学和动力学模型,分析多矢量推进作用对机器人运动姿态和航行效果的影响,据此研究机器人多矢量喷水推进协调控制的策略与方法,实现机器人自 主升沉、旋转、水平移动等多姿态水中运动。此后,采用MATLAB 和ADAMS 对所建模型和虚拟样机进行了数值仿真,并且对机器人实物样机进 行了水下运动验证实验。仿真分析与实验验证的结果表明,该机器人的运动特性和操控性能符合高机动性和高可控性的设计要求。 实例: 矢量喷水推进式水 下机器人的建模仿真与

群机器人系统的建模与仿真

群机器人系统的建模与仿真 曾建潮1, 薛颂东1、2 (1.太原科技大学系统仿真与计算机应用研究所,太原 030024;2.兰州理工大学电信工程学院,兰州 730050)摘要:围绕群机器人学的起源与发展,针对群机器人系统与其他多机器人系统的区分准则及系 统级功能特征,讨论个体机器人的交互、通信、协调控制机制和自组织、模式形成等群机器人研 究中的主要问题,洞悉群机器人的研究概貌和既有研究成果,明确其研究方向。通过回顾概括群 机器人系统的主要建模与仿真方法,以个体之间及个体与环境之间的局部交互机制为前提,使感 知能力有限的个体机器人在协调控制算法作用下涌现群体智能完成规定的复杂任务,突出群机器 人规模可伸缩的系统特征。 关键词:群机器人;群体智能;有限感知;局部交互;协调控制;建模 中图分类号:TP242.6 文献标识码:A 文章编号: Modeling and Simulation Approaches to Swarm Robotic Systems Zeng Jian-chao1,Xue Song-dong1,2 (1.Division of System Simulation & Computer Application, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2.College of Electrical & Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China) Abstract:Concentrating on the desirable properties of swarm robotic systems, some key problems in swarm robotics such as limited sense, local interaction, communication among individuals and with environment, cooperation control and self-organization as well as pattern formation are discussed for the sake of getting an insight into sources and development of swarm robotics and understanding the criteria used to distinguish swarm robotics research from other multi-robot studies. To discern the research emphasis on swarm robotics, we describe the disciplinary profile and existing research findings. Then, the main modeling and simulation methods of swarm robotics are summarized. Finally, this survey shows that large numbers of relatively simple robots with limited sense capabilities and local interaction mechanism may emerge swarm intelligence to handle those prescribed complex tasks in scalable manner. Key words:swarm robotics; swarm intelligence; limited sense; local interaction; cooperative control; modeling 引言 群机器人是特殊的多机器人系统,由许多同构的自主机器人组成,具有典型的分布式系统特征。与集中式控制系统相比,完成同样任务的群体系统的成员结构,可设计得相对简单。因此,群系统个体具有模块化、适合大规模生产、具有互换性等特点[1]。群机器人学是研究能力有限的个体机器人如何在局部交互机制和协调控制算法作用下涌现群体智能以合作完成相对复杂的规定任务。因为群一般是高度冗余的,群体系统就比标准控制系统具有更强的抗扰动能力;由于存在冗余性,群就具备了动态适应工作环境的能力,也便有可能执行远超出结构复杂的单体机器人能力的任务。群机器人的研究源于生物学启发,是群体智能在多机器人系统的应用[2]。可以认为,群机器人研究是一般意义上的多机器人 收稿日期:2008-xx-xx 修回日期:xxxx-xx-xx 基金项目:国家自然科学基金(60674104) 作者简介:曾建潮(1963-), 男, 陕西大荔人, 汉, 博士, 教授, 博导, 研究方向为复杂系统建模与控制、智能计算、群体智能行为仿真、群机器人;薛颂东(1968-), 男, 河南孟州人, 汉, 博士生, 副教授, 研究方向为群体智能行为仿真、群机器人协调控制。系统被赋予群体智能属性后的新兴研究领域[3],其系统建模和仿真体现出有别于通常意义下多机器人系统的特点。明晰其系统特征和所涉问题方可能进行建模并仿真。 1 系统界定 约20年前,学界在研究元胞自动机时用元胞机器人构造如下系统:一组(group)简单机器人像机体细胞那样按照某种模式自组织成复杂结构[4]。后来用术语swarm取代group使之形象化。群机器人与分布式自主机器人等术语并非单元数量的标识,协调背后隐藏的有限感知和局部交互原则才是根本。与群对应的控制结构的规模可变,单元数量从数个到成千上万个甚至数以百万计。事实上,绝大多数群机器人文献提及的仅是规模很小的群,这是因为个体数量庞大使得系统造价昂贵[1]。 1.1 系统特征 研究显示,社会性昆虫协调控制的背后并不存在中心协调机制,然而从系统级层面看却是鲁棒、柔性、规模可伸缩的。这样的特征为群机器人系统所梦寐以求[5]:

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

《机器人性能仿真与控制原理》课程教学大纲

《机器人性能仿真与控制原理》课程教学大 纲 课程代码:ME6017 学分/学时:3学分/48学时课程 开课学期:春季学期 适用专业:机械、动力、车辆、航空、电子与电气工程、自动化等 先修课程:高等数学、线性代数、机械设计、自动控制 开课单位:机械与动力工程学院 一、课程性质和教学目标 机器人性能仿真与控制原理是面向机械制造自动化、机械电子工程、航空航天等专业的一门研究生专业课程。本课程主要介绍机器人的基本原理及应用,阐述机器人的性能仿真、运动与控制的基本理论与方法。通过本课程学习,使学生掌握机器人的基本原理及知识,了解机器人运动模型的建立及性能指标的分析方法,熟悉机器人的基本控制方法,为机器人的设计和应用提供技术支撑。 二、课程教学内容及学时分配 第一章:绪论(3学时/课堂教学) ●课程的目的与意义:典型案例分析 ●机器人介绍:定义、特点、结构、应用、性能指标、仿真方法等 ●团组大作业及要求:根据国内外机器人的发展状况,分组分类介绍机器人 的特性及用途,每组完成一篇报告及PPT汇报 第二章:机器人性能指标(4学时/课堂教学) ●质量指标:质量及分布 ●几何指标:尺寸、形状 ●运动学指标:自由度、工作空间、灵活度、定位精度 ●动力学指标:刚度、强度、模态、负载能力、运动速度、运动加速度、动 态响应、响应频率与带宽 ●控制指标:输出功率、输出力/矩、驱动力/矩、速度、加速度、响应频率 与带宽、控制周期、控制精度、多轴同步精度、分辨率

●工作环境指标:高温、低温、振动、辐射、水下、高压、真空 第三章:机器人数学描述(2学时/课堂教学) ●齐次坐标 ●齐次变换 ●等效旋转变换 第四章:机器人运动学建模与性能仿真(6学时/课堂教学+2学时/讨论、实践) ●运动学建模理论与方法介绍,D-H矩阵介绍 ●运动学模型建立:正反解求解算法 ●运动约束:驱动约束、干涉约束、奇异点 ●工作空间、速度、加速度仿真与分析 ●定位精度与误差敏感度分析 ●作业:机器人运动学建模 第五章:机器人的雅克比矩阵(3学时/课堂教学) ●微分平移、微分旋转 ●等效微分变换 ●机器人机构雅可比矩阵的建立 第六章:机器人动力学建模与性能仿真(10学时/课堂教学+2学时/讨论、实践) ●动力学建模理论与方法介绍:牛顿欧拉方程、拉格郎日方程 ●动力学模型的建立 ●静力学模型的建立 ●动力学特性仿真与分析 ●作业:机器人动力学建模 第七章:机器人控制系统(4学时/课堂教学) ●机器人控制系统介绍:发展历史与趋势、分类及特点 ●驱动系统:气动、液压、电机(伺服电机、步进电机、直线电机) ●传感系统:位置(旋转编码器、光栅尺、旋转变压器、拉线传感器)、惯 性(陀螺仪)、力觉(压力、力/矩传感器)、视觉(CCD相机、激光测距 仪)

一种自行车机器人动力学分析和仿真

一种自行车机器人的动力学分析与仿真 邹俊 (北京邮电大学自动化学院,北京100876) 摘要:自行车是一种高效而且环保的交通工具。但自行车动力学特征较为复杂,从控制学角度说,其本身就是一个欠驱动的不稳定系统。行驶中的自行车的动力学模型相对复杂,受外界因素干扰很大,如不同的地面情况和风速的影响,很难完全模拟。因此,自行车的自动控制的发展是一项具有挑战意义的主题。本文提出了一种自行车机器人的建模方法并设计了车把控制器,并用仿真实验验证了其正确性。 关键词:自行车机器人;自动控制;稳定性 中国图书分类号:TP273.5 Modeling and Simulation of Autonomous Bicycle Abstract: Bicycle is an efficient and environment-friendly transport. However, the dynamics of bicycle is complicated. From the control point of view, it is an under actuated nonholonomic system. The dynamics of bicycle is relatively complicated, and very susceptible to disturbance from outside, such as different ground conditions and wind speed, and it is difficult to fully simulate. Thus, the development of automatic control for driving a bicycle is a challenging theme. This paper presents a dynamic model of bicycle and designs a steer controller. Simulation is performed to prove the validity of this controller. Key words: Autonomous Bicycle; Automatic Control; Stability 0引言 自行车是一种高效而且环保的交通工具。自从1818年,德国人德莱斯(Baron Karivon Drais)在法国巴黎发明了带车把的木制两轮自行车以来,自行车给人类的生活带来了极大的便利,同时,人们也在对其进行不断的改进[1][2]。2006年,日本著名的机器人“村田顽童”更是向人们展示了行走坡道和S型平衡木、倒车行走,检测障碍物,进入车库,手机遥控操作,发声、播放音乐等功能。到目前为止,自行车机器人已经取得一定的研究成果,其研究内容主要围绕动力学建模和提出新的控制算法两方面内容展开的。 自行车与倒立摆有很大的相似性,然而前者动力学特性更加复杂,可以利用模糊神经网络控制、非线性控制等控制方法来建模和设计控制器。同时,自行车机器人还涉及到传感器技术、自适应控制、机械力学、无线通信等众多学科。因此,无论在理论和实践中都具有十分重要的意义。 1动力学分析及建模

空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建 模 及其动态过程仿真 作者:td 一引言 1.机器人机械臂的运动学与动力学分析方法 目录 空间二连杆机器人的动力学建模 (1) 及其动态过程仿真 (1) 作者:td (1) 一引言 (1) 1.1用户界面模块(ADAMS/View) (4) 1.2求解器模块(ADAMS/Solver) (5) 1.3后处理模块(ADAMS/PostProcessor) (6) 二.空间二连杆机器人adams建模仿真 (6) 2.1空间二连杆串联机器人 (6) 在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。 (6) 2.1.1运动学分析 (6) 2.1.2运动学分析 (9)

机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。工业机器人的运动学主要讨论了运动学的正问题和逆问题。假设一个构型已知的机器人,即它的所有连杆长度和关节角度()1q t ,()2q t ,()3q t …()n q t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人操作臂每一个连杆的几何参数和所有关节的角矢量()12,,T n q q q q =???利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。运动学正问题可以利用齐次变换法来求解。设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是b i T ,则 1231b i n n T A A A A A -=?????? ()11- 式中i A 为i 杆坐标系相对于1i -杆坐标系的坐标变换矩阵。相对于正运动学方程,机器人逆运动学方程显得更为重要。由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。 机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。机器人操作臂是一个十分复杂的动力学系统。机器人动力学方程的非线性特点和强耦合性使得对它的研究十分困难和复杂。目前人们已经提出了许多种动力学建模方法,分别基于不同的力学方程和原理。C .T .Lin ,Calafiore 等对Newton —Euler 动力学建模方法和Lagrange 方法在简化递推过程及减少运算次数上做了不少有益的工作;有些学者从计算机符号代数方向推导并行算法来进行研究;T .R .Kane 等发展了利用偏速度和广义力建模的Kane 方程法;有些学者利用广义d ’Alembert 原理来进行建模;还有人研究用图论进行机器人动力学分析的方法。其中以Newton —Euler 动力学建模方法及d ’Alembert 建模方法(或以这两种方法为基础)应用最为普遍。Newton —Euler 方法具有递推的形式,非常适合于数值计算,与

相关主题
文本预览
相关文档 最新文档