当前位置:文档之家› 多级放大电路知识题目解析

多级放大电路知识题目解析

多级放大电路知识题目解析
多级放大电路知识题目解析

第四章多级放大电路习题答案

3.1 学习要求

(1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。

(2)了解差动放大电路的工作原理及差模信号和共模信号的概念。

(3)理解基本互补对称功率放大电路的工作原理。

3.2 学习指导

本章重点:

(1)多级放大电路的分析方法。

(2)差动放大电路的工作原理及分析方法。

本章难点:

(1)多级放大电路电压放大倍数的计算。

(2)差动放大电路的工作原理及分析方法。

(3)反馈的极性与类型的判断。

本章考点:

(1)阻容耦合多级放大电路的静态和动态分析计算。

(2)简单差动放大电路的分析计算。

3.2.1 多级放大电路的耦合方式

1.阻容耦合

各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独

调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。

动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为:

u2u1o1o i o1i o u A A U U U U U U A

=== 其中i2L1r R =。

多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。

2.直接耦合

各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。

3.2.2 差动放大电路

1.电路组成和工作原理

差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。

2.信号输入

(1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12

1

u u u =-=。在共模输入信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。

(3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即:

id

ic i2id ic i1u u u u u u -=+=

式中u ic 为共模信号,u id 为差模信号,分别为:

)(21

i2i1ic u u u +=

)(21

i2i1id u u u -=

输出电压为:

id

d ic c o2id d ic c o1u A u A u u A u A u -=+=

)(2i2i1d id d o2o1o u u A u A u u u -==-=

3.共模抑制比

共模抑制比是衡量差动放大电路放大差模信号和抑制共模信号的能力的重要指标,定义为

A d 与A c 之比的绝对值,即:

c

d

CMR A A K =

或用对数形式表示为:

c

d

CMR lg

20A A K =(dB ) 提高共模抑制比的方法有:调零电位器R P ,增大发射极电阻R E ,采用恒流源。

4.差动放大电路的输入输出方式

差动放大电路有4种输入输出方式,如图3.1所示。 双端输出时差动放大电路的差模电压放大倍数为:

be

L i2i1o d r R u u u A '

-=-=

β

式中,2

//L

C L

R R R =',相当于每管各带一半负载电阻。 单端输出时差动放大电路的差模电压放大倍数为:

be

L

d 21r R A '-=β(反相输出)

be

L

d 21r R A '=

β(同相输出) 式中,L C L

//R R R ='。 3.2.3 互补对称功率放大电路

1.对功率放大电路的基本要求

(1)能向负载提供足够大的功率,因此晶体管要工作在大信号极限运用状态。 (2)非线性失真要小,为此可采用互补对称电路。 (3)效率要高,为此可采用乙类和甲乙类工作状态。

2.功率放大电路的类型

(1)甲类:静态工作点Q 大致设置在交流负载线的中点,集电极静态电流I C 约为信号电流幅值的1/2,工作过程中晶体管始终处于导通状态,非线性失真小,效率低。

(2)乙类:静态工作点Q 设置在负载线与横轴的交点上,集电极静态电流0C =I ,非线性失真大,效率高。

(3)甲乙类:静态工作点Q 设置在集电极电流I C 很小处,效率高于甲类工作状态,而非线性失真也不像乙类工作状态时那样严重。

EE EE

(a )双端输入双端输出 (b )双端输入单端输出

EE

EE

(c )单端输入双端输出 (d )单端输入单端输出

图3.1 差动放大电路的输入输出方式

3.OCL 功率放大电路

甲乙类OCL 功率放大电路如图3.2所示。图中V 1为NPN 管,V 2为PNP 管,两管特性相同。两管的发射极相连接到负载上,基极相连作为输入端。

静态(0i =u )时,由二极管VD 1、VD 2给V 1、V 2发射结加适当的正向偏压,以便产生一个不大的静态偏流,由于电路对称,U E 仍为零,负载中仍无电流流过。

动态(0i ≠u )时,在u i 的正半周V 1导通而V 2截止,V 1以射极输出器的形式将正半周信号输出给负载;在u i 的负半周V 2导通而V 1截止,V 2以射极输出器的形式将负半周信号输出给负载。在u i 的整个周期内,V 1、V 2两管轮流工作,互相补充,使负载获得完整的信号波形。

4.OTL 功率放大电路

甲乙类OTL 功率放大电路如图3.3所示。它是用一个大容量的电容器代替OCL 电路中的负电源。因电路对称,静态时两个晶体管发射极连接点的电位为电源电压的一半,由于电容C 的隔直作用,负载R L 中没有电流,输出电压为零。动态时,在u i 的正半周V 1导通而V 2截止,V 1以射极输出器的形式将正半周信号输出给负载,同时对电容C 充电;在u i 的负半周V 2导通而V 1截止,电容C 通过V 2和R L 放电,V 2以射极输出器的形式将负半周信号输出给负载,电容C 在这时起到负电源的作用。为了使输出波形对称,必须保持电容C 上的电压基本维持在U CC /2不变,因此C 的容量必须足够大。

R

L

V 1

V 2

+U CC

-U CC

+u i -+u o -R 1

R 2R 3

VD 1VD 2R L

V 1

V 2

+U CC

+u i -+u o -

R 1

R 2R 3

VD 1VD 2C

+

图3.2 甲乙类OCL 电路 图3.3 甲乙类OTL 电路

4-1 放大电路见图4-35,晶体管V 1的 Ω=k 6be1r ,V 2的Ω=k 2.1be2r ,两管的

10021==ββ,要求:(1) 计算该多级放大电路的输入电阻i r 和输出电阻o r ; (2) 计算R s =0

和R s =20k Ω时的s o /U U 各是多少。

图4-35 题4-1图

解:(1)B1B2be1////91//30//6 4.7k i r R R r ===Ω, be2

o //0.012k Ω(1)

E r r R β=

≈+ ()[]2B be2//1180//1.2101 3.6120.5k i E r R r R β=++=+?=Ω????

(2) R s =0时-

()()()()()

1C122C2us u1u2be1be22C2//1//1821//i L L βR r βR R A A A r r βR R +==-?=-++

R s =20k Ω时

()()()()()1C122C21

1us u1u2

S 1be1be22C2S 1

//1//34.251//i L i i i L i βR r βR R r r A A A R r r r βR R R r +==-??=-++++ 4-2 放大电路见图4-36,各管的β = 100,r be = 1 k Ω,试计算放大电路的电压放大倍数u A ,输入电阻i r 和输出电阻o r 。

图4-36 题4-2图

解:()[]B1be11//1376//11017.5251.4k i E r R r R β=++=+?=Ω????

()[]2B2B3be22////1400//200//11010.0657.16k i E r R R r R β??'=++=+?=Ω??

r o =3k Ω

()()()()()()()1C122C2us u1u2be11C12be221////1003//11101//11010.0651i L i E βR r βR R A A A r βR r r R β??+????==?-≈?-≈-??+++?'??++????

4-3 放大电路见图4-37,场效应管3DO1的g m =2 mS ,晶体管3DG6的50=β,静态

V 7.0BE =U , 要求:(1) 计算第二级的静态工作点;(2) 写出总电压放大倍数u A 的表达

式;(3)第一级的输入电阻r i 和第二级的输出电阻r o 等于多少?(4) 说明第一级电路的名称,在输入级采用此电路有何好处?

R G R S

R C

R 1

R 2

R E1R E2

R L

C 1

C 2

C 3

C E

+

+-

+

u i

u o 3DG6+12V

+

-

10k Ω

10M Ω

20k Ω

15.k Ω

05.k Ω

5k Ω

2k Ω

+

图4-37 题4-3图

解:(1) 计算第二级的静态工作点

101242010B V V =

?=+ 40.7

1.652

E C I mA I -==≈ 1.650.0351B I mA == 12(22) 1.65 5.4CE U V =-+?=

226300(1)

1103.6 1.1be E mV

r k I mA

β=Ω++=Ω=Ω (2)总电压放大倍数u A 的表达式

[]220//10//1.1510.5 5.33k i r =+?=Ω

()212C L 2be2E112(//)

1

1(//)

//2//5

50 2.71 1.1510.5

2.7

m S i u m S i u u u u g R r A g R r R R A r R A A A β

β=

≈+=-=-=-'+++?=?≈- (3) Ω=≈Ω==k 2,

M 10C o G i R r R r

(4) 第一级为源极跟随器,具有很高的输入阻抗,减少对信号源电压的影响。

.

4-4 两级交流放大电路见图4-38,已知场效应晶体管的 g m =2 mA/V ,晶体管的50=β,Ω=600be r 。要求:(1) 画出放大电路的微变等效电路;

(2) 计算mV 10s =U 时=o u ? (3) 计算第一级的输入、输出电阻;(4) 说明前级采用场效应晶体管,后级采用射极

输出放大电路的作用。

图4-38 题4-4图

R s

R d

1) 放大电路的微变等效电路

i b

R s

u s

(2)()247//0.6510.47//0.7511.56k i r =+?=Ω????

()()()()12L 2be2L 12

(//)7.54

1//11//7.54u m D i E u E i

us u u i S

A g R r R R A r R R r A A A r R ββ=-=-+=≈++=?≈-+

o 74.5 mV U =

(3) Ω=≈Ω

≈+=k 6.5M 10//D o1G2G1G i R r R R R r

(4) 前级采用场效应晶体管可以提高电路的输入电阻,后级采用射极跟随器可以降低输出电阻,提高带负载能力。

4-5 电压放大电路和功率放大电路的要求有何不同?

解:电压放大器与功率放大器的区别1) 任务不同。电压放大——不失真地提高输入信号的幅度,以驱动后面的功率放大级,通常工作在小信号状态。 功率放大——信号不失真或轻度失真的条件下提高输出功率,通常工作在大信号状态。

2) 分析方法不同,电压放大采用微变等效电路法和图解法,功率放大采用图解法。 4-6 甲类功率放大电路效率低的原因何在?

解:甲类功率放大电路,将放大电路的静态工作点Q 选在其交流负载线中点附近,在整个输入信号周期内,始终有电流流过晶体管,虽然放大的信号不失真,但管耗太大,电路的效率很低。

4-7 甲乙类互补对称功率放大电路为什么可以减小交越失真

解:乙类互补对称功率放大电路中,静态时V 1和V 2均处于截止状态,当输入信号小于晶体管的死区电压时,基极电流i B 基本上等于零。因此,在两管交替工作前后都存在一个由

输入特性的死区电压而引起的截止工作区,导致输出电压、电流波形产生信号失真,这种失真称为交越失真。为了消除交越失真,可在晶体管上加一很小的直流偏压,将静压工作点设置在稍高于截止点,使两个功放管在静止时处于于导通状态,即可避开输入特性曲线上的死区电压。这时两只晶体管都工作在甲乙类放大状态。

4-8 单电源互补对称电路中,负载电阻R L =150Ω,要求最大输出功率P om =120mW, 求电源V CC 的值。

解:由于电路为单电源互补对称电路

输出电压的最大值为 U om =2

CC

V 输出电压的有效值为 o om /2/22CC U U V =≈

输出功率的最大值 22

om o L CC L //8P U R V R =≈

所以CC omax L 812V V P R =

?=

4-9 在图4-39功放电路中,已知V CC =12V ,R L =8Ω。u i 为正弦电压,求:(1) 负载上可能得到的最大输出功率; (2) 每个管子的管耗P CM 至少应为多少?

图4-39 题4-9图

解:(1)输出功率的最大值 ()2

2

2

m o L CC L //212/289

o P U R V R W =≈=?= 两个直流电源供给的最大总功率2

2CC Emax

L 221211.46π 3.148

V P W R ?===? (2) 两个管子的管耗P CM cmax Emax omax 11.469 2.46P P P W =-=-=

()cmax 1.23P W =单管

4-10 某OCL 电路见图4-40a ,试回答以下问题。

a )

b )

图4-40 题4-10图

(1)当V 15CC =V ,V 1、V 2管的饱和压降V 2CES ≈U , Ω=8L R 时,负载L R 上得到的输出功率o P 应为多大?(2)若V 18CC =V ,Ω=16L R ,忽略V 1、V 2管上的饱和压降,当输入t u i ωsin 210=V 时,计算负载L R 上得到的输出功率o P 为多大?电源提供的功率E P 为多大?单管管耗C P 为多大?(3)动态情况下测得负载L R 上的电压波形)(o t u 见图4-40b ,试判断这种波形失真为何种失真?应调哪个元件?如何调整可以消除失真?(4)静态情况下,若R 1、VD 1、VD 23个元件中有一个开路,你认为会出现什么问题?

解:(1) 22

CC max

L (2)1310.56W 228

o V P R -===?,

(2) (2

2

om

L 102 6.5W 2216

o U P R =

==? 输出电流的幅值 om om L /102/160.884A I U R === 电源供给的电流 C om /0.28I I πA ==

电源输入功率 E C C 20.2821810.08W C P I V =?=??= 两个管子的管耗P CM c E o 10.0860.25 3.83P P P W =-=-=

()c 1.92P W =单管

(3)动态情况下测得负载L R 上的电压波形)(o t u 这种波形失真为交越失真,应调整电阻

R1,使其增大。

(4)静态情况下,若R 1、VD 1、VD 23个元件中有一个开路,输出波形将只有一半。

*讨论:在功率放大器的分析中,应明确下列几点:

1.功率放大器的输出功率、管耗、电源提供的功率、效率均为输出电压幅值U om 的函数。当U om 不同时,它们的值是不同的。

2. 电路的最大输出功率是指输出电压处于极限状态时的输出功率,公式

-V cc

+V cc

L

2

CC

om

21R V P =

只有在输出电压达到极限值,并且忽略管子的饱和压降时才可以用。 3.互补对称功放中的互补对称输出级属于射级跟随器,所以当已知输入信号的有效值

U i 时,则U om =U im =i 2U 。

4-11 电路见图4-41,设V 20CC =V ,Ω=8L R ,管子的饱和压降为V 2,求输出功率o P 。

图4-41 题4-11图

解:()()2

2

omax CC L 2/(8)202/(88) 5.06W P U R ≈-=-?=

4-12 在图4-16电路中,已知V 1管供给复合管功放级的最大集电极电流和电压分别为

I cm1=10mA ,U cem1=10V, 所有管子的β=30,求负载上最大功率P om 。

输出电压的幅值U om 不超过10V ,相应的输出功率为

22

max

11

6.25W 822om o L P R ===Ω

4-13 晶体管3DG6D 的极限参数如下:P cm =100mW ,I cm =20mA ,U CEO =30V 如将它接成变压器耦合单管功率放大电路图4-17,试问:

+V cc

R L

(1)工作在理想极限状态,最大输出功率P om 是多少?(2)电源电动势应该多大?

集电极静态电流I C 应该多大?(3)最合适的交流等效电阻L

R '应该多大?(4)如果负载电阻为16Ω,输出变压器的电压变比K 应该多大?

解: (1) m W 191/2C C Emax ==πI E P ,P om = P Emax -P cm =91mW

(2) E C =30V, I C =10mA , (3) k Ω3/C C L =='I E R , (4) 433.0/L L ='=R R K

4-14 什么是零点漂移?交流放大器是否也有零点漂移?

解:在多级直接耦合放大电路中,即使把输入端短路(即无输入信号),在输出端也会出现电压波动,使输出电压偏离零值,这种现象称为零点漂移,简称零漂。交流放大器即一般的电容耦合放大电路没有零漂,电容能滤除缓慢变化的零漂。

4-15 直流放大器能不能放大交流信号?

解:直流放大器(直接耦合放大电路)不仅能放大缓变信号,也能放大频率较高的信号。

4-16有两个直流放大电器,它们的电压放大倍数分别为103和105,如果两者的输出漂移电压都是500mV ,能不能说它们的漂移指标是一样的?若要放大0.1mV 的信号,两个放大电路都可以用吗?

解:不能 第一个放大电路折算到输入的零漂为500mV/1000=0.5mV ,第个放大电路折算到输入的零漂为500mV/100000=0.005mV ,第一个放大电路的零漂严重些。要放大

0.1mV 的信号只能用第二个放大电路,因为第一个放大电路很难区分输出信号和零漂。

4-17 有一两级直接耦合放大电路,在25℃时,输入信号u i =0,输出端电压为5V 当温度升高到35℃时,测量出输出端电压为5.25V ,试求放大电路的温度漂移(μV/℃)。输出端漂移电压要折合到输入端,设250=β。

解:

/4.0104250

10525.57

2

A A μ=?=?--℃ 4-18 双端输入、双端输出差动放大电路为什么能抑制零点漂移?为什么共模反馈电阻

R E 能提高抑制零点漂移的效果?是不是R E 越大越好?为什么R E 不影响差模信号的放大效

果?

解:双端输入、双端输出差动放大电路能抑制零漂是因为利用了两个完全相同的放大电路的对称性,温度对两个放大电路的影响完全相同,使两个放大电路互相补偿。共模反馈电路对差模信号相当于短路,对共模信号能降低原电路对其的放大倍数。当R E 选得较大时,维持正常工作是所需的负电源电压将很高,这是很不经济的。

4-19 图4-42中的V 1,V 2均为硅管,U BE =0.7V ,两管间为直接耦合方式,已知β1=β

2=50,r be1= r be2=300Ω,电容器

C 1、C 2、C 3、C 4的容量足够大。

(1) 估算静态工作点I C2,U CE2(I B2的影响忽略不计);(2) 求中频电压放大倍数A u , 输入电阻r i 和输出电阻r o 。

图4-42 题4-19图

解:(1)20

10 2.442062

B V V =

?=+

()2.440.71502B I -=+? 所以0.017B I mA = 500.0170.85c B I I mA β==?=

12100.8528.3C B V V V =-?==

2C2108.30.7

1.96mA

I 0.51

E I --=

=≈

210 2.51 1.96 5.1CE U V =-?=

(2)第一级放大电路为共射放大电路,第二级放大电路为共基放大电路

B1B2be1////20//62//0.30.29k i r R R r ===Ω 2be2/(1)0.005k i r r β=+=Ω o 22ΩC r R k ≈=

()()

()()1C122C2us u1u2be1be2

////()502//0.005502//5()0.30.3

97.18

i L βR r βR R A A A r r =≈-?

=-

?

=-

4-20 某差动放大电路见图4-43,设对管的β=50,r be =300Ω,U BE =0.7V ,R P 的影响可以忽略不计,试估算:(1) V 1,V 2的静态工作点。(2) 差模电压放大倍数A ud

图4-43 题4-20图

解:(1)两管的静态工作点相同

EE B B BE E e

B B BE B e

22(1)V I R U I R I R U I R β=++=+++

EE BE B B e 120.7

=

0.011mA (1)22051210

V U I R R β--==+++??

C B 0.55mA I I β==

CE CC EE C C E e

=212120.551020.56107.3V

U V V I R I R +--=+-?-??= (2) 差模放大倍数 ud B be

5010

24.6200.3

C

R A R r β?=-

=-

=-++

4-21 为什么晶体管恒流源差动放大电路能进一步提高共模抑制比和减小单端输出时的零点漂移?

解:晶体管恒流源的直流电阻不大,即其直流压降不大;但对信号分量却能呈一出极大的动态电阻。工作在放大区的晶体管就具有这种特性能,进一步提高共模抑制比和减小单端输出时的零点漂移。

4-22 电路见图4-44,设3个晶体管均有50200be =Ω=β,r ,稳压管2CW15的稳定电压为8V ,试求:(1)静态工作参数1111B B C C I U I U ,,,和1E U ;(2)差模电压增益。

图4-44 题4-22图

解: (1) mA 11.0)2V/(36k 82

/36k =

=D C2C1=?Ω=Ω

V I I CE1CE2CC C1C1e ==()120.11(1000.1)1V U U V I R R -+=-?+= be E 30026(1β)mA /0.54k Ωr I =Ω++=

(2) 34.23be

B1'L

ud -=+-=r R R A β????、????、

、、、 第4章

4-1 (1) Ω==k 7.4////be1B2B1r R R r i , o be2/(1)0.012k Ωr r β≈+=

(2) ()6.331//1

S 1

be12C111S 1u2

u1us -=+??-≈+=i i i i i r R r r r R βr R r A A A ,

Ω='++'=k 7.90))//)(1(//(L E2be2B2

2R R r R r i β 4-2 A u = -10,r i =187 k Ω, r o =3k Ω 4-3 (1) I B =0.03mA, I C =1.65mA, U CE =5.4V,

(2) ()7.2,

7.21//,

121E1

be2L

C 21-≈?=-=++-=≈u u u u u A A A R r R R A A ββ

(3) Ω=≈Ω==k 2,

M 10C o G i R r R r

(4) 第一级为源极跟随器,具有很高的输入阻抗,减少对信号源电压的影响。 4-4 (2) m V 8.4338

.4)]}//)(1(//[//{o L E be B D m s =-=++-=U R R r R R g A u β

(3) Ω=≈Ω

≈+=k 6.5M 10//D o1G2G1G i R r R R R r

(4) 前级采用场效应晶体管可以提高电路的输入电阻,后级采用射极跟随器可以降低输出电阻,提高带负载能力。

4-7 V 128L omax CC =?=R P U 4-8 W 9)/(2L 2

CC max ==R U P o , W P P 8.12.0omax cm ==

4-9

(1)

W

56.102)2(L

2CC max

=-=R U P o ,(2)

W 2.62L 2

om

==R U P o ,W 9.7π2L

2om Emax ==

R U P 4-10 W 5.62)/(8L 2

CC omax =≈R U P

4-11 (1) m W 191/2C C Emax ==πI E P ,P om = P Emax -P cm =91mW

(2) E C =30V, I C =10mA , (3) k Ω3/C C L =='I E R , (4) 433.0/L L ='=R R K

4-14 (1) I C2=3.78mA, U CE2=0.51V

(2) ()5.3241)//(be1

2C11u2u1us -=?-≈=r r R βA A A i ,Ω88.5)1/(be2

o =+≈βr r Ω==k 29.0////be1B2B1r R R r i , Ω=++=k 2.73)//)(1(L e2be22R R r r i β 4-15

(1)

.01m A

0=B2B1I I =,

V

9==CE2CE1U U , (2)

63.24be

B1'L

ud -=+-

=r R R A β

4-17 (1) mA 11.0)2V/(36k 82

/36k =

=D C2C1=?Ω=Ω

V I I

V 1)(==e C1C1CC CE2CE1=+-R R I V U U

(2) 34.23be

B1'L

ud -=+-=r R R A β

多级放大电路知识题目解析

第四章多级放大电路习题答案 3.1 学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2 学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1 多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独

调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。 动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: u2u1o1o i o1i o u A A U U U U U U A === 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2 差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1 u u u =-=。在共模输入信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即:

多级放大电路设计及测试

3.16多级放大电路的设计与测试 一.实验目的 1.理解多级放大直接耦合放大电路的工作原理和设计方法。 2.学习并熟悉设计高增益的多级直接耦合放大电路的方法。 3.掌握多级放大器性能指标的测试方法。 4.掌握再放大电路中引入负反馈的方法。 二.实验预习与思考 基本要求: 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知Vcc=+12V,Vee=-12V,要求设计差分放大器恒流源的射极电流Ieq3=1-1.5mA,第二放大级射极电流Ieq4=2-3mA;差分放大器的单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于10KOhm,输出电阻小于10Ohm,并保证输入级和输出级的直流电流为为零。 三.测试方法 静态工作点、增益、输入、输出阻抗、幅频特性等测试方法请参看前面的教学内容。 四.实验内容 用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。给出仿真结果。 仿真实验电路: 测得放大电路单端输入电阻约为10KOhm,放大倍率3094.53倍。 由于放大倍率较大,如采用Ui=5mV,10kHz交流电,则放大电压Uo=Ui*Au=15.47V,超出了放大电路的最大输出,因此接下来的仿真实验采用交流电压为100uV,500Hz的交流电源。 测试电路: 2.电路放大倍率的测试

倍Au=3094.53总放大倍数: 测试电路:测试截图:差分输入,输出波形:主放大级输入、输出波形:总输入,输出波形:输入电阻测试2.Ri R U' U 10.372kOhm 49.085uV 10kOhm 100uV :测试电路:测试结果Ro=4.032hm 输出电阻: 370 1850 3.7K 18.5 37K 74K 185K 370K Au(dB) 69.790 69.811 69.798 69.328 67.71 65.573 54.922 46.614 分析电路: 测试结果:

负反馈放大电路实验报告记录

负反馈放大电路实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验二由分立元件构成的负反馈放大电路 一、实验目的 1.了解N沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA;结型场效应管的管压降U GDQ < - 4V,晶体管的管压降U CEQ = 2~3V; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值≥ 120; 3)闭环电压放大倍数为10 s o sf - ≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R f为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C1~C3容量为10μF,C e容量为47μF。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f,见图2,理由详见“五附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k?

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

第3章多级放大电路习题解答汇总(可编辑修改word版)

第3 章自测题、习题解答 自测题3 一、选择: 选择:(请选出最合适的一项答案) 1、在三种常见的耦合方式中,静态工作点独立,体积较小是()的优点。 A)阻容耦合B) 变压器耦合C)直接耦合 2、直接耦合放大电路的放大倍数越大,在输出端出现的漂移电压就越()。 A) 大B) 小C) 和放大倍数无关 3、在集成电路中,采用差动放大电路的主要目的是为了() A) 提高输入电阻B) 减小输出电阻C) 消除温度漂移D) 提高放大倍数 4、两个相同的单级共射放大电路,空载时电压放大倍数均为30,现将它们级连后组成一个两级放大电路,则总的电压放大倍数() A) 等于60 B) 等于900 C) 小于900 D) 大于900 5、将单端输入——双端输出的差动放大电路改接成双端输入——双端输出时,其差模电压放大倍数将();改接成单端输入——单端输出时,其差模电压放大倍数将()。 A) 不变B)增大一倍C) 减小一半D) 不确定 解:1、A 2、A 3、C 4、C 5、A C 二、填空: 6、若差动放大电路两输入端电压分别为u i1 = 10mV ,u i 2 = 4mV ,则等值差模输入信号为 u id =mV,等值共模输入信号为u ic =mV。若双端输出电压放大 倍数A ud =10 ,则输出电压u o =mV。 7、三级放大电路中,已知A u1 =A u 2 = 30dB ,A u 3 = 20dB ,则总的电压增益为 dB,折合为倍。 8、在集成电路中,由于制造大容量的较困难,所以大多采用的耦 合方式。 9、长尾式差动放大电路的发射极电阻R e 越大,对 越有利。 10、多级放大器的总放大倍数为,总相移

多级交流放大器的设计

实验七多级交流放大器的设计 一.实验目的 1.学习多级交流放大器的设计方法。 2.掌握多级交流放大器的安装、调试与测量方法 二.预习要求 1.根据教材中介绍的方法,设计一个满足指标要求的多级交流放大器,计算出多级交流放大器中各元件的参数,画出标有元件值的电路图。 2.预习多级交流放大器的调试与测量方法,制定出实验方案,选择实验用的仪器设备。 三.实验原理 当需要放大低频范围内的交流信号时,可用集成运算放大器组成具有深度负反馈的交流放大器。由于交流放大器的级与级之间可以采用电容耦合方式,所以不用考虑运算放大器的失调参数和漂移的影响。因此,用运算放大器设计的交流放大器具有组装简单、调试方便、工作稳定等优点。 如果需要组成具有较宽频带的交流放大器,应选择宽带集成放大器,并使其处于深度负反馈。若要得到较高增益的宽带交流放大器,可用两个或两个以上的单级交流放大器级联组成。 在设计小信号多级宽带交流放大器时,输入到前级运算放大器的信号幅值较小,为了减小动态误差,应选择宽带运算放大器,并使它处于深度负反馈。由于运放的增益带宽积是一个常数,因此,加大负反馈深度,可以降低电压放大倍数,从而达到扩展频带宽度的目的。由于输入到后级运放的信号幅度较大,因此,后级运放在大信号的条件下工作,这时,影响误差的主要因素是运放的转换速率,运放的转换速率越大,误差越小。 四.设计方法与设计举例 1.设计方法与步骤: 169

170 (1)确定放大器的级数n 根据多级放大器的电压放大倍数A u Σ和所选用的每级放大器的放大倍数A ui ,确定多级 放大器的级数n 。 (2)选择电路形式 (3)选择集成运算放大器 先初步选择一种类型的运放,然后根据所选运放的单位增益带宽BW ,计算出每级放大 器的带宽。 ui Hi A BW f = (1) 并按(2)式算出。 121 ' -=n Hi Hi f f (2) 多级放大器的总带宽H f 必须满足: 'Hi H f f ≤ (3) 若'Hi H f f >,就不能满足技术指标提出的带宽要求,此时可再选择增益带宽积更高的 运放。一直到多级放大器的总带宽H f 满足(3)式为止。 当所选择的运放满足带宽要求后,对末级放大器所选用的运放,其转换速率R S 必须满足: om R U f S ?≥max 2π (4) 否则会使输出波形严重失真。 (4)选择供电方式 在交流放大器中的运放可以采用单电源供电或正负双电源供电方式。单电源供电与正 负双电源供电的区别是:单电源供电的电位参考点为负电源端(此时负电源端接地)。而正负双电源供电的参考电位是总电源的中间值(当正负电源的电压值相等时,参考电位为零)。 (5)计算各电阻值 根据交流放大器的输入电阻和对第一级电压放大倍数的要求,先确定出第一级的输入 电阻和负反馈支路的电阻,然后再根据第二级电压放大倍数的要求,确定出第二级的输入电阻和负反馈支路的电阻。按此顺序,逐渐地把每级的电阻值确定下来。 (6)计算耦合电容 当信号源的内阻和运放的输出电阻被忽略时,信号源与输入级之间、级与级之间的耦 合电容可按下式计算。 i L R f C π2)10~1(= (5) 上式中,i R 是耦合电容C 所在级的输入电阻。类似地输出电容可按下式计算。 L L R f C π2)10~1(= (6) 2.设计举例

高频单级、两级小信号单、双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器 一、实验目的 1、掌握高频小信号调谐放大器的工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。 二、实验内容 1、测量各放大器的电压增益; 三、实验仪器 BT-3扫频仪(选做)一台、20MHz示波器一台、数字式万用表一块、调试工具一套 四、实验基本原理 1、单级单调谐放大器 图1-1 单级单调谐放大器实验原理图 实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。信号从TP5处输入,从TP10处输出。调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。 2、单级双调谐放大器 图1-2 单级双调谐放大器实验原理图 实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。两个谐振回路通过电容C20(1nF)或C21(10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。 3、双级单调谐放大器 图1-3 双级单调谐放大器实验原理图 实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。 实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。 4、双级双调谐放大器 图1-4 双级双调谐放大器实验原理图 实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

多级负反馈放大器实验报告

2.5 多级负反馈放大器的研究 一. 实验目的 (1)掌握用仿软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 2)比较电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 3)观察负反馈对非线性失真的改善。 二.实验原理 1.实验基本原理及电路 (1)基本概念。在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输出回路,用来影响其输出量(放大电路的输入电压或输入电流)的措施成为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 交流负反馈有四种组态:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;以电流形式相叠加,称为并联反馈。 在分析反馈放大电路市,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路:“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,

第章多级放大电路习题解答

第3章自测题、习题解答 自测题3 一、选择: 选择:(请选出最合适的一项答案) 1、在三种常见的耦合方式中,静态工作点独立,体积较小是()的优点。 A)阻容耦合 B) 变压器耦合 C)直接耦合 2、直接耦合放大电路的放大倍数越大,在输出端出现的漂移电压就越()。 A) 大 B) 小 C) 和放大倍数无关 3、在集成电路中,采用差动放大电路的主要目的是为了() A) 提高输入电阻 B) 减小输出电阻 C) 消除温度漂移 D) 提高放大倍数 4、两个相同的单级共射放大电路,空载时电压放大倍数均为30,现将它们级连后组成一个两级放大电路,则总的电压放大倍数() A) 等于60 B) 等于900 C) 小于900 D) 大于900 5、将单端输入——双端输出的差动放大电路改接成双端输入——双端输出时,其差模电压放大倍数将();改接成单端输入——单端输出时,其差模电压放大倍数将()。 A) 不变 B)增大一倍 C) 减小一半 D) 不确定 解:1、A 2、A 3、C 4、C 5、A C 二、填空:

6、若差动放大电路两输入端电压分别为110i u mV =,24i u mV =,则等值差 模输入信号为id u = mV ,等值共模输入信号为ic u = mV 。若双端输出电压放大倍数10ud A =,则输出电压o u = mV 。 7、三级放大电路中,已知1230u u A A dB ==,320u A dB =,则总的电压增益为 dB ,折合为 倍。 8、在集成电路中,由于制造大容量的 较困难,所以大多采用 的耦合方式。 9、长尾式差动放大电路的发射极电阻e R 越大,对 越有利。 10、多级放大器的总放大倍数为 ,总相移为 , 输入电阻为 ,输出电阻为 。 解: 6、3mV 7mV 30mV 7、80 410 8、电容 直接耦合 9、提高共模抑制比 10、各单级放大倍数的乘积 各单级相移之和 从输入级看进出的等效电阻 从末级看进出的等效电阻 三、计算:

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

电子科技大学-两级放大电路仿真实验

电子科技大学 电子技术实验报告 学生姓名:班级学号:201203******* 考核成绩: 实验地点:科研楼C427 指导老师:试验时间:2013.12.5 实验名称:两级放大电路的设计、测试与调试

一. 实验目的 1. 进一步掌握放大电路各种性能指标的测试方法。 2. 掌握两级放大电路的设计原理、各性能指标的测试原理。 二. 实验预习思考 1·放大器性能指标的定义及测试方法; 2多级放大器性能指标特点。 三. 实验原理 由一只晶体管组成的基本组态放大器往往达不到所要求的放大倍数,或者其他指标达不到要求。这时,可以将基本组态放大器作为一级单元电路,将其一级一级地连接起来构成多级放大器,以实现所需的技术指标。 信号传输方式成为耦合方式。耦合方式主要有电容耦合、变压器耦合和直接耦合。 1. 多级放大器指标的计算 一个三级放大器的通用模型如下图所示: 由模型图可以得到多级放大器的计算特点: 1i i R R =,多级放大器的输入电阻等于第一级放大器的输入电阻; 末o o R R =,多级放大器的输出电阻等于末级放大器的输出电阻; 前后L i R R =,后级放大器的输入电阻是前级放大器的负载; 后前s o R R =,后前s oo v v =,前级放大器的输出电路是后级放大器的信号源; 321··v v v V A A A A =,总的电压增益等于各级电压增益相乘。

2. 实验电路 实验电路如下图所示,可得该实验电路是一个电容耦合的两级放大器。 3. 测试方法 静态工作点的测试: 测出射级电阻两端的直流电压,以及射级电流; 电压增益的测试: 测出输入电压与输出电压,由公式i v v v A /0=计算得到; 输入电阻的测量: 已知取样电阻R ,测出电压' s u 与 i u ,利用公式 R u u u R u u u R i s i i s i i -=-= '',即可求得; 输出电阻的测量: 已知取样电阻L R ,采用“两次电压法”测量,由公式 L o o L o o o R u u I u u R )1'('-=-= ,即可 求得; 幅频特性测量: 采用点频法,改变输入信号的频率,测量相应的输出电压值,求放大倍数,即可绘制出幅频特性曲线。 四. 实验内容 1, 测试静态工作点

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

东大模电实验三极管放大电路设计

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路基础 第三次实验 实验名称:三极管放大电路设计 院(系):专业: 姓名:学号: 实验室: 105 实验组别: 同组人员:实验时间:2015年05月04日评定成绩:审阅教师:

实验三三极管放大电路设计 一、实验目的 1.掌握单级放大电路的设计、工程估算、安装和调试; 2.了解三极管、场效应管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、 增益、幅频特性等的基本概念以及测量方法; 3.了解负反馈对放大电路特性的影响。 4.掌握多级放大电路的设计、工程估算、安装和调试; 5.掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流毫伏表、 函数发生器的使用技能训练。 二、预习思考: 1.器件资料: 上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表: 注:额——表示Absolute maximum ratings,最大额定值。 2.偏置电路: 图3-3中偏置电路的名称是什么?简单解释是如何自动调节晶体管的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么? 答: ①图3-1偏置电路名称:分压式偏置电路。 ②自动调节晶体管电流Ic以实现稳定直流工作点的作用的原理: 当温度升高,会引起静态电流ICQ(≈IEQ)的增加,此时发射极直流电位UEQ=IEQ*RE 也会增加,而由于基极电位UBQ基本固定不变,因此外加在BJT发射结上的电压UBEQ=UBQ-UEQ将减小,迫使IEQ减小,进而抑制了ICQ的增加,使ICQ基本维持不变,达到自动稳定静态工作点的目的。同理,当温度降低时,ICQ减小,UEQ同时减小,而UBEQ则上升促使IEQ增大,抑制了ICQ 的减小,进而保证了Q点的稳定。 ③若R1、R2取得过大,则不能再起到稳定工作点的作用。这是因为在此情况下, 流入基极的电流不可再忽略,UB不稳定导致直流工作点不稳定。

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

多级放大电路的设计报告报告

电工电子技术课程设计报告 题目:多级放大电路的设计 二级学院机械工程学院 年级专业 14 动力本 学号 1401250029 学生姓名周俊 指导教师张云莉 教师职称讲师 报告时间:2015.12.28

目录 第一章.基本要求和放电电路的性能指标 (1) 第二章.概述和任务分析 (5) 第三章.电路原理图和电路参数 (6) 第四章.主要的计算过程 (9) 第五章.电路调试运算结果 (11) 第六章.总结 (12) 制作调试步骤及结果 (12) 收获和体会 (13) 第七章.误差和分析 (14) 第八章.参考文献 (15)

第一章.基本要求和放电电路的性能指标 1. 基本要求: 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC =+12V, -V EE =-12V ,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA ,第二 级放大射极电流I EQ4=2~3mA ;差分放大器的单端输入单端输出不是真电压增益至 少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Ω,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。 2. 放电电路的性能指标: 第一种是对应于一个幅值已定、频率已定的信号输入时的性能,这是放大电路的基本性能。第二种是对于幅值不变而频率改变的信号输出时的性能。第三种是对应于频率不变而幅值改变的信号输入时的性能。 1.1第一种类型的指标: 1.放大倍数 放大倍数是衡量放大电路放大能力的指标。它定义为输出变化量的幅值与输入变化量的幅值之比,有时也称为增益。虽然放大电路能实现功率的放大,然而在很多场合,人们常常只关心某一单项指标的放大的倍数,比如电压或者电流的放大倍数。由于输出和输入信号都有电压和电流量,所以存在以下四中比值: (1-1) 1.

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

多级放大电路的分析与设计

摘要 电子设备中,往往需要放大微弱的信号,这主要是通过放大电路实现的。基本放大电路由单个晶体管或场效应管构成,为单级放大电路,其电压放大倍数可以达到几十倍。而当信号非常微弱时,单级放大电路无法满足放大需求,此时我们把若干个单级放大电路串接在一起,级联组成多级放大电路。 本文主要研究多级放大电路的分析与设计,根据各级电路级间耦合方式的不同,分别设计了直接耦合放大电路、阻容耦合放大电路和光耦合放大电路,分析了电路的静态工作点、电压放大倍数、输入电阻和输出电阻等指标特性。在此基础上,讨论了差分放大电路以及消除互补输出级交越失真的方法。 最后,以前面的讨论为基础,设计了一款具有差分输入的多级放大电路,对电路性能指标进行了设定,并分析了各部分的作用。

2.1直接耦合多级放大电路的设计 2.1.1 设计原理 根据设计要求,本设计主要采用两级放大,为了传递变化缓慢的直流信号,可以把前级的输出端直接接到后级的输入端。这种连接方式称为直接耦合。如图2.1所示。直接耦合式放大电路有很多优点,它既可以放大和传递交流信号,也可以放大和传递变化缓慢的信号或者是直流信号,且便于集成。实际的集成运算放大器其内部就是一个高增益的直接耦合多级放大电路。直接耦合放大电路,由于前后级之间存在着直流通路,使得各级静态工作点互相制约、互相影响。因此,在设计时必须采取一定的措施,以保证既能有效地传递信号,又要使各级有合适的工作点。

图2.1 直接耦合两级放大电路 通常在第二级的发射极接入稳压二极管,这样既提高了第二级的基级电位,也使第一级的集电极静态电位抬高,脱离饱和工作区,可以使整个电路稳定正常的工作,稳定三极管的静态工作点。 但是在一个多级放大电路的输入端短路时,输出电压并非始终不变,而是会出现电压的随机漂动,这种现象叫做零点漂移,简称零漂。产生零漂的原因有很多,主要是以下两点:一方面,由于元器件参数,特别是晶体管的参数会随温度的变化而变化;另一方面,即使温度不变化,元器件长期使用也会使远见老化,参数就会发生变化,由温度引起的叫做温漂,由元器件老化引起的叫做零漂,在多级放大电路中,第一级的影响尤为严重,它将被逐级放大,以至影响整个电路的工作,所以零漂问题是直接耦合放大电路的特殊问题。 解决零漂的方法有很多种,例如引入直流负反馈来稳定静态工作点,以减小零漂;利用温度补偿元件补偿放大管的零点漂移,利用热敏电阻或二极管来与工作管的温度特性相补偿;利用工作特性相同的管子构成对称的一种电路—差动放大电路,这是最为行之有效的方法,故本次设计采用差动放大电路来设计实现。

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

多级放大电路习题参考答案

第四章多级放大电路习题答案3.1学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。

动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1u u u =-=。在共模输入 信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即: 式中u ic 为共模信号,u id 为差模信号,分别为: 输出电压为: 3.共模抑制比 共模抑制比是衡量差动放大电路放大差模信号和抑制共模信号的能力的重要指标,定义为A d 与A c 之比的绝对值,即: 或用对数形式表示为:

相关主题
文本预览
相关文档 最新文档