山东大学网络教育《线性代数》期末考试复习题
- 格式:doc
- 大小:239.00 KB
- 文档页数:7
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,,Λ21中任意两个向量都线性无关 ② s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,,,Λ21中任一个向量都不能用其余向量线性表示④ s ααα,,,Λ21中不含零向量 3. 下列命题中正确的是( )。
线性代数模拟题(一)一.单选题.1.下列( A )是4级偶排列.(A ) 4321; (B) 4123; (C) 1324; (D) 2341. 2. 如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111324324324a a a a a a a a a a a a D ---=, 那么=1D ( D ).(A ) 8; (B) 12-; (C) 24; (D ) 24-.3. 设A 与B 均为n n ⨯矩阵,满足O AB =,则必有( C ).(A )O A =或O B =; (B )O B A =+;(C )0=A 或0=B ; (D )0=+B A .4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则必有()*kA 等于( B ).(A )*kA ; (B )*1A kn -; (C )*A k n ; (D )*1A k -.5.向量组s ααα,....,,21线性相关的充要条件是( C ) (A )s ααα,....,,21中有一零向量 (B) s ααα,....,,21中任意两个向量的分量成比例 (C ) s ααα,....,,21中有一个向量是其余向量的线性组合 (D)s ααα,....,,21中任意一个向量都是其余向量的线性组合6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础解系,21,k k 为任意常数,则b Ax =的通解为( B ) (A) 2)(2121211ββααα-+++k k ; (B ) 2)(2121211ββααα++-+k k(C) 2)(2121211ββββα-+++k k ; (D) 2)(2121211ββββα++++k k7. λ=2是A 的特征值,则(A 2/3)-1的一个特征值是(B )(a)4/3 (b )3/4 (c)1/2 (d)1/48. 若四阶矩阵A 与B 相似,矩阵A 的特征值为1/2,1/3,1/4,1/5,则行列式|B -1-I|=(B)(a)0 (b )24 (c)60 (d)1209. 若A 是( A ),则A 必有A A ='.(A )对角矩阵; (B) 三角矩阵; (C) 可逆矩阵; (D) 正交矩阵. 10. 若A 为可逆矩阵,下列( A )恒正确. (A )()A A '='22; (B) ()1122--=A A ;(C) [][]111)()(---''='A A ; (D) [][]'=''---111)()(A A .二.计算题或证明题1. 设矩阵⎪⎪⎪⎭⎫⎝⎛----=3241223k kA (1)当k 为何值时,存在可逆矩阵P ,使得P -1AP 为对角矩阵?(2)求出P 及相应的对角矩阵。
线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ ααα,,, 中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。
答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。
答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。
答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。
答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。
答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。
答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。
线性代数2019-2020学年第二学期期末考试试卷一、填空题(本大题共5个小题,每小题3分,共15分。
)1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。
2. 设⎪⎪⎪⎭⎫ ⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫ ⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件.C 充分必要条件 .D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组;B. 321,,ααα的一个等秩向量组;C. 321221,,αααααα+++;D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
用心用情 服务社会1广东工业大学考试试卷 ( A )课程名称: 线性代数 试卷满分 100 分考试时间: 2009 年 6 月 9 日 (第 17 周 星期 二 ) 题 号 一 二 三 四 五 六 七 八 九 十 总分 评卷得分评卷签名 复核得分 复核签名一、 填空题 (每小题4分,共20分)1. 已知三阶行列式D 中第一行的元素依次为a 、2 、 1,它们的余子式分别是-2、-5、4,且D =10,则a = 。
2. 5,A A A *=-=设为三阶方阵,若则 。
3. 若n 阶矩阵A 满足O E A A =--422,则 ()1-+E A = 。
4.02030x ky z y z kx y z +-=⎧⎪+=⎨⎪--=⎩如果齐次线性方程组 有非零解,则k= 。
5.设33500012,025A B ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭的列向量组线性无关,则R(AB)= 。
二、选择题(每小题4分,共16分)1.A 为n m ⨯矩阵,0=AX 仅有零解的充分必要条件是( )(A)A 的列向量组线性无关 (B)A 的列向量组线性相关 (C)A 的行向量组线性无关 (D)A 的行向量组线性相关 2.设A ,B ,C 均为n 阶方阵,E 为n 阶单位矩阵,且E ABC =,则下列等式总成立的有( )(A) E ACB = (B) E CBA = (C) E BAC = (D) E BCA =用心用情 服务社会2 3. 如果1333231232221131211=a a a a a a a a a ,则=---333231312322212113121111324324324a a a a a a a a a a a a ( ) (A)8 (B)-12 (C)24 (D )-244. 下列哪一个不是n 阶方阵为非奇异矩阵的充要条件( )(A) A 的行秩为n (B)A 的每个行向量都是非零向量 (C) n A r =)( (D) 线性方程0=Ax 只有零解三、(10分)四、解矩阵方程 B AX X +=2,其中⎪⎪⎪⎭⎫ ⎝⎛--=101121011A , ⎪⎪⎪⎭⎫ ⎝⎛--=202031B .(12分)五、求非齐次线性方程组的一个解及对应的齐次方程组的基础解系。
一、填空题(36分)
1、若矩阵A 满足__A T =A_,则称A 为对称矩阵.
2、设A ,B 是两个3阶矩阵,且det A=-2.det B=-1.则
=. 32 3、
,则齐次线性方程组AX-0必有_
非零__解 4、设mxn 矩阵A 的秩为r ,则非齐次线性方程组Ax=B 有解的充分必要条件是_()B A R r =__
5、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,
0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__
6、如果向量a.β是正交的,则(a.β)=._0_
7、设AB 是两个3阶矩阵,且det A=-2.det B=-1,则
. 32 8、若数
为矩阵A 的特征值,则齐次线性方程组AX=0必有__非零___解 10、设A.B 是两个3阶矩阵,且det A=-2.det B=-1,则
32 11、设mxn 矩阵A 的秩为r.则非齐次线性方程组Ax=B 有解的充分必要条件是
_()B A R r =__ 12、设A 是mxn 矩阵,B 是pxm 矩阵,则
是_p n ⨯_ 矩阵.
二、计算题(107分)
13、解线性方程组:
解: 该线性方程组的增广矩阵()⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛------=05986741212060311512b A ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1155912001230072106031~1510912002120135706031~95109127702120135706031~b A。
.-期末考试试题线性代数 I一、填空 ( 15分,每 3 分)31、 (12 3) 2 =。
2 、若(0,2,4,t )T , ( 0,3, t,9) T , (1, t,2,3)T 性相关, t =。
13、 A 是 2 方 , B 是 3 方 , | A | 2 , | B | 4 , || A | 1B | =。
4、若 A 是 3 方 ,且 2IA ,I A , IA 均不可逆,A 的特征。
5、二次型 fx 12 4x 22 4x 322 x 1 x 22x 1 x 34x 2 x 3 是正定二次型,的取 范 是。
二、 ( 15分,每3 分)1、已知 x n 列向量, x T x 1, Axx T , In 位 ,。
A 、 A 2AB 、 A 2IC 、 A 2I D 、 A 2A2、 A 是 4 方 , A 的行列式 | A | 0 , A 中。
A 、必有一列元素全 零B、必有两列元素 成比例C 、必有一列向量是其余列向量的 性 合D、任一列向量是其余列向量的 性 合3、 1 是 A 的特征 , 。
A 、 1 是A 2的特征B 、2 是2A 的特征AAC 、 2 是A 2的特征 D、1 是2A 的特征AA4、 向量1,2 ,⋯ ,n 的秩 r, 此向量 中。
A 、任意 r 个向量 性无关B 、任意 r 个向量 性相关C 、任意 r1个向量 性相关D、任意 r1个向量 性相关5、二次型f ( x 1 , x 2 , x 3 ) 2x 12 4x 22 6x 32 4x 1 x 2 6x 2 x 3 的矩。
2 412 02 2 01 4 0 A 、 44 6 B 、 22 3 C 、 2 43 D 、4 260 660 333666三、 算行列式: ( 16分,每8 分)41 2 312 3 ... n1 0 3 ... n1、 34 1 22 、120 ... n2 3 4 1123 4123 021 1 1 1 3 四、(10 分)求解矩 方程X 2 1 04 32 111.-五、(10 分)已知向量1 ,2 ,3 ,4 性无关, 11t 1 2, 2 2t 2 3, 3 3 t 3 4 ,其中 t 1 ,t 2 , t 3 是数, 向量 1 , 2 ,3 性无关。
8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。
线性代数期末考试试卷合集(共十一套)目录线性代数期末试卷及参考答案(第一套) .............................................................................. 1 线性代数期末试卷及参考答案(第二套) .............................................................................. 9 南京工程学院期末试卷(第一套) ........................................................................................ 17 南京工程学院期末试卷(第二套) ........................................................................................ 24 南京工程学院期末试卷(第三套) ........................................................................................ 30 线性代数 期末试卷(A 卷) .................................................................................................. 36 线性代数 期末试卷(B 卷) .................................................................................................. 41 线性代数 期末试卷(C 卷) .................................................................................................. 46 线性代数 期末试卷(D 卷) .................................................................................................. 51 线性代数 期末试卷(E 卷) .................................................................................................. 57 线性代数 期末试卷(F 卷) (62)线性代数期末试卷及参考答案(第一套)一、单项选择题(本大题共5小题,每小题3分,共15分)1、设矩阵⎪⎪⎭⎫ ⎝⎛=3223A 满足B AB =,则矩阵=B ( )(A ) ⎪⎪⎭⎫⎝⎛21k k ; (B )⎪⎪⎭⎫ ⎝⎛11; (C ) ⎪⎪⎭⎫ ⎝⎛--2121k k k k ; (D ) ⎪⎪⎭⎫ ⎝⎛-2111k k .(21k k ,为任意常数) 2、设n 阶方阵A ,B 满足E AB =,则下列一定成立的是 ( ) (A )E B A == ; (B )E B A =+ ; (C )1=A 或1=B ; (D )1=⋅B A .3、设矩阵,⎪⎪⎪⎭⎫ ⎝⎛=001010100A 则 =-++)()(E A R E A R ( )(A ) 2; (B ) 3; (C ) 4; (D ) 5 .4、设向量组A :r a a a,,,21可由向量组B :s b b b ,,,21线性表示,则正确的是 ( )(A )当s r >时,向量组A 必线性相关; (B ) 当s r <时,向量组A 必线性相关; (C )当s r >时,向量组B 必线性相关; (D ) 当s r <时,向量组B 必线性相关.5、设A 为n m ⨯的矩阵,0=x A 是非齐次线性方程组b x A =所对应的齐次线性方程组,则下列结论正确的是( )(A ) 若0=x A 仅有零解,则b x A =有唯一解;(B ) 若b x A =有无穷多解,则0=x A 有非零解;(C ) 若n m =,则b x A=有唯一解;(D ) 若A 的秩m A R <)(,则b x A=有无穷多解.二、填空题(本大题共5小题,每小题3分,共15分)1、设方阵⎪⎪⎪⎭⎫⎝⎛=010002cb a A ,当c b a ,,满足 时,A 为可逆方阵.2、若可逆方阵A 的有一个特征值3,则13-)(A 必有一个特征值为 .3、设A 为54⨯的矩阵,且秩2=)(A R ,则齐次方程组0=x A 的基础解系所含向量个数是 .4、若三阶行列式222023z y x =1,则行列式1117110111------z y x = . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13232121,,x 线性相关,则常数x= .三、计算题(本题共6小题,共50分)1、(6分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=b a a A 140132121的秩2=)(A R , 求常数b a ,及一个最高阶非零子式.2、(8分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值和特征向量. 3、(8分)设3阶方阵A 与B 满足BA A BA A 22+=*, 其中,⎪⎪⎪⎭⎫⎝⎛=400030001A 求B .4、(10分)设向量组A :.,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 1301 3192 01414321αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式aa a a D ++++=4321432143214321,其中0≠a .6、(10分)设线性方程组⎪⎩⎪⎨⎧=+-=--=--532403321321321x x x b ax x x x x x , 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、判断题(本大题共5小题,每小题2分,共10分) 1、设矩阵B A ,为3阶方阵,且42==B A ,,则121=-AB.( )2、由3维向量构成的向量组4321a a a a,,,中必有一个可由其余向量线性表示. ( ) 3、对任意n 阶方阵C B A ,,,若AC AB =,且O A ≠,则一定有C B =.( )4、设向量21ηη ,是线性方程组b x A =的解,则212ηη -也是此方程组的一个解.( ) 5、正交向量组321a a a ,,线性无关.( )五、证明题(本题共2小题,每小题5分,共10分) 1、设n 阶对称矩阵A 满足关系式O E A A =++862,证明:(1)E A 3+是可逆矩阵,并写出逆矩阵; (2) E A 3+是正交矩阵.2、若3210a a a a,,,是n 元非齐次线性方程组b x A =的线性无关解,且,)(3-=n A R证明:030201a a a a a a---,,是其对应的齐次线性方程组0 =x A 的基础解系.参考答案一、选择题(本题5小题, 每小题3分, 共15分)1. C ;2. D ;3. B ;4. A ;5. B .二、填空题(本题5小题, 每小题3分, 共15分)1. c ab 2≠;2.91; 3. 3; 4. 23- ; 5. 5. 三、计算题(本题6小题, 共50分)1. 解: A →⎪⎪⎪⎭⎫ ⎝⎛------210022170121b a a a (2分), 由R (A ) = 2知,⎩⎨⎧=-=--0201b a , ⎩⎨⎧=-=∴21b a ,一个最高阶非零子式3221-. 2.解: 由λλλλ-----=-314020112E A (),)(0212=-+-=λλ 得A 的特征值为.,21321==-=λλλ当11-=λ时, 解 ().0=+x E A,⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛--=+000010101414030111r E A得基础解系:,⎪⎪⎪⎭⎫⎝⎛=1011p 对应11-=λ的全部特征向量为)(0111≠k p k当232==λλ时, 解().02=-x E A,⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎭⎫⎝⎛--=-000000414111140001142r E A 得基础解系:,⎪⎪⎪⎭⎫ ⎝⎛=401 2p ,⎪⎪⎪⎭⎫ ⎝⎛=041 3p对应232==λλ的特征向量为)0,(323322不全为k k p k p k+ 3. 解: B= 2(|A |E -2A ) -1 A |A |=12(|A |E -2A ) -1 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4100061000101, B=2⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛410061000101⎪⎪⎪⎭⎫⎝⎛400030001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛20001000514. 解: ),,,(4321αααα=A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------71307311100943121→⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000110024103121 → ⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110020102001 所以,秩3=A R , (1分)一个最大线性无关组为,,,321ααα(2分)且321422αααα++-=5. 解:aa a a D ++++=43214321432143214321c c c c +++aa a a a a a +++++++432104321043210432101r r i -aa a a 00000000043210+=)(103+a a 6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛-----==5312410131b ab A B ),( →⎪⎪⎪⎭⎫⎝⎛+---120011100131b a(1) 当12-≠=b a ,时, 32=<=)()(B R A R ,此时方程组无解. (2) 当b a ,2≠取任意数时, 3==)()(B R A R ,此时方程组有唯一解. (3) 当12-==b a ,时, 32<==)()(B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛--000011100131 →⎪⎪⎪⎭⎫ ⎝⎛000011103201即⎩⎨⎧+-=+-=1323231x x x x 原方程组的通解为)(R c c ∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--013112.四、判断题(本题5小题, 每小题2分, 共10分)1. ×;2. √;3. ×;4. √;5. √.五、证明题(本题2小题, 每小题5分, 共10分)1.证明: (1)由O E A A =++862得E E A A =++962,即E E A E A =++))((33 所以E A 3+可逆,且E A E A 331+=+-)(.(2)由A 为n 阶对称矩阵知,E A E A E A TT T 333+=+=+)()(,故()()()E E A E A E A E A T=++=++333)3(,所以E A 3+是正交矩阵.2. 证明: 3210a a a a,,,是n 元非齐次线性方程组b x A =的解,030201a a a a a a---∴,,是对应齐次方程组0 =x A 的解;又,)(3-=n A R 所以0 =x A 的基础解系中含向量个数为3)(=-A R n 个; 下证 030201a a a a a a---,,线性无关即可.设0033022011 =-+-+-)()()(a a k a a k a a k 即00321332211=++-++a k k k a k a k a k )(又 3210a a a a ,,,线性无关, 故⎪⎪⎩⎪⎪⎨⎧=++-===0000321321)(k k k k k k 有唯一解0321===k k k所以030201a a a a a a---,, 线性无关,从而030201a a a a a a---,,是其对应的齐次方程组0 =x A 的基础解系线性代数期末试卷及参考答案(第二套)一、填空题(本大题共7小题,每小题3分,共21分)1、设向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=123,321βα ,则当k = 时,.正交与βαα +k2、设方阵A 满足关系式O A A =+322,则1)(-+E A = .3、若三阶行列式930021-=x xxx ,则 =x . 4、设矩阵⎪⎪⎭⎫⎝⎛-=0211A ,多项式x x x f 2)(2+=,则=)(A f . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-13,032,101λ线性相关,则常数λ= .6、n 元非齐次线性方程组b x A=有无穷多解的充要条件是 .7、设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111,则 ._______________,______,===b a λ二、单项选择题(本大题共5小题,每小题3分,共15分)1、设A ,B 是任意n 阶方阵(2≥n ),则下列各式正确的是 ( )(A ) B A B A +=+; (B ) 22B A B A B A -=-⋅+; (C ) B A B A ⋅=; (D ) A B AB T⋅= .2、下列4个条件中,①A 可逆 ; ②A 为列满秩(即A 的秩等于A 的列数); ③A 的列向量组线性无关; ④ O A ≠ ;可使推理“ 若O AB =, 则O B = ”成立的条件个数是 ( )(A ) 1个 ; (B ) 2个; (C ) 3个; (D ) 4个.3、向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ ,,,21线性表示, 则下列结论中不成立的是( )(A ) 向量组s βββ,,,21线性无关;(B ) 对任一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性相关;(C ) 存在一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性无关;(D ) 向量组s ααα,,,21与向量组s βββ ,,,21等价. 4、设A ,B 均为3阶方阵, 3)(=A R ,2)(=B R , 则=)(AB R( )(A ) 1; (B ) 2; (C ) 3; (D ) 6 .5、设A 为n m ⨯的矩阵,r A R =)(,则非齐次线性方程组b x A=( )(A ) 当n r = 时有唯一解; (B ) 当n m r == 时有唯一解;(C ) 当n m = 时有唯一解; (D ) 当n r < 时有无穷多解. 三、计算题(本题共6小题,共54分)1、(7分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=61011152121λλA 的秩2)(=A R , 求常数λ及一个最高阶非零子式.2、(9分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230001A 的全部特征值和特征向量.3、(8分)设3阶方阵C B A ,,满足方程 A B A C =-)2(,试求矩阵A ,其中 ⎪⎪⎪⎭⎫ ⎝⎛=100010301B , ⎪⎪⎪⎭⎫ ⎝⎛=300020001C .4、(10分)设向量组A :.6721 ,11313 ,5652 ,21214321⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式cc b b a a x x x x D ---=000000, 其中x c b a ,,,全不为0.6、(12分)设线性方程组⎪⎩⎪⎨⎧=++=++=++bx x x x a x x x x x 3213213214231202, 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、证明题(本题共2小题,每小题5分,共10分)1、若向量321,,ααα线性无关, 求证 2132αα +,324αα +,135αα + 也线性无关.2、设矩阵T E A ηη -=, 其中E 是3阶单位矩阵,⎪⎪⎪⎭⎫⎝⎛=321x x x η 是单位向量,证明:(1) A A =2; (2) A 不可逆.参考答案一、填空题(本题7小题, 每小题3分, 共21分)1. 75-; 2. E A +2; 3. 3±; 4. ⎪⎪⎭⎫ ⎝⎛--2631 ; 5. 6 ; 6. n b A R A R <=),()(; 7. -1 ,-3 ,0 .二、选择题(本题5小题, 每小题3分, 共15分)1. D ;2. C ;3. C ;4. B ;5. B .三、计算题(本题6小题, 共54分)1. 解: A →⎪⎪⎪⎭⎫⎝⎛--+---3390022110121λλλλλ(3分), 由R (A ) = 2知,⎩⎨⎧=-=-03039λλ,3=∴λ (2分), 一个最高阶非零子式5221 .2.解: 由λλλλ---=-32230001E A (),01)5(2=--=λλ得A 的特征值为.1,5321===λλλ当51=λ时, 解 ().05=-x E A,0001100012202200045⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛---=-r E A得基础解系:,1101⎪⎪⎪⎭⎫⎝⎛=p 对应51=λ的全部特征向量为)(0111≠k p k当132==λλ时, 解().0=-x E A,000000110220220000⎪⎪⎪⎭⎫ ⎝⎛−→−⎪⎪⎪⎭⎫ ⎝⎛=-r E A 得基础解系:,001 2⎪⎪⎪⎭⎫ ⎝⎛=p ,110 3⎪⎪⎪⎭⎫ ⎝⎛-=p对应132==λλ的特征向量为)0,(323322不全为k k p k p k+.3. 解: CB A E C =-)2( ;⎪⎪⎪⎭⎫ ⎝⎛=-5000300012E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=--51000310001)2(1E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛=⋅-=-5300032030110001030130002000151000310001)2(1CB E C A . 4. 解: ),,,(4321αααα =A →⎪⎪⎪⎪⎪⎭⎫⎝⎛---00210045101321 → ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000021********001 (初等变换步骤不一,请酌情给分)所以,秩3=A R , (1分) 一个最大线性无关组为,,,321ααα(2分)且32142617αααα--=5. 解:)1,2,3(1=++i c c i i Dcb a xx x x---0000000234=xabc 4- .6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛==b a b A B 4231120211),( →⎪⎪⎪⎭⎫⎝⎛----120014100211b a a , (1) 当b a ,2≠取任意数时, 3)()(==B R A R , 此时方程组有唯一解; (2). 当1,2≠=b a 时, 3)(2)(=<=B R A R ,此时方程组无解;(3) 当1,2==b a 时, 32)()(<==B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛-000012100211 →⎪⎪⎪⎭⎫⎝⎛-000012101001 即⎩⎨⎧--==121321x x x原方程组的通解为)(011120R c c ∈⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-.四、证明题(本题2小题, 每小题5分, 共10分)1.证明: 由题意 ⎪⎪⎪⎭⎫⎝⎛=+++540013102),,()5,4,32(321133221ααααααααα , 记 AK B = .K K ∴≠=,022 可逆, 又321,,ααα线性无关,所以)5,4,32(133221αααααα +++R 3),,(321==αααR , 即 2132αα +,324αα +,135αα+ 也线性无关.2. 证明: (1) η为单位向量,1=∴ηηT ,A E E E E A T T T T T T T =-=+--=--=∴ηηηηηηηηηηηηηη)())((2.(2) 由(1)知,A A =2, 即 O E A A =-)(,3)()(≤-+∴E A R A R ,η为单位向量,O E A T ≠-=-∴ηη , 1)(≥-E A R ,从而32)(<≤A R , 所以0=A , 故A 不可逆.另一证法: 0)(=-=-=-=ηηηηηηηηηηT T E A ,的非零解,为线性方程组0=∴ηηA所以0=A , 故A 不可逆.南京工程学院期末试卷(第一套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院试卷共 6 页第 4 页南京工程学院期末试卷(第二套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院期末试卷(第三套)共6 页第1页课程所属部门:数理部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科线性代数 期末试卷(A 卷)一、(本大题共8小题,每题3分,共24分)1. 设B A ,均为n 阶方阵,则下面各式正确的是----------------------------------( C ) (A)TTTB A AB =)( (B) 222)(B A AB = (C) || ||AB BA = (D)AB BA = 2. 下列命题正确的是--------------------------------------------------------------------( C ) (A) 若02=A ,则0=A (B) 若A A =2,则0=A 或E A = (C) 若E A =,则E A n = (D) 若E A =2,则E A ±=3. 若行列式的所有元素都变号,则--------------------------------------------------( D ) (A) 行列式一定变号 (B) 行列式一定不变号 (C) 偶阶行列式变号 (D) 奇阶行列式变号4. 设k c c c b b b a a a =321321321,则112311231123232323a a a a b b b b c c c c ++=+-------------------------------( B ) (A) k 6 (B) k 3 (C) k 2 (D) k5. 若某线性方程组的系数行列式为零,则该方程组------------------------------( D ) (A) 有唯一解 (B) 有非零解 (C) 无解 (D) 有非零解或无解6.已知TT T t ),3,1(,)3,2,1(,)1,1,1(321===ααα线性相关的,则t =-----( B )(A) 4 (B) 5 (C) 6 (D) 77. 设方阵A 相似于(1,1,1)diag -,则10A =---------------------------------------- ( A )(A) E (B) 10E (C) E - (D) 10E - 8. 设A 为n 阶方阵,则下列说法中正确的是--------------------------------------( B ) (A) 若A 可对角化,则A 为实对称阵 (B) 若A 为实对称阵,则A 可对角化 (C) 若A 可对角化,则A 必可逆 (D) 若A 可逆,则A 可对角化二、填空题(本大题共4小题,每题4分,共16分)1.设2110A ⎛⎫=⎪-⎝⎭,则*A =0112-⎛⎫ ⎪⎝⎭,1A-=0112-⎛⎫ ⎪⎝⎭。
1 专科《线性代数》 模拟题1
一 填空题
1、设A,B 是两个3阶矩阵,且det A=-2,det B=-1,则det (-212-B A )=__32_.
2、如果向量α,β是正交的,则(α,β)=_0_.
3、若矩阵A 满足 __A T =A_ ,则称A 为对称矩阵.
4、设A 是m ×n 矩阵,B 是p ×m 矩阵,则T T B A 是_p n ⨯_矩阵.
5、若数00=λ为矩阵A 的特征值,则齐次线性方程组AX=0必有___非零___解.
6、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__ .
二 单项选择题
t
n s n t m n m B A B A T T t s n m ====⨯⨯ ④ ③ ② ①则必须满足做乘积 由 ____,.1逆矩阵
矩阵 ③数量矩阵 ④ ①对称矩阵 ②对角的是则有阶矩阵,若都是设___,,.2A B E BA AB n B A ==④可能有解一解 ③有无穷多解 ①可能无解 ②有唯组则该线性方程零解的齐次线性方程组只有若某个线性方程组相应.___.,.3
向量一个向量 ④任何一个没有一个向量 ③至多 ①至少一个向量 ②量线性表出。
可被该向量组内其余向线性相关,则向量组内αα若向量组α____,.....4,2,1s
三 是非题。
()个线性无关的特征向量有阶实对称矩阵也是对称矩阵。
()阶对称矩阵,则为若n A 、n A n A 、512
的解。
()的解之和不是的解与线性相关。
()αα可知ααα由α。
()有对方阵B AX AX B 、AX 、B A B A B A 、===-=+=+042det det )det(,33,2,1,213 四:解线性方程组:
②
② ④
√
√
X
√ X ① 0
6745
229
638
52432143
24214321====+-+-+---+-+x x x x x x x x x x x x x
x。