电磁感应计算题偏难
- 格式:doc
- 大小:132.00 KB
- 文档页数:2
【物理】物理法拉第电磁感应定律的专项培优易错难题练习题及答案一、法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。
从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,在垂直纸面向里的磁感应强度为B的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd,线框平面垂直于磁感线。
线框以恒定的速度v沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =gE I R = q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U I R =g解得:43cd BlvU =3.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。
电磁感应现象压轴难题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。
一质量m=2kg 的金属棒ab 与导轨接触良好,ab 与导轨间的动摩擦因数μ=0.5,ab 连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。
现用一质量M=6kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab 相连.由静止释放物体,当物体下落高度h=2.0m 时,ab 开始匀速运动,运动中ab 始终垂直导轨并与导轨接触良好。
高考物理法拉第电磁感应定律压轴难题综合题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L =0.1 m ,磁场间距为2L ,一正方形金属线框质量为m =0.1 kg ,边长也为L ,总电阻为R =0.02 Ω.现将金属线框置于磁场区域1上方某一高度h 处自由释放,线框在经过磁场区域时bc 边始终与磁场边界平行.当h =2L 时,bc 边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g 取10 m/s 2.(1)求磁感应强度B 的大小;(2)若h >2L ,磁场不变,金属线框bc 边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h ;(3)求在(2)情形中,金属线框经过前n 个磁场区域过程中线框中产生的总焦耳热. 【答案】(1)1 T (2)0.3 m (3)0.3n J 【解析】 【详解】(1)当h =2L 时,bc 进入磁场时线框的速度222m /s v gh gL ===此时金属框刚好做匀速运动,则有:mg =BIL又E BLv I R R== 联立解得1mgRB L v=代入数据得:1T B =(2)当h >2L 时,bc 边第一次进入磁场时金属线框的速度022v gh gL >即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
物理法拉第电磁感应定律的专项培优易错难题练习题含答案解析一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。
长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。
导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。
线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。
将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。
法拉第电磁感应定律压轴难题综合题含答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
电磁感应现象压轴难题试卷附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
【物理】物理法拉第电磁感应定律的专项培优易错难题练习题(含答案)及详细答案一、法拉第电磁感应定律1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。
线圈的半径为r1。
在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2023n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==2.如图所示,电阻不计的相同的光滑弯折金属轨道MON与M O N'''均固定在竖直平面内,二者平行且正对,间距为L=1m,构成的斜面ONN O''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B=0.1T.t=0时,将长度也为L=1m,电阻R=0.1Ω的金属杆ab在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g=10m/s2;不计空气阻力,轨道与地面绝缘.(1)求t=2s时杆ab产生的电动势E的大小并判断a、b两端哪端电势高(2)在t=2s时将与ab完全相同的金属杆cd放在MOO'M'上,发现cd杆刚好能静止,求ab杆的质量m以及放上cd杆后ab杆每下滑位移s=1m回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒=解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=g3.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R =+总联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d -;(3)2B 的大小为132B ,方向沿导轨平面向上.4.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q=It ,EIR r=+;Et∆Φ=∆;1∆Φ=BL S联立解得11.512C 1.5C1.50.5BL S qR r ⨯⨯===++5.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
高中物理电磁感应难题集Collect by LX 2014.04.111.(2015•青浦区一模)如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)金属棒与导轨间的动摩擦因数μ(2)cd离NQ的距离s(3)金属棒滑行至cd处的过程中,电阻R上产生的热量(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).2.(2015•潍坊校级模拟)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.3.(2014秋•西湖区校级月考)如图,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小.4.(2014•秦州区校级模拟)如图所示,两根足够长且平行的光滑金属导轨与水平面成53°夹角固定放置,导轨间连接一阻值为6Ω的电阻R,导轨电阻忽略不计.在两平行虚线m、n间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场.导体棒a的质量为m a=0.4kg,电阻R a=3Ω;导体棒b的质量为m b=0.1kg,电阻R b=6Ω;它们分别垂直导轨放置并始终与导轨接触良好.a、b从开始相距L0=0.5m处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,不计a、b之间电流的相互作用).求:(1)当a、b分别穿越磁场的过程中,通过R的电荷量之比;(2)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比;(3)磁场区域沿导轨方向的宽度d为多大;(4)在整个过程中,产生的总焦耳热.5.(2014•郫县校级模拟)如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m.导轨电阻忽略不计,其间连接有固定电阻R=0.40Ω.导轨上停放一质量m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下.用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t 变化的关系如图乙所示.(1)试证明金属杆做匀加速直线运动,并计算加速度的大小;(2)求第2s末外力F的瞬时功率;(3)如果水平外力从静止开始拉动杆2s所做的功W=0.35J,求金属杆上产生的焦耳热.6.(2014•赣州二模)相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(1)指出在运动过程中ab棒中的电流方向和cd棒受到的安培力方向;(2)求出磁感应强度B的大小和ab棒加速度大小;(3)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;(4)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力f cd随时间变化的图象.7.(2014•广东模拟)如图所示,有一足够长的光滑平行金属导轨,电阻不计,间距L=0.5m,导轨沿与水平方向成θ=30°倾斜放置,底部连接有一个阻值为R=3Ω的电阻.现将一根长也为L=0.5m质量为m=0.2kg、电阻r=2Ω的均匀金属棒,自轨道顶部静止释放后沿轨道自由滑下,下滑中均保持与轨道垂直并接触良好,经一段距离后进入一垂直轨道平面的匀强磁场中,如图所示.磁场上部有边界OP,下部无边界,磁感应强度B=2T.金属棒进入磁场后又运动了一段距离便开始做匀速直线运动,在做匀速直线运动之前这段时间内,金属棒上产生了Q r=2.4J的热量,且通过电阻R上的电荷量为q=0.6C,取g=10m/s2.求:(1)金属棒匀速运动时的速v0;(2)金属棒进入磁场后,当速度v=6m/s时,其加速度a的大小及方向;(3)磁场的上部边界OP距导轨顶部的距离S.8.(2013春•莲湖区校级期末)如图,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面.开始时,给导体棒一个平行于导轨的初速度v0.在棒的运动速度由v0减小至v1的过程中,通过控制负载电阻的阻值使棒中的电流强度I保持恒定.导体棒一直在磁场中运动.若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率.9.(2013•上海)如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连.导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T.一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)电路中的电流;(2)金属棒在x=2m处的速度;(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;(4)金属棒从x=0运动到x=2m过程中外力的平均功率.10.(2013•广东)如图(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件.流过电流表的电流I与圆盘角速度ω的关系如图(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点.ω>0代表圆盘逆时针转动.已知:R=3.0Ω,B=1.0T,r=0.2m.忽略圆盘、电流表和导线的电阻.(1)根据图(b)写出ab、bc段对应I与ω的关系式;(2)求出图(b)中b、c两点对应的P两端的电压U b、U c;(3)分别求出ab、bc段流过P的电流I p与其两端电压U p的关系式.11.(2013•武清区校级模拟)如图所示,ef,gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1m,导轨左端连接一个R=2Ω的电阻,将一根质量为0.2kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B=2T的匀强磁场中,磁场方向垂直于导轨平面向下.现对金属棒施加一水平向右的拉力F,使棒从静止开始向右运动.试解答以下问题.(1)若施加的水平外力恒为F=8N,则金属棒达到的稳定速度v1是多少?(2)若施加的水平外力的功率恒为P=18W,则金属棒达到的稳定速度v2是多少?(3)若施加的水平外力的功率恒为P=18W,则金属棒从开始运动到速度v3=2m/s的过程中电阻R产生的热量为8.6J,则该过程所需的时间是多少?12.(2013•宝山区一模)相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8Ω,导轨电阻不计.ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(g=10m/S2)(1)求出磁感应强度B的大小和ab棒加速度大小;(2)已知在2s内外力F做功40J,求这一过程中ab金属棒产生的焦耳热;(3)求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力f cd随时间变化的图线.13.(2013•河南模拟)如图所示,在一光滑水平的桌面上,放置一质量为M,宽为L的足够长“U”型框架,其ab部分电阻为R,框架其它部分的电阻不计.垂直框架两边放一质量为m、电阻为R的金属棒cd,它们之间的动摩擦因数为μ,棒通过细线跨过一定滑轮与劲度系数为k的另一端固定的轻弹簧相连.开始弹簧处于自然状态,框架和棒均静止.现在让框架在大小为2μmg的水平拉力作用下,向右做加速运动,引起棒的运动可看成是缓慢的.水平桌面位于竖直向上的匀强磁场中,磁感应强度为B.问:(1)框架和棒刚开始运动的瞬间,框架的加速度为多大?(2)框架最后做匀速运动(棒处于静止状态)时的速度多大?(3)若框架通过位移S 后开始匀速,已知弹簧的弹性势能的表达式为kx2(x为弹簧的形变量),则在框架通过位移s 的过程中,回路中产生的电热为多少?14.(2013•漳州模拟)如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的匀质金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.(g=10m/s2)(1)保持ab棒静止,在0~4s内,通过金属棒ab的电流多大?方向如何?(2)为了保持ab棒静止,需要在棒的中点施加了一平行于导轨平面的外力F,求当t=2s时,外力F的大小和方向;(3)5s后,撤去外力F,金属棒将由静止开始下滑,这时用电压传感器将R两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2.4m,求金属棒此时的速度及下滑到该位置的过程中在电阻R上产生的焦耳热.15.(2012•浙江)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置.如图所示,自行车后轮由半径r1=5.0×10﹣2m的金属内圈、半径r2=0.40m的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为R的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=.后轮以角速度ω=2πrad/s,相对转轴转动.若不计其它电阻,忽略磁场的边缘效应.(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差U ab随时间t 变化的U ab﹣t图象;(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价.16.(2012•天津)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T.棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F.17.(2012•广东)如图所示,质量为M的导体棒ab,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置间距为d的平行金属板,R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x.18.(2012•上海)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上.一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形.棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱.导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0.以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B.在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a.(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量.19.(2012•邯郸一模)如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.如图所示,将甲、乙两阻值相同,质量均为m的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小以a=gsinθ,乙金属杆刚进入磁场时做匀速运动.(1)求每根金属杆的电阻R为多少?(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F随时间t的变化关系式,并说明F的方向.(3)若从开始释放两杆到乙金属杆离开磁场,乙金属杆共产生热量Q,试求此过程中外力F对甲做的功.20.(2012•温州模拟)一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面是绝缘且光滑的斜面顶端,自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端BB′,设金属框在下滑时即时速度为v,与此对应的位移为s,那么v2﹣s图象如图2所示,已知匀强磁场方向垂直斜面向上.试问:(1)分析v2﹣s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d.(2)匀强磁场的磁感应强度多大?(3)金属框从斜面顶端滑至底端所需的时间为多少?(4)现用平行斜面沿斜面向上的恒力F作用在金属框上,使金属框从斜面底端BB′静止开始沿斜面向上运动,匀速通过磁场区域后到达斜面顶端.试计算恒力F做功的最小值.21.(2012•中山市校级模拟)如图1所示,在坐标系xOy中,在﹣L≤x<0区域存在强弱可变化的磁场B1,在0≤x≤2L区域存在匀强磁场,磁感应强度B2=2.0T,磁场方向均垂直于纸面向里.一边长为L=0.2m、总电阻为R=0.8Ω的正方形线框静止于xOy平面内,线框的一边与y轴重合.(1)若磁场B1的磁场强度在t=0.5s内由2T均匀减小至0,求线框在这段时间内产生的电热为多少?(2)撤去磁场B1,让线框从静止开始以加速度a=0.4m/s2沿x轴正方向做匀加速直线运动,求线框刚好全部出磁场前瞬间的发热功率.(3)在(2)的条件下,取线框中逆时针方向的电流为正方向,试在图2给出的坐标纸上作出线框中的电流I 随运动时间t的关系图线.(不要求写出计算过程,但要求写出图线端点的坐标值,可用根式表示)22.(2012•麦积区校级模拟)如图水平金属导轨的间距为1m,处在一个竖直向上的匀强磁场中,磁感应强度B=2T,其上有一个与之接触良好的金属棒,金属棒的电阻R=1Ω,导轨电阻不计,导轨左侧接有电源,电动势E=10V,内阻r=1Ω,某时刻起闭合开关,金属棒开始运动,已知金属棒的质量m=1kg,与导轨的动摩擦因数为0.5,导轨足够长.问:(1)金属棒速度为2m/s时金属棒的加速度为多大?(2)金属棒达到稳定状态时的速度为多大?(3)导轨的右端是一个高和宽均为0.8m的壕沟,那么金属棒离开导轨后能否落到对面的平台?23.(2012•眉山模拟)如图所示,两根不计电阻的金属导线MN与PQ 放在水平面内,MN是直导线,PQ 的PQ1段是直导线,Q1Q2段是弧形导线,Q2Q3段是直导线,MN、PQ1、Q2Q3相互平行.M、P间接入一个阻值R=0.25Ω的电阻.质量m=1.0kg、不计电阻的金属棒AB能在MN、PQ上无摩擦地滑动,金属棒始终垂直于MN,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向竖直向下.金属棒处于位置(I)时,给金属棒一向右的初速度v1=4 m/s,同时给一方向水平向右F1=3N的外力,使金属棒向右做匀减速直线运动;当金属棒运动到位置(Ⅱ)时,外力方向不变,改变大小,使金属棒向右做匀速直线运动2s到达位置(Ⅲ).已知金属棒在位置(I)时,与MN、Q1Q2相接触于a、b两点,a、b的间距L1=1 m;金属棒在位置(Ⅱ)时,棒与MN、Q1Q2相接触于c、d两点;位置(I)到位置(Ⅱ)的距离为7.5m.求:(1)金属棒向右匀减速运动时的加速度大小;(2)c、d两点间的距离L2;(3)金属棒从位置(I)运动到位置(Ⅲ)的过程中,电阻R上放出的热量Q.24.(2012•黄州区校级模拟)如图(a)所示,间距为L电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放.在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好.又已知cd棒的质量为m,区域Ⅱ沿斜面的长度也是L,在t=t x时刻(t x未知)ab棒恰好进入区域Ⅱ,重力加速度为g.求:(1)通过cd棒中的电流大小和区域I内磁场的方向(2)ab棒开始下滑的位置离区域Ⅱ上边界的距离s;(3)ab棒从开始到下滑至EF的过程中,回路中产生的总热量.(结果均用题中的已知量表示)25.(2011•四川)如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场.电阻R=0.3Ω、质量m1=0.1kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环.已知小环以a=6m/s2的加速度沿绳下滑,K 杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10m/s2,sin37°=0.6,cos37°=0.8.求(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.26.(2011•海南)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度.27.(2011•天津)如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?28.(2011•上海)电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q r=0.1J.(取g=10m/s2)求:(1)金属棒在此过程中克服安培力的功W安;(2)金属棒下滑速度v=2m/s时的加速度a.(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理W重﹣W安=mv,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.29.(2011•奉贤区二模)如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=lm,bc边的边长l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框受到沿光滑斜面向上的恒力F的作用,已知F=10N.斜面上ef线(ef∥gh)的右方有垂直斜面向上的均匀磁场,磁感应强度B随时间t的变化情况如B﹣t图象,时间t是从线框由静止开始运动时刻起计的.如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s=5.1m,求:(1)线框进入磁场时匀速运动的速度v;(2)ab边由静止开始到运动到gh线处所用的时间t;(3)线框由静止开始到运动到gh线的整个过程中产生的焦耳热.30.(2011•萧山区校级模拟)如图所示,两根电阻不计,间距为l的平行金属导轨,一端接有阻值为R的电阻,导轨上垂直搁置一根质量为m.电阻为r的金属棒,整个装置处于竖直向上磁感强度为B的匀强磁场中.现给金属棒施一冲量,使它以初速V0向左滑行.设棒与导轨间的动摩擦因数为μ,金属棒从开始运动到停止的整个过程中,通过电阻R的电量为q.求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.参考答案与试题解析1.(2015•青浦区一模)如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)金属棒与导轨间的动摩擦因数μ(2)cd离NQ的距离s(3)金属棒滑行至cd处的过程中,电阻R上产生的热量(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).考点:导体切割磁感线时的感应电动势;共点力平衡的条件及其应用;牛顿第二定律;电磁感应中的能量转化.专题:压轴题;电磁感应——功能问题.分析:(1)当刚释放时,导体棒中没有感应电流,所以只受重力、支持力与静摩擦。
12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。
试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?
8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。
线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2.
(1)求磁场的磁感应强度大小.
(2)求ad 边刚穿出磁场时,线框abcd 中电流的大小.
5、 (20分)如图所示间距为 L 、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为α两根同材料、长度均为 L 、横截面均为圆形的金属棒CD 、 PQ 放在斜面导轨上.已知CD 棒的质量为m 、电阻为 R , PQ 棒的圆截面的半径是CD 棒圆截面的 2 倍。
磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上两根劲度系数均为 k 、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD 开始时金属棒CD 静止,现用一恒力平行于导轨所在平面向上拉金属棒 PQ .使金属棒 PQ 由静止开始运动当金属棒 PQ 达到稳定时弹簧的形变量与开始时相同,已知金属棒 PQ 开始运动到稳定的过程中通过CD 棒的电量为q,此过程可以认为CD 棒缓慢地移动,已知题设物理量符合
αsin 5
4
mg BL qRk =的关系式,求此过程中(l )CD 棒移动的距离; (2) PQ 棒移动的距离 (3) 恒力所做的功。
(要求三问结果均用与重力mg 相关的表达式来表示).
v
12、(16分)如图所示,倾角为370的光滑绝缘的斜面上放着M=1kg 的导轨abcd ,ab ∥cd 。
另有一质量m=1kg 的金属棒EF 平行bc 放在导轨上,EF 下侧有绝缘的垂直于斜面的立柱P 、S 、Q 挡住EF 使之不下滑,以OO′为界,斜面左边有一垂直于斜面向下的匀强磁场。
右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T ,导轨bc 段长L=1m 。
金属棒EF 的电阻R=1.2Ω,其余电阻不计,金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc 边用细线系在立柱S 上,导轨和斜面足够长,当剪断细线后,试求:
(1)求导轨abcd 运动的最大加速度(2)求导轨abcd 运动的最大速度;
(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF 的电量q=5C ,则在此过程中,系统损失的机械能是多少?(sin370=0.6)
30、(16分)如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B =1 T ,
每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5 m ,现有一边长l =0.2 m 、质量m =0.1 kg 、电阻R =0.1 Ω的正方形线框MNOP 以v 0=7 m/s 的初速从左侧磁场边缘水平进入磁场,求: ⑴线框MN 边刚进入磁场时受到安培力的大小F ;
⑵线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q ;
⑶线框能穿过的完整条形磁场区域的个数n 。
2如图,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l ,左侧接一阻值为R 的电阻。
区域cdef
内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s 。
一质量为m ,电阻为r 的金属棒MN 置于导轨上,与导轨垂直且接触良好,受到F =0.5v +0.4(N )(v 为金属棒运动速度)的水平力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大。
(已知l =1m ,m =1kg ,R =0.3Ω,r =0.2Ω,s =1m )(1)分析并说明该金属棒在磁场中做何种运动;(2)求磁感应强度B 的大小;
(3)若撤去外力后棒的速度v 随位移x 的变化规律满足v =v 0-B 2l 2
m (R +r )
x ,且棒在运动到ef 处时恰好静止,则外力F 作用的时间为多少?
(4)若在棒未出磁场区域时撤去外力,画出棒在整个运动过程中速度随位移的变化所对应的各种可能的图线。