机械原理与设计凸轮机构
- 格式:ppt
- 大小:2.57 MB
- 文档页数:37
机械原理与设计之凸轮机构概述摘要本文介绍了机械原理与设计中的凸轮机构。
凸轮机构是一种常用于工程和机械设计中的传动机构,能够将旋转运动转化为直线运动。
本文将详细介绍凸轮机构的基本原理、构造和应用领域,并讨论凸轮机构的设计要点和优缺点。
引言凸轮机构是一种基于凸轮的传动机构,其通过凸轮与从动件之间的接触,将旋转运动转化为直线运动。
凸轮机构广泛应用于机械制造领域和工程设计中,例如发动机、工具机和自动化装置等。
熟悉凸轮机构的工作原理和设计方法对于机械工程师和设计师来说至关重要。
一、凸轮机构的基本原理凸轮机构的基本原理是利用凸轮的几何形状,通过其与从动件的接触来实现运动转换。
凸轮通常是一个圆柱体,其几何形状决定了从动件的运动规律。
当凸轮旋转时,凸轮上的凸起与从动件相互作用,驱动从动件做直线运动。
凸轮的几何形状可以根据特定的运动要求进行设计和调整。
二、凸轮机构的构造凸轮机构由凸轮、从动件和传动组成。
凸轮是凸轮机构的核心部件,其几何形状决定了从动件的运动规律。
从动件与凸轮相互作用,通过凸轮的旋转实现直线运动。
传动装置用于传递动力和控制凸轮的旋转。
凸轮机构的构造可以基于具体的应用需求进行设计和调整。
凸轮机构广泛应用于许多机械设备和自动化系统中。
它们常见的应用领域包括: - 发动机:凸轮机构用于控制气门的开启和关闭,调节进气和排气过程; - 工具机:凸轮机构用于控制工具的运动,例如车床的进给机构和转塔机床的换刀装置; - 自动化装置:凸轮机构用于实现复杂的运动路径和动作,例如自动化流水线和机器人系统。
四、凸轮机构的设计要点设计凸轮机构时,需要考虑以下要点: 1. 凸轮的几何形状:凸轮的形状应根据需要的从动件运动规律进行设计。
2. 从动件的类型:根据不同的运动要求,选择合适的从动件类型,如销轴、滑块或摇杆等。
3. 传动装置:选择合适的传动装置,以传递动力和控制凸轮的旋转。
4. 动力和扭矩:确定凸轮机构所需的动力和扭矩,以确保正常运行。
机械原理课程教案一凸轮机构及其设计一、教学目标及基本要求1了解凸轮机构的基本结构特点、类型及应用,学会根据工作要求和使用场合选择凸轮机构。
2.了解凸轮机构的设计过程,对凸轮机构的运动学、动力学参数有明确的概念。
3.掌握从动件常用运动规律的特点及适用场合,了解不同运动规律位移曲线的拼接原则与方法。
4.掌握凸轮机构基本尺寸设计的原则,学会根据这些原则确定移动滚子从动件盘形凸轮机构的基圆半径、滚子半径和偏置方向,摆动从动件盘形凸轮机构的摆杆长、中心距以及移动平底从动件平底宽度。
5.熟练掌握应用反转法原理设计平面凸轮廓线,学会凸轮机构的计算机辅助设计方法。
二、教学内容及学时分配第一节概述第二节凸轮机构基本运动参数设计第三节凸轮机构基本尺寸设计(第一、二、三节共2学时)第四节凸轮轮廓曲线设计(15学时)第五节凸轮机构从动件设计(1学时)第六节凸轮机构的计算机辅助设计(0.5学时)三、教学内容的重点和难点重点:1.凸轮机构的型式选择。
2.从动件运动规律的选择及设计。
3.盘形凸轮机构基本尺寸的设计,凸轮轮廓曲线设计的图解法和解析法。
4.从动件的设计,包括高副元素形状选择,滚子半径和平底宽度的确定。
难点:凸轮轮廓曲线设计的图解法四、教学内容的深化与拓宽空间凸轮机构与高速凸轮机构简介。
五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。
在教学过程中应强调凸轮机构的运动学参数与结构参数的概念及其选用设计;应用反转法原理进行凸轮轮廓曲线的图解法设计时凸轮转角的分度,要注意从动件反转方向;正确确定偏置移动从动件凸轮机构在反转过程中从动件所依次占据的位置线;滚子从动件凸轮机构理论轮廓曲线与实际轮廓曲线的联系和区别等。
要注意突出重点,多采用启发式教学以及教师和学生的互动。
六、主要参考书目1黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2010 2申永胜主编.机械原理教程(第2版).北京:清华大学出版社,20053孙桓,陈作模、葛文杰主编.机械原理(第七版).北京:高等教育出版社,20064石永刚,徐振华.凸轮机构设计.上海:上海科学技术出版社,1995七、相关的实践性环节凸轮机构运动参数测试实验。
第三章凸轮机构及其设计§3-1 概述1 凸轮机构的基本组成及应用特点组成:凸轮、从动件、机架运动特征:主动件(凸轮)作匀角速回转,或作匀速直线运动,从动件能实现各种复杂的预期运动规律。
尖底直动从动件盘形凸轮机构、尖底摆动从动件盘形凸轮机构滚子直动从动件盘形凸轮机构、滚子摆动从动件盘形凸轮机构圆柱凸轮机构、移动凸轮机构、平底直动从动件盘形凸轮机构端面圆柱凸轮机构、内燃机配气凸轮机构优点:(1)从动件易于实现各种复杂的预期运动规律。
(2)结构简单、紧凑。
(3)便于设计。
缺点:(1)高副机构,点或线接触,压强大、易磨损,传力小。
(2)加工制造比低副机构困难。
应用:主要用于自动机械、自动控制中(如轻纺、印刷机械)。
2 凸轮机构的分类1.按凸轮形状分:盘型、移动、圆柱2.按从动件运动副元素分:尖底、滚子、平底、球面(P197)3.按从动件运动形式分:直动、摆动4.按从动件与凸轮维持接触的形式分:力封闭、形封闭3 凸轮机构的工作循环与运动学设计参数§3-2凸轮机构基本运动参数设计一.有关名词行程-从动件最大位移h。
推程-S↑的过程。
回程-S↓的过程。
推程运动角-从动件上升h,对应凸轮转过的角度。
远休止角-从动件停留在最远位置,对应凸轮转过的角度。
回程运动角-从动件下降h,对应凸轮转过的角度。
近休止角-从动件停留在低远位置,对应凸轮转过的角度。
一个运动循环凸轮:转过2π,从动件:升→停→降→停基圆-以理论廓线最小向径r0作的圆。
尖底从动件:理论廓线即是实际廓线。
滚子从动件:以理论廓线上任意点为圆心,作一系列滚子圆,其内包络线为实际廓线。
从动件位移线图——从动件位移S与凸轮转角 (或时间t)之间的对应关系曲线。
从动件速度线图——位移对时间的一次导数加速度线图——位移对时间的二次导数 统称从动件运动线图 度量基准(在理论廓线上)1)从动件位移S :推程、回程均从最低位置度量。
2)凸轮转角δ:从行程开始对应的向径度量(以O 为圆心,O 至行程起始点为半径作弧与导路中心线相交得P 点,∠POX=δ)。
第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构② 等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O 为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0 称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。
全面探究凸轮机构设计原理及方法凸轮机构是一种常用的机械传动装置,通过凸轮和摆杆的配合组成,具有可逆性、可编程性和高精度的特点。
本文将从设计原理、设计方法和优化策略三个方面探究凸轮机构设计的要点。
一、设计原理
凸轮机构的设计原理是在摆杆与凸轮配合时,摆杆可以沿凸轮轮廓实现规定的运动规律,如直线运动、往返运动和旋转运动等。
凸轮可以根据运动轨迹、运动频率和运动速度等要求,通过凸轮轮廓的设计来完成。
凸轮轮廓的设计包括了初步设计、动力学分析、运动规划等步骤。
二、设计方法
凸轮机构的设计方法包括手工绘图及设计软件辅助。
手工绘图是传统的凸轮轮廓设计方法,适用于简单的凸轮机构,如往复式转动机构、转动转动机构等;而对于复杂的凸轮机构,可以利用计算机辅助设计软件,如ProEngineer、CATIA、AutoCAD等,进行三维建模、运动模拟和优化设计。
此外,对于凸轮机构的设计还需要考虑到强度计算、可靠性分析等相关问题。
三、优化策略
凸轮机构的设计优化策略主要包括凸轮轮廓的形状优化、摆杆的长度优化和机构传动效率的优化等。
凸轮轮廓的形状优化通常是通过
Cycloid、Involute、Bezier等曲线的拟合来实现;摆杆的长度优化可以通过数学模型来建立,利用遗传算法、粒子群算法等优化算法进行
求解;传动效率的优化可以通过轮廓优化、材料优化、润滑优化等途
径来进行。
凸轮机构的设计是机械工业中非常重要的一环,它涉及到运动学、动力学、力学等多个学科的知识,需要学习者在多方面进行深入研究
和实践。
通过对凸轮机构的深入探究,我们可以更好地理解机械原理
的精髓,提高机械设计的水平和能力。
机械原理课程设计凸轮机构一、课程设计目标本课程设计旨在通过对凸轮机构的学习,使学生了解凸轮机构的基本工作原理、结构特点和应用领域,掌握凸轮机构的设计和分析方法,培养学生的机械原理分析和设计能力。
二、课程设计内容1. 凸轮机构的基本概念和分类(1)凸轮机构的定义和基本概念(2)凸轮机构的分类和特点2. 凸轮机构的工作原理和运动分析(1)凸轮机构的工作原理和运动规律(2)凸轮机构的运动分析方法3. 凸轮机构的设计和优化(1)凸轮机构的设计原则和方法(2)凸轮机构的优化设计方法4. 凸轮机构的应用和发展(1)凸轮机构在机械传动系统中的应用(2)凸轮机构的发展趋势和前景三、教学方法本课程采用多种教学方法,包括课堂讲授、案例分析、实验演示、课外阅读和小组讨论等。
通过多种教学手段,引导学生深入理解和掌握凸轮机构的基本原理和设计方法,提高学生的分析和设计能力。
四、教学评价本课程的教学评价主要包括平时作业、课堂表现、实验报告和期末考试等。
通过对学生的综合评价,评估学生的学习成果和能力提高情况,为学生提供有效的反馈和指导。
五、参考教材1.《机械设计基础》(第四版),郑育新、刘道玉编著,清华大学出版社,2017年。
2.《机械原理》(第五版),唐光明编著,高等教育出版社,2018年。
3.《机械设计手册》(第三版),机械工业出版社,2015年。
六、教学进度安排本课程的教学进度安排如下:第一周:凸轮机构的基本概念和分类第二周:凸轮机构的工作原理和运动分析第三周:凸轮机构的设计和优化第四周:凸轮机构的应用和发展第五周:实验演示和案例分析第六周:课外阅读和小组讨论第七周:期末考试和总结回顾。
机械原理课程设计——凸轮机构设计(一)目录 (1)_________________________(一)、题目及原始数据 (2)(二)、推杆运动规律及凸轮廓线方程 (3)(三)、计算程序方框图 (5)(四)、计算源程序 (6)(五)、程序计算结果及分析 (10)(六)、凸轮机构图 (15)(七)、心得体会 (16)(八)、参考书 (16)(一)、题目及原始数据试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计,凸轮以1rad/s的角速度沿逆时针方向转动。
要求:(1)、推程运动规律为等加速等减速运动,回程运动规律为五次多项式运动规律;(2)、打印出原始数据;(3)、打印出理论轮廓和实际轮廓的坐标值;(4)、打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)、打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;(6)、打印出凸轮运动的位移;(7)、打印最后所确定的凸轮的基圆半径。
原始数据如下:r0=0.015; 初选的基圆半径r0Deltar0=0.0005; 当许用压力角或许用最小曲率半径不满足时,r0以Δr0为步长增加重新计算rr=0.010; 滚子半径r rh=0.028; 推杆行程he=0.005; 偏距eomega=1; 原动件凸轮运动角速度,逆时针ωdelta1=pi/3; 近休止角δ1delta2=2*pi/3; 推程运动角δ2delta3=pi/2; 远休止角δ3delta4=pi/2; 回程运动角δ4alpha1=pi/6; 推程许用压力角[α1]alpha2=(70/180)*pi; 回程许用压力角[α2]rho0min=0.3*rr; 许用最小曲率半径ραmin (二)、推杆运动规律及凸轮廓线方程推杆运动规律:(1)近休阶段:0o≤δ<60 os=0v=0a=0(2)推程阶段:60o≤δ<180 o等加速运动规律:60o≤δ<120 os=2h(δ-60o)2/(120 o)2v=4hω(δ-60o)/(120 o)2a=4hω2/(120 o)2等减速运动规律:120o≤δ<180 os=h-2h(120o -(δ-60o))2/(120 o)2v=4hω(120o -(δ-60o))/(120 o)2a=-4hω2/(120 o)2(3)远休阶段:180o≤δ<270 os=hv=0a=0(4)回程阶段:270o≤δ≤360 o五次多项式运动规律:s=h-(10h(δ-270o)3/(90 o)3-15h(δ-270o)4/(90 o)4+6h(δ-270o)5/(90 o)5)v=-(30hω(δ-270o)2/(90 o)3-60hω(δ-270o)3/(90 o)4+30hω(δ-270o)4/(90 o)5)a=-(60hω2(δ-270o)/(90 o)3-180hω2(δ-270o)2/(90o)4+120hω2(δ-270o)3/(90 o)5)凸轮廓线方程:(1)理论廓线方程:s0=sqrt(r02-e2)x=(s0+s)sinδ+ecosδy=(s0+s)cosδ-esinδ(2)实际廓线方程先求x,y的一阶导数x’=(v/ω-e) sinδ+(s0+s)cosδy’=(v/ω-e) cosδ-(s0+s)sinδ再求sinθ,cosθsinθ=x’/sqrt((x’)2+(y’)2)cosθ=-y’/sqrt((x’)2+(y’)2)最后求实际廓线方程x1=x-rr cosθy1=y-rr sinθ压力角方程:曲率半径计算公式:(四)、计算源程序%凸轮机构大作业Matlab语言源程序%选题:偏置直动滚子推杆盘形凸轮机构5—A% 推程运动规律:等加速等减速运动% 回程运动规律:五次多项式运动% 作者:WYH 学号:xxxxxxxx 日期:2007.12.26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all;%close all;clc;%赋初值r0=0.015;Deltar0=0.0005;rr=0.010;h=0.028;e=0.005;omega=1; %原动件凸轮运动角速度,逆时针delta1=pi/3; %近休止角delta2=2*pi/3; %推程运动角delta3=pi/2; %远休止角delta4=pi/2; %回程运动角alpha1=pi/6; %推程许用压力角alpha2=(70/180)*pi; %回程许用压力角rho0min=0.3*rr; %许用最小曲率半径del1=delta1+delta2;del2=del1+delta3;temp=0; %判断是否执行r0=r0+Deltar0的变量while (temp==0)temp=1;s0=sqrt(r0^2-e^2); %求解s0alpha1max=0;delta1max=0; %定义alpha1的最大值以及对应的delta1值alpha2max=0;delta2max=0; %定义alpha2的最大值以及对应的delta2值rhoamin=r0-rr;deltamin=0; %定义rhoa的最小值以及对应的delta值for I=0:120; %圆周120等分delta=(I*3/180)*pi;if delta>=0&delta<delta1 %近休阶段s=0; %位移v=0; %速度a=0; %加速度elseif delta>=delta1&delta<(delta2/2)+delta1 %等加速推程s=2*h*(delta-delta1)^2/delta2^2;v=4*h*omega*(delta-delta1)/delta2^2;a=4*h*omega^2/delta2^2;elseif delta>=(delta2/2)+delta1&delta<del1 %等减速推程s=h-2*h*(delta2-(delta-delta1))^2/delta2^2;v=4*h*omega*(delta2-(delta-delta1))/delta2^2;a=-4*h*omega^2/delta2^2;elseif delta>=del1&delta<del2 %远休阶段s=h;v=0;a=0;elseif delta>=del2&delta<=2*pi %五次多项式运动规律回程s=h-(10*h*(delta-del2)^3/delta3^3-15*h*(delta-del2)^4/delta3^4+6*h*(delta-del 2)^5/delta3^5);v=-(30*h*omega*(delta-del2)^2/delta4^3-60*h*omega*(delta-del2)^3/delta4^4 +30*h*omega*(delta-del2)^4/delta4^5);a=-(60*h*omega^2*(delta-del2)/delta4^3-180*h*omega^2*(delta-del2)^2/delta 4^4+120*h*omega*(delta-del2)^3/delta4^5);endx=(s0+s)*sin(delta)+e*cos(delta); %理论轮廓方程式y=(s0+s)*cos(delta)-e*sin(delta);x_=(v/omega-e)*sin(delta)+(s0+s)*cos(delta); %理论轮廓对delta求一次导数y_=(v/omega-e)*cos(delta)-(s0+s)*sin(delta);x__=(a/omega^2-(s0+s))*sin(delta)+(2*v/omega-e)*cos(delta); %理论轮廓对delta求二次导数y__=(a/omega^2-(s0+s))*cos(delta)-(2*v/omega--e)*sin(delta);x1=x-rr*(-y_/sqrt(x_^2+y_^2)); %实际轮廓方程式y1=y-rr*(x_/sqrt(x_^2+y_^2));alpha=atan((v-e)/(sqrt(r0^2-e^2)+s)); %求压力角if delta>=del2&delta<=2*pi %判断是否为回程if abs(alpha)>alpha2 %判断是否大于回程许用压力角r0=r0+Deltar0;temp=0;break;elseif abs(alpha)>alpha2max %满足许用压力角,则找出回程最大压力角alpha2max=abs(alpha);delta2max=delta;endendelseif abs(alpha)>alpha1 %判断是否大于推程许用压力角r0=r0+Deltar0; %不满足许用压力角,则增大基圆半径重新计算temp=0;break;elseif abs(alpha)>alpha1max %满足许用压力角,则找出推程最大压力角alpha1max=abs(alpha);delta1max=delta;endendendrho=(x_^2+y_^2)^(3/2)/(x_*y__-y_*x__); %计算曲率半径if rho<0rhoa=abs(rho)-rr;if rhoa>=rho0min %满足最小曲率半径if rhoa<rhoamin %找出实际轮廓曲线的最小曲率半径及其对应的delta角rhoamin=rhoa;deltamin=delta;endelser0=r0+Deltar0;temp=0;break;endendDelta(I+1)=(delta/pi)*180; %delta由弧度值转化为角度值X(I+1)=x*1000;Y(I+1)=y*1000;X1(I+1)=x1*1000;Y1(I+1)=y1*1000;S(I+1)=s;V(I+1)=v;A(I+1)=a;ALPHA(I+1)=(alpha/pi)*180;PHO(I+1)=rho*1000;endenddeltamin=(deltamin/pi)*180;alpha1max=(alpha1max/pi)*180;delta1max=(delta1max/pi)*180;alpha2max=(alpha2max/pi)*180;delta2max=(delta2max/pi)*180;figure(1);axis equal;hold ont=0:0.01:2*pi;xx=r0*cos(t)*1000;yy=r0*sin(t)*1000;xxx=(rr*cos(t)+X(1)/1000)*1000;yyy=(rr*sin(t)+Y(1)/1000)*1000;xxxx=e*cos(t)*1000;yyyy=e*sin(t)*1000;plot(xx,yy,'m--',X,Y,':',X1,Y1,'k',xxx,yyy,'c-',xxxx,yyyy,'y-');%画出理论轮廓及实际轮廓以及基圆legend('基圆','理论轮廓','实际工作轮廓');plot(0,0,'ko')plot(X(1),Y(1),'ko');title('凸轮轮廓曲线图');xlabel('X/mm');ylabel('Y/mm');figure(2);plot(Delta,S,Delta,V,'r--',Delta,A,'k:'); %画出位移、速度、加速度曲线图title('凸轮运动规律曲线图');xlabel('{\delta}/(^o)');ylabel('s/m v/m.s^{-1} a/m.s^{-2}');legend('位移','速度','加速度');%结果显示:disp([num2str(Delta'),num2str(X'),num2str(Y'),num2str(X1'),num2str(Y1'),num 2str(S'*1000)]);disp(['rhoamin=',num2str(rhoamin*1000),'deltamin=',num2str(deltamin)]);disp(['alpha1max=',num2str(alpha1max),'delta1max=',num2str(delta1max)]);disp(['alpha2max=',num2str(alpha2max),'delta2max=',num2str(delta2max)]);disp(['r0=',num2str(r0*1000)]);(五)、程序计算结果及分析求得ραmin及对应的δαmin值:rhoamin=14.0952 deltamin=288求得α1max及对应的δ1max值:alpha1max=29.782 delta1max=120求得α2max及对应的δ2max值:alpha2max=47.4426 delta2max=324求得最后的基圆半径r0为:r0=24.5(七)、心得体会通过对凸轮机构的编程设计:(1)、熟悉了推杆的运动规律特别是等加速等减速和五次多项式运动规律;(2)、掌握了已知推杆运动规律用解析法对凸轮轮廓曲线的进行设计的方法以及设计时应该注意的各个性能要求;(3)、加深了对Matlab语言的熟悉与应用(八)、参考书(1)《机械原理》第七版高等教育出版社(2)《MATLAB程序设计教程》中国水利水电出版社。