07 非合作博弈模型及分析
- 格式:ppt
- 大小:350.50 KB
- 文档页数:26
“非合作合作两型博弈”资料合集目录一、基于非合作合作两型博弈且押金返还回收商的闭环供应链定价与利润分配研究二、基于非合作合作两型博弈且押金返还回收商的闭环供应链定价与利润分配研究三、押金返还制造商的闭环供应链双渠道回收竞争与利润分配的非合作合作两型博弈方法四、限制交流结构下供应链碳减排策略的非合作合作两型博弈研究五、考虑链间竞争与链内研发成本共担的绿色供应链决策基于非合作合作两型博弈方法基于非合作合作两型博弈且押金返还回收商的闭环供应链定价与利润分配研究在当今复杂多变的商业环境中,供应链管理已成为了企业成功的关键因素之一。
在闭环供应链中,产品的回收再利用对于企业的可持续发展和利润增长具有重要意义。
本文将探讨基于非合作合作两型博弈且押金返还回收商的闭环供应链的定价与利润分配问题。
在非合作博弈模型中,供应链成员之间不存在信息共享和协同决策。
每个成员都追求自身利益最大化,导致整体供应链效率低下,甚至出现“囚徒困境”。
在闭环供应链中,非合作博弈模型无法充分利用回收商的信息和资源,可能导致过高的交易成本和较低的供应链效率。
相比之下,合作博弈模型强调供应链成员之间的信息共享和协同决策。
通过建立合作伙伴关系,供应链成员可以共同制定定价策略和利润分配方案,实现整体利益最大化。
在闭环供应链中,合作博弈模型有利于提高回收效率和降低交易成本,进而提升整个供应链的利润水平。
押金返还制度是一种促进产品回收再利用的有效手段。
在闭环供应链中,企业可以向消费者收取一定数额的押金,承诺在消费者退回产品后返还押金。
押金返还制度可以激励消费者参与产品回收,提高回收率,进而降低生产成本和增加供应链利润。
基于非合作合作两型博弈且押金返还回收商的闭环供应链,企业需要制定合理的定价与利润分配方案。
企业应通过市场调研和分析,确定消费者对产品的需求和接受程度;根据产品的特性、市场需求以及回收成本等因素,制定合理的定价策略;企业应与合作伙伴协商制定利润分配方案,确保整体利益最大化。
博弈论论⽂--⾮合作博弈论⾮合作博弈论博弈论也叫对策论,是现代微观经济学的基础领域之⼀,主要研究在彼此互动的情形下个⼈是如何做决策的。
近年来它已经被⼴泛地应⽤于商业、政治、社会学等其他社会科学的分析中。
博弈的分类根据不同的基准也有不同的分类。
⼀般认为,博弈主要可以分为合作博弈和⾮合作博弈。
合作博弈和⾮合作博弈的区别在于相互发⽣作⽤的当事⼈之间有没有⼀个具有约束⼒的协议,如果有,就是合作博弈,如果没有,就是⾮合作博弈。
1950年和1951年纳什的两篇关于⾮合作博弈论的重要论⽂,彻底改变了⼈们对竞争和市场的看法。
他证明了⾮合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。
从⽽揭⽰了博弈均衡与经济均衡的内在联系。
纳什的研究奠定了现代⾮合作博弈论的基⽯,后来的博弈论研究基本上都沿着这条主线展开的。
1944年冯·诺依曼与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济⾏为》出版,标志着现代系统博弈理论的的初步形成。
尽管对具有博弈性质的问题的研究可以追溯到19世纪甚⾄更早。
例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利⽤博弈论⽅法帮助⽥忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,⽚断的研究,带有很⼤的偶然性,很不系统。
冯·诺依曼和摩根斯特恩的《博弈论与经济⾏为》⼀书中提出的标准型、扩展型和合作型博弈模型解的概念和分析⽅法,奠定了这门学科的理论基础。
合作型博弈在20世纪50年代达到了巅峰期。
然⽽,诺依曼的博弈论的局限性也⽇益暴露出来,由于它过于抽象,使应⽤范围受到很⼤限制,在很长时间⾥,⼈们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响⼒很有限。
正是在这个时候,⾮合作博弈—“纳什均衡”应运⽽⽣了,它标志着博弈论的新时代的开始!纳什不是⼀个按部就班的学⽣,他经常旷课。
基于非合作博弈的绩效管理研究引言绩效管理是一个组织中非常重要的管理活动,旨在评估和提高员工的工作绩效。
传统的绩效管理方法通常依赖于主管对员工的评估,然后以此为基础进行奖励和晋升决策。
然而,这种方法常常受到主管主观评价和局限性的影响,容易引发争议和不满。
因此,研究者们开始关注使用非合作博弈模型来解决绩效管理中的问题。
本文将探讨基于非合作博弈的绩效管理研究。
非合作博弈的概念非合作博弈指的是在决策中参与者之间缺乏合作与沟通的情况下进行的博弈。
各参与者在做出决策时,只考虑自己的利益,而不考虑其他参与者的利益。
非合作博弈模型常用于分析个体或组织在竞争环境下的行为和决策。
绩效管理中的非合作博弈模型在绩效管理中,非合作博弈模型可以帮助理解员工和组织之间的互动,并提供决策支持。
例如,通过建立员工之间的竞争关系,可以激励员工努力工作以获得更好的绩效评价。
另外,非合作博弈模型还可以用于设计激励机制,以确保员工能够在绩效管理中持续表现出优良的绩效。
基于非合作博弈的绩效管理方法激励机制设计在非合作博弈模型中,激励机制设计是非常重要的一环。
激励机制需要考虑员工的行为和决策对组织绩效的影响,并采取相应的奖励和惩罚措施来引导员工的行为。
通过将绩效评价与奖励挂钩,可以激励员工努力工作,提高绩效。
竞争关系建立建立员工之间的竞争关系是基于非合作博弈的绩效管理中的一种常见方法。
通过将员工的绩效评价与其他员工的绩效进行比较,可以激发员工之间的竞争意识,促使他们更加努力地工作。
同时,竞争关系还可以通过激励措施,如奖金、晋升和特权等来奖励表现优秀的员工,进一步激励他们追求卓越。
合作与共享尽管非合作博弈模型更注重个体的利益,但在绩效管理中,合作和共享也是非常重要的。
通过搭建合作平台和分享资源,可以促进员工之间的合作,充分发挥团队的力量。
此外,共享绩效奖励也能够促使员工之间更好地协作,共同为组织的绩效目标而努力。
基于非合作博弈的绩效管理的优缺点优点•基于非合作博弈的绩效管理能够减少主管评价的主观性,提高评价的客观性。
合作博弈和非合作博弈例子1. 你看啊,在篮球比赛中,两队球员之间的竞争就是非合作博弈呀!每个人都想着自己球队获胜,会尽力去得分、防守,这可不是为了对方好哟!相反呢,几个公司一起合作开发一个项目,大家各自发挥优势,共同努力去达成目标,这就是合作博弈嘛,就像一群小伙伴齐心协力搭积木一样呀!2. 想想看,商业谈判中双方为了争取最大利益而讨价还价,这明显是非合作博弈啦!都想让自己占便宜呢。
但要是同一产业链上的不同企业相互协作,一起去拓展市场,那不就是合作博弈嘛,就如同一起划船向前进呀!3. 好比选举的时候,候选人们互相竞争选票,那就是非合作博弈嘛,各显神通呀!可要是社区里的居民们一起商量怎么改善环境,共同行动,这就是合作博弈呀,跟一家人一起干活一个道理呀!4. 玩扑克牌的时候,每个人都想赢,这就是非合作博弈呀,藏着自己的心思呢!但在救灾的时候,各方力量汇聚起来,一起救援,难道这不是合作博弈嘛,简直就是众人拾柴火焰高哇!5. 市场上各个商家竞相降价吸引顾客,这是非合作博弈没错吧!但要是他们联合起来搞促销活动,吸引更多人来消费,这不就是合作博弈嘛,像一起把蛋糕做大一样嘛!6. 在战场上,敌我双方拼个你死我活,这是非合作博弈呀,多么残酷!而在科学研究中,不同的团队共享成果、互相交流,那就是合作博弈哇,这不是共同进步嘛!7. 同学们考试争取好名次,这是非合作博弈啦,都想自己更棒呀!但一起做小组作业的时候,互相帮助、共同完成,不就是合作博弈嘛,就像共同建造一个美丽的城堡呀!8. 两家企业为了争夺市场份额而拼命打广告、搞竞争,这绝对是非合作博弈咯!但当它们面临行业危机时,携手合作共度难关,这不就是合作博弈嘛,好比风雨中互相搀扶呀!9. 你想想,在求职中大家竞争岗位,各显其能,就是非合作博弈呀!可在一个项目组里大家一起头脑风暴,出谋划策,这就是合作博弈呀,像是一起烹饪一道美味佳肴嘛!我的观点:合作博弈和非合作博弈在生活中无处不在呀,我们要善于分辨,根据不同的情况选择合适的策略,这样才能让事情往好的方向发展哟!。
厂商研发的非合作和合作博弈模型分析1 引言研发对一个公司来说至关重要,它是公司能够持续发展的关键因素。
只有通过研发,公司才能推出新产品来保持和提高自己的市场份额。
因此几乎每个公司都对研发投入了大量资金,并且研发经费占公司利润的比例有不断提高的趋势。
但是,对每个公司来说,公司间的研发竞赛是次优的,这主要表现在:从社会经济总体发展来看,由于公司间研发的保密而使很多经费进行同样的研发,从而使社会资源产生浪费。
从单个公司来说,研发间的竞争导致了公司财务的沉重负担,甚至有的公司不堪重负而破产。
因此,公司间研发的合作是非常重要的,这不仅仅表现在社会资源的有效利用,而且表现在这种合作是一种双赢的结果。
本文通过一些合理的假设探讨了两个相同公司间研发的非合作和合作博弈模型,并分析这种现象给出评价标准来进行对比分析。
2 非合作博弈模型本模型是Cournot模型的一种推广,文中的许多假设和Cournot模型相同,所不同的是Cournot模型是一种完全信息静态博弈模型,而本文所给出的模型是一种两阶段博弈模型,即在Cournot模型的基础上加进了公司的研发投入阶段。
模型的若干假设:一个经济系统中只有两个相同的公司,也可以说这两个公司是对称的,即一个公司是另一个公司的复制,两个公司在投入成本,产出水平,以及发展战略上都是相同的,并设两个公司的初始单位成本为c,即没有进行研发时的成本,两公司所进行的两阶段博弈模型如下:在第一阶段,两个公司同时选择研发投入经费x1,x2后进行研发过程;在第二阶段,两个公司注意到研发投入经费x1,x2,生产出产品后在产品市场上进行竞争。
由于混合策略在公司进行决策时过于麻烦,并且公司的研发对于一个公司来说至关重要,有的研发一旦确定,就需要相当长的时间去完成,中途更改的机会成本很高,因此,本文只讨论纯策略时的情况,并且讨论的是一个一次博弈模型,而不考虑重复博弈时的公司行为,所以本文过多地关注纯策略子博弈完备均衡就不足为奇了。
博弈论-纳什均衡(非合作博弈均衡)完全理性:理性指一种行为方式,它适合实现指定目标,而且在给定条件和约束的限度之内。
在不同的学科领域,理性所涵盖的内容存在着差异完全理性的内涵具有完全理性的行为人是个无所不知的超人,他具有纵向和横向方面完备的知识。
在纵向方面,他可以预测未来;在横向方面,他通晓资源、交易伙伴和环境等情况。
具体而言,行为人的完全理性包括以下隐含内容。
(1)不存在不确定性,即使存在不确定性,也可以预知不确定性的概率分布。
也就是说,对于具有完全理性的行为人来说,一切信息都是确定的。
(2)行为人具有可以确定的效用函数(消费者的效用函数和厂商的利润函数可以统称为效用函数),同时行为人具有同质性以及一致性的偏好体系。
(3)选择结果具有描述不变性、程序不变性和前后关系独立性。
描述不变性要求行为人选择的先后顺序不应依赖于所描述或显示的选项,也就是说如果行为人经过再三思考,将两种描述视为同一问题的同义表达,那么它们必定导致相同的选择——即这种思考不存在异处;程序不变性要求不同方式的等价学说揭露相同的偏好次序;前后关系独立性指一项选择与其他替代方案互为独立的原则,它要求在给定Z而不提供有关X或Y 的新的信息的情况下,X 与Y的优先权顺序不应该依赖于Z是否有效。
(4)行为人具备完备的计算和推理能力,可以像计算机一样在数秒内从事无穷尽的计算步骤,同时也不存在感性因素对选择的干扰。
(5)选择意味着在各种方案或选择集中进行比较和挑选,因此完全理性的行为人可以设计出所有的被选方案,以及各项方案所产生的全部后果。
(6)一个确定的报酬函数,即行为人可以确定地赋予每项行动结果一个具体的量化价值或效用。
(7)确定性的结果,也就是行为人町以实现效用最大化或最优目标(消费者效用最大化和企业利润最大化)。
在上述条件下,建立在完全理性假设的基础上的主流经济学的方法论,即行为人的选择或决策意味着在资源约束的条件下实现效用最大化或利润最大化。
信息与非合作博弈理论第三章信息与非合作博弈理论3.1 博弈论概述3.1.1 什么是博弈论博弈论(game theory)定义:研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的,是专门研究博弈如何出现均衡的规律的学科。
博弈论的相关概念包括:参与人、行动、战略、信息、共同知识、支付函数、结果、均衡。
3.1.2 博弈的分类3.1.3 博弈论的发展简述3.2 完全信息静态博弈3.2.1 博弈的战略式表述3.2.2 纳什均衡1、占优战略均衡一个参与人的最优战略并不依赖于其他参与人的战略选择,即不论其他参与人选择什么战略,他的最优战略是唯一的,这样的最优战略被称为“占优战略”(dominant strategy)。
2、重复剔除的占优均衡战略组合s*= (s1*,…,sn*)称为重复剔除的占优均衡,如果它是重复剔除劣战略后剩下的唯一的战略组合。
如果这种唯一的战略组合是存在的,我们说该博弈是重复剔除占优可解的显然,(上,中)就是该博弈唯一的均衡解。
这种方法在博弈论中被称为重复剔除严格劣战略。
在两人有限博弈中,求解纳什均衡有一种简单的方法:划线法3、纳什均衡(定义)纳什均衡有强弱之分。
上述定义中给出的是弱纳什均衡,一个纳什均衡是强的,如果给定其他参与人的策略,每一个参与人的选择是唯一的。
即,s*是一个强Nash均衡,当且仅当对每一个i,si′≠si*,总有ui (si*,s-i*)>ui (si′,s-i*)。
在有些博弈中,纳什均衡存在,但它不是强纳什均衡。
如表3.8的博弈中,(U,L)和(U,R)都是纳什均衡,但没有一个是强纳什均衡。
本实验的启示有三:1、当大家都想免费搭便车的时候,车子便会停滞不前;2、一个完全平均主义社会(初始资本相同、收益平分),如果成员完全大公无私,可以获得最好的发展效率(80元),如果成员自私,则效率最慢(原地踏步);3、有大猪和小猪的社会,大猪将承担责任,至少不会停滞不前。