4第4课时 万有引力与航天
- 格式:ppt
- 大小:989.50 KB
- 文档页数:47
04 神州飞船—万有引力与航天神舟飞船是中国自行研制,具有完全自主知识产权,达到或优于国际第三代载入飞船技术的飞船。
神舟号飞船是采用三舱一段,即由返回舱、轨道舱、推进舱和附加段构成,由13个分系统组成。
神舟号飞船与国外第三代飞船相比,具有起点高、具备留轨利用能力等特点。
神舟系列载人飞船由专门为其研制的长征二号F火箭发射升空,发射基地是酒泉卫星发射中心,回收地点在内蒙古中部的四子王旗航天着陆场。
截至2019年4月24日,神舟飞船、天舟飞船正在进行正(试)样产品组批生产。
各型号概览1. 一质量为8.00×104 kg 的太空飞船从其飞行轨道返回地面。
飞船在离地面高度1.60×105 m 处以7.5×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面。
取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2。
(结果保留2位有效数字) (1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。
【解析】(1)飞船着地前瞬间的机械能为20021mv E k =① 式中,m 和v 0分别是飞船的质量和着地前瞬间的速率。
由①式和题给数据得8kp 4.010J E =⨯②设地面附近的重力加速度大小为g ,飞船进入大气层时的机械能为212h h E m mgh =+③ 式中,v h 是飞船在高度1.6×105m 处的速度大小。
由③式和题给数据得122.410J h E =⨯④(2)飞船在高度h' =600 m 处的机械能为21 2.0()2100h h E m v mgh ''=+⑤由功能原理得k0h W E E '=-⑥式中,W 是飞船从高度600m 处至着地瞬间的过程中克服阻力所做的功。
第4节万有引力与航天1.(2018·河北张家口期末)第谷、开普勒等人对行星运动的研究漫长而曲折,牛顿在他们的研究根底上,得出了科学史上最伟大的定律之一——万有引力定律.如下说法中正确的答案是( D )A.开普勒通过研究、观测和记录发现行星绕太阳做匀速圆周运动B.太阳与行星之间引力的规律并不适用于行星与它的卫星C.库仑利用实验较为准确地测出了引力常量G的数值D.牛顿在发现万有引力定律的过程中应用了牛顿第三定律解析:开普勒发现行星绕太阳沿椭圆轨道运动,选项A错误;万有引力定律适用于任何可看成质点的两物体之间,选项B错误;卡文迪许测量出了引力常量的数值,选项C错误;牛顿在发现万有引力定律的过程中认为太阳吸引行星,同样行星也吸引太阳,选项D正确.2.(2018·江苏卷,1)我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号〞轨道高度约为705 km,之前已运行的“高分四号〞轨道高度约为36 000 km,它们都绕地球做圆周运动.与“高分四号〞相比,如下物理量中“高分五号〞较小的是( A ) A.周期 B.角速度C.线速度D.向心加速度解析:“高分五号〞的运动半径小于“高分四号〞的运动半径,即r五<r四,由万有引力提供向心力得=mr=mrω2=m=ma,如此T=∝,T五<T四,选项A正确;ω=∝,ω五>ω四,选项B错误;v=∝,v五>v四,选项C错误;a=∝,a五>a四,选项D错误.3.(2019·江苏扬州测试)(多项选择)2017年9月25日后,微信启动页面采用“风云四号〞卫星成像图.“风云四号〞是我国新一代静止轨道气象卫星,如此其在圆轨道上运行时( CD )A.可定位在赤道上空任意高度B.线速度介于第一宇宙速度和第二宇宙速度之间C.角速度与地球自转角速度相等D.向心加速度比月球绕地球运行的向心加速度大解析:同步卫星只能在赤道上空,且高度保持不变,故A错误;第一宇宙速度为人造卫星的最大运行速度,气象卫星的线速度小于第一宇宙速度,故B错误;同步卫星的周期等于地球的自转周期,所以同步卫星绕地球运行的角速度与地球自转的角速度相等,故C正确;同步卫星与月球都是万有引力提供向心力,由=ma可得a=,所以同步卫星绕地球运行的向心加速度比月球绕地球运行的向心加速度大,故D正确.4.(2019·陕西西安模拟)一些星球由于某种原因而发生收缩,假设该星球的直径缩小到原来的四分之一,假设收缩时质量不变,如此与收缩前相比( D )A.同一物体在星球外表受到的重力增大到原来的4倍B.同一物体在星球外表受到的重力增大到原来的2倍C.星球的第一宇宙速度增大到原来的4倍D.星球的第一宇宙速度增大到原来的2倍解析:当直径缩小到原来的四分之一时,半径也同样缩小到原来的四分之一,重力加速度g=增大到原来的16倍,第一宇宙速度v=增大到原来的2倍.5.(2019·重庆巴蜀中学月考)“嫦娥五号〞卫星预计由长征五号运载火箭发射升空,自动完成月面样品采集,并从月球起飞,返回地球.这次任务的完成将标志着我国探月工程“三步走〞顺利收官.引力常量为G,关于“嫦娥五号〞的运动,以下说法正确的答案是( B )A.“嫦娥五号〞的发射速度小于同步卫星的发射速度B.假设“嫦娥五号〞在月球外表附近做匀速圆周运动的周期,如此可求出月球的密度C.“嫦娥五号〞的发射速度必须大于11.2 km/sD.“嫦娥五号〞在月球外表附近做匀速圆周运动的线速度大小为7.9 km/s解析:“嫦娥五号〞的运行轨道高度大于同步卫星的运行轨道高度,故“嫦娥五号〞的发射速度大于同步卫星的发射速度,故A错误;由G=m()2r和M=πR3ρ可得ρ=()3,当在月球外表时,r=R,只需知道周期T,就可以求出月球的密度,故B正确;“嫦娥五号〞的发射速度小于11.2 km/s,故C错误;“嫦娥五号〞在月球外表附近绕月球做匀速圆周运动的线速度v=,g和R均比地球的要小,故v<7.9 km/s,故D错误.6.(2019·安徽六校教育研究会第一次联考)地球和火星绕太阳公转的轨道半径分别为R1和R2(公转轨道近似为圆),如果把行星与太阳连线扫过的面积与其所用时间的比值定义为扫过的面积速率,如此地球和火星绕太阳公转过程中扫过的面积速率之比是( B )A. B.C. D.解析:根据开普勒第三定律有==k,天体公转的角速度ω=,一定时间内扫过的面积S==,所以扫过的面积速率之比等于单位时间内的面积比,代入角速度可得面积速率之比为.7.(2019·江苏连云港模拟)对于环绕地球做圆周运动的卫星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据的不同卫星做圆周运动的半径r与周期T关系作出如下列图图像,如此可求得地球质量为(引力常量为G)( A )A. B.C. D.解析:由=m r可得=,结合图线可得,=,故M=.8.(2019·河北石家庄质检)(多项选择)如下列图为某飞船从轨道Ⅰ经两次变轨绕火星飞行的轨迹图,其中轨道Ⅱ为圆轨道,轨道Ⅲ为椭圆轨道,三个轨道相切于P点,P,Q两点分别是椭圆轨道Ⅲ的远火星点和近火星点,S是轨道Ⅱ上的点,P,Q,S三点与火星中心在同一直线上,且PQ=2QS,如下说法正确的答案是( AC )A.飞船在P点由轨道Ⅰ进入轨道Ⅱ需要减速B.飞船在轨道Ⅱ上由P点运动到S点的时间是飞船在轨道Ⅲ上由P点运动到Q点的时间的1.5倍C.飞船在轨道Ⅱ上S点与在轨道Ⅲ上P点的加速度大小相等D.飞船在轨道Ⅱ上S点的速度大小小于在轨道Ⅲ上P点的速度大小解析:飞船在P点由轨道Ⅰ进入轨道Ⅱ需要做减速运动,选项A正确;因为PQ=2QS,所以飞船在轨道Ⅱ上运行的轨道半径R2==1.5QS,飞船在轨道Ⅲ上运动轨迹的半长轴R3==QS,由开普勒第三定律=k知,==1.84,选项B错误;由牛顿第二定律知G=ma,解得a=,由于飞船在轨道Ⅱ上S点与在轨道Ⅲ上P点到火星中心的距离相等,故飞船在两点的加速度大小相等,选项C正确;飞船在轨道Ⅱ上S点的速度大小等于在轨道Ⅱ上P点的速度大小,飞船在P点由轨道Ⅱ进入轨道Ⅲ需要减速运动,故飞船在轨道Ⅱ上S点的速度大小大于在轨道Ⅲ上P点的速度大小,选项D错误.9.(2019·安徽合肥测试)宇航员在月球外表上做自由落体实验,将铁球由距月球外表高h处静止释放,经时间t落在月球外表.引力常量为G,月球的半径为R.求:(1)月球外表的重力加速度g.(2)月球的质量M.(3)月球的“第一宇宙速度〞的大小v.解析:(1)由自由落体运动的规律可知h=gt2解得月球外表重力加速度g=.(2)在月球外表,万有引力近似与重力相等G=mg得月球的质量M=(3)万有引力提供向心力,即G=m解得v=.答案:(1)(2)(3)10.(2018·山东泰安一模)由中国科学家设计的空间引力波探测工程“天琴计划〞,采用三颗全同的卫星(SC1,SC2,SC3)构成一个边长约为地球半径27倍的等边三角形,阵列如下列图.地球恰好处于三角形中心,卫星在以地球为中心的圆轨道上运行,对一个周期仅有 5.4分钟的超紧凑双白星(RXJ0806.3+1527)产生的引力波进展探测.假设贴近地球外表的卫星运行速率为v0,如此三颗全同卫星的运行速率最接近( B )v0000解析:由几何关系可知,等边三角形的几何中心到各顶点的距离等于边长的,所以卫星的轨道半径r与地球半径R的关系为r=27×R=9R;根据v=可得=≈0.25,如此v同=0.25v0,故B正确.11.(2019·吉林第二次调研)(多项选择)轨道平面与赤道平面夹角为90°的人造地球卫星被称为极地轨道卫星,它运行时能到达南、北极地区的上空,需要在全球范围内进展观测和应用的气象卫星、导航卫星等都采用这种轨道.如下列图,假设某颗极地轨道卫星从北纬45°的正上方按图示方向首次运行到南纬45°的正上方用时45分钟,如此( AB )A.该卫星的运行速度大小一定小于7.9 km/sB.该卫星的轨道半径与同步卫星的轨道半径之比为1∶4C.该卫星的加速度大小与同步卫星的加速度大小之比为2∶1D.该卫星的机械能一定小于同步卫星的机械能解析:由题意可知,卫星的周期 T=×45 min=180 min=3 h;由于卫星的轨道半径大于地球的半径,如此卫星的线速度小于第一宇宙速度,即卫星的线速度大小小于7.9 km/s,选项A正确;由万有引力提供向心力得G=m()2r,解得r=,该卫星的轨道半径与同步卫星的轨道半径之比===,选项B正确;由牛顿第二定律得G=ma,解得a=,该卫星的加速度大小与同步卫星的加速度大小之比==2=,选项C错误;由于不知该卫星与同步卫星的质量关系,故无法比拟其机械能大小,选项D错误.12.(2019·河北邯郸质检)2017年10月中国科学院国家天文台宣布FAST天文望远镜首次发现两颗太空脉冲星,其中一颗的自转周期为T(实际测量为1.83 s,距离地球1.6万光年).假设该星球恰好能维持自转不瓦解,令该星球的密度ρ与自转周期T的相关量为q星,同时假设地球同步卫星离地面的高度为地球半径的6倍,地球的密度ρ0与自转周期T0的相关量为q 地,如此( A )A.q地=q星B.q地=q星C.q地=q星D.q地=7q星解析:星球恰好能维持自转不瓦解,对该星球赤道外表的物体m有=m R,密度ρ=,可得q星==,同理对地球同步卫星有=m0··7R0,ρ0=,可得q地==,所以q地=q星.13.(2019·某某南宁二中月考)石墨烯是近年发现的一种新材料,其超高强度与超强导电、导热等非凡的物理性质有望使21世纪的世界发生革命性的变化.科学家们设想,用石墨烯制作超级缆绳,搭建“太空电梯〞,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物资交换.地球的半径为R,自转周期为T,地球外表重力加速度为g,如下说法正确的答案是( B )A.“太空电梯〞上各点的角速度不一样B.乘“太空电梯〞匀速上升时乘客对电梯仓内地板的压力逐渐减小C.当电梯仓停在距地面高度为处时,仓内质量为m的乘客对电梯仓内地板的压力为零D.“太空电梯〞的长度L=解析:“太空电梯〞上各点在相等的时间内转过的角度相等,故角速度一样,A错误.由牛顿第二定律有G-F N=mω2r,随着r的增大,F N逐渐减小,由牛顿第三定律可知B正确.当电梯仓停在距地面高度为处时,有G-F N=G-F N=mω2(+R),F N一定不等于零,由牛顿第三定律可知C错误.“太空电梯〞的长度为同步卫星到地面的距离,由万有引力提供向心力得G=m r,由r=R+L,GM=gR2(黄金代换),得L=-R,D错误.14.(2018·湖南衡阳一模)(多项选择)据报道,一个国际研究小组借助于智利的天文望远镜,观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动,如下列图,假设此双星系统中体积较小的成员能“吸食〞另一颗体积较大星体的外表物质,导致质量发生转移,在演变过程中两者球心之间的距离保持不变,双星平均密度可视为一样.如此在最初演变的过程中( BC )A.它们间万有引力大小保持不变B.它们做圆周运动的角速度不变C.体积较大的星体做圆周运动轨迹的半径变大,线速度变大D.体积较大的星体做圆周运动轨迹的半径变小,线速度变大解析:设体积较小的星体质量为m1,轨道半径为r1,体积较大的星体质量为m2,轨道半径为r2,双星间的距离为L,转移的质量为Δm.如此它们之间的万有引力为F=G,根据数学知识得知,随着Δm的增大,F先增大后减小,故A错误.对m1星体有G=(m1+Δm)ω2r1,对m2星体有G=(m2-Δm)ω2r2,得ω=,总质量m1+m2不变,两者距离L不变,如此角速度ω不变,故B正确.ω2r2=,由于ω,L,m1均不变,当Δm增大时,如此r2增大,即体积较大星体圆周运动轨迹半径变大;又由v=ωr2可知线速度v也增大,故C正确,D错误.15.(多项选择)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日〞.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.地球与各地外行星绕太阳运动的轨道半径如下表所示,如此如下判断正确的答案是( BD )地球火星木星土星天王星海王星轨道半径1.0 1.5 5.2 9.5 19 30(AU)A.各地外行星每年都会出现冲日现象B.在2015年内一定会出现木星冲日C.天王星相邻两次冲日的时间间隔为土星的一半D.地外行星中,海王星相邻两次冲日的时间间隔最短解析:金星运动轨道半径小于地球运动轨道半径,运行周期小于地球,因此可能发生凌日现象而不会发生冲日现象,选项A错误;地球周期T地=1年,如此ω地=,同理得T木=年,如此ω木=,木星于2014年1月6日冲日,如此(ω地-ω木)·t=2π,解得t=年≈1年,明确2015年内一定会出现木星冲日现象,B选项正确;根据开普勒第三定律,天王星周期年,远大于地球周期,说明天王星相邻两次冲日间隔近似一年,同理土星周期为年,也会出现类似情况,故C错误;周期越长,相邻两次冲日间隔越接近一年,D项正确.。
第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。
热点4万有引力与航天考向一星球表面重力与引力的关系【典例】(2022·山东等级考)“羲和号”是我国首颗太阳探测科学技术试验卫星。
如图所示,该卫星围绕地球的运动视为匀速圆周运动①,轨道平面与赤道平面接近垂直。
卫星每天在相同时刻,沿相同方向经过地球表面A点正上方,恰好绕地球运行n圈②。
已知地球半径为地轴R,自转周期为T,地球表面重力加速度为g③,则“羲和号”卫星轨道距地面高度为()A.(gR2T22n2π2)13-R B.(gR2T22n2π2)13 C.(gR2T24n2π2)13-R D.(gR2T24n2π2)13【审题思维】题眼直击信息转化①万有引力全部提供圆周运动向心力②地球自转周期是卫星周期的n倍③黄金代换GM=gR2涉及地球自转问题的解题流程1.维度:万有引力定律的应用理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零。
现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示,一个质量一定的小物体(假设它能够在地球内部移动)在x 轴上各位置受到的引力大小用F 表示,则选项所示的四个F 随x 变化的关系图像中正确的是 ( )2.维度:万有引力定律在火星上的应用“祝融号”火星车搭载着陆平台着陆火星,如图所示为着陆后火星车与着陆平台分离后的“自拍”合影。
着陆火星的最后一段过程为竖直方向的减速运动,且已知火星质量约为地球质量的110,火星直径约为地球直径的12。
则 ( )A .该减速过程火星车处于失重状态B .该减速过程火星车对平台的压力大于平台对火星车的支持力C .火星车在火星表面所受重力约为在地球表面所受重力的25D .火星的第一宇宙速度与地球第一宇宙速度之比约为15考向二 天体质量和密度【典例】(2021·全国乙卷)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置①如图所示。
万有引力与航天万有引力定律【教材分析】万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。
教科书在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础身于历史的背景下,经历一次“发现”万有引力的过程:6.26.3从上述物理学史进程中,可以看出《万有引力定律》这节内容是对上两节课教学内容的进一步推演,同时也是下节课教学内容的基础,是本章的教学重点之一,在高中物理中占有比较重要地位。
【教学目标】一、知识与技能1.了解“月—地”检验的理论推导过程,知道重物下落和天体运动的统一性。
2.理解万有引力定律的含义以及适用范围并会用万有引力定律公式解决简单的引力计算问题。
二、过程与方法在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与理论论证的物理方法。
三、情感态度与价值观通过万有引力定律发现过程的学习,让学生体会物理规律对人类认识世界的作用。
【教学重点】万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点,所以要根据学生反映,调节讲解速度及方法。
【教学难点】由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。
【高考分析】本章内容在高考中属于必考内容,出题形式为一个4分的选择题,虽然分值较小,但是考查内容为本章的所有重要知识点,本节课内容是为后面打下基础,为必考内容。
教学中应加以强调重要性。
【教学方法】科学探究法、启发诱导法、归纳总结法。
【教具】多媒体教学【教学过程】(一)引入新课在上一节我们经历了太阳与行星间引力的探究过程,学习了发现问题、提出问题、猜想假设、推理论证等思想方法。
我们推导出了太阳与行星间的引力规律,即2rMm G F =。
知道了行星为什么能够绕太阳运转而不会飞离太阳。
万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。
2. 公式,其中,称为引力常量。
3. 适用条件适用于两个质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,为两球心间的距离。
二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。
若已知环绕天体的线速度和轨道半径,则。
若已知环绕天体的角速度和轨道半径,则。
若已知环绕天体的周期和轨道半径,则。
2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。
由,天体的体积。
当卫星绕天体表面运行时,则。
三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。
2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。
3. 卫星的角速度由可得,轨道半径越大,角速度越小。
4. 卫星的周期由可得,轨道半径越大,周期越大。
5. 地球同步卫星特点:周期,与地球自转周期相同。
轨道平面与赤道平面重合。
高度,线速度。
四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。
计算:由(为地球半径),可得。
这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。
2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。
3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。
五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。
2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。