第二十一章二次根式学案教案
- 格式:docx
- 大小:452.88 KB
- 文档页数:32
A B C第一讲 二次根式一、教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a ≥0时,()2a = a ;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
二、教学重点:二次根式的概念以及二次根式的基本性质三、教学难点:经历知识产生的过程,探索新知识.四、教学过程:1、概念复习:什么叫平方根? 什么叫算术平方根?2、 引入:计算:的平方根是 .(2)如图,在R ∆t ABC 中,AB=50m,BC=a m,则AC= m. (3)圆的面积为S,则圆的半径是 .(4)正方形的面积为3-b ,则边长为 .(5)对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗? 3、归纳总结:1、二次根式的定义.______________________________________________________ 说说对二次根式 a 的认识,好吗?_________________________________________2、练习:说一说,下列各式是二次根式吗?(1)32 (2)6 (3)12- (4))0(≤-m m (5)x xy (、y 异号) (6)12+a (7)35 4、例1: 要使式子5-x 有意义,x 的取值范围是什么?5、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;……观察上述等式的两边,你得到什么启示?揭示:当a ≥0时,()2a = a 。
6、例2:计算:(1)2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)7、练习. (1)=2)32((2)2)32(- 练习:1、要使下列式子有意义,x 的取值范围是什么?(1)5+x (2)43-x (3)15+x (4)x 101- (5)12+x (6)2x - (7)11-+-x x (8)11+x (9)31x-2、当x=2时,下列各式中,在实数范围内没有意义的是( ) A 、2-x B 、x -2 C 、22-x D 、22x -3、计算:(1)2)5( (2)2)73((3)22)2()8(+ (4)222)(b a +4、已知0512=++++-y x y x ,求x+y 的值。
《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。
2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。
它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。
再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。
教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。
21.1.1二次根式的基本性质(1)教学目标:(1a ≥0)的意义求字母的取值范围. (2)二次根式的基本性质:(1)()()02≥=a a a ;(2)()()02≥=a a a .教学重点:二次根式的概念;教学难点:a ≥0)”解决具体问题. 教学过程:一.复习:1.如果 x ² = a 那么 x 叫做a 的平方根,表示为x=±a ≥0)a 的算术平方根,-a 的算术平方根的相反数例如(114412;(2)0.810.9--2.练习:(1)求下列各数的平方根和算术平方根:0,10,64.0,92-(2)什么叫一个数a 的平方根?算术平方根?怎样表示?0的平方根是什么?负数有没有平方根?二.二次根式的意义: 前面已经学过,符号“”叫做二次根号,二次根号下面的数叫被开方数。
因为在实数范围内,负数无平方根,所以被开方数中只能是非负数。
一般地,我们用a 表示被开方数,把式子a ()0≥a 叫做二次根式。
二次根式有两上要点:(1)要含有;(2)被开方数是非负数例1 .x 是怎样的实数时,下列各数在实数范围内有意义?(1)1-x (2)x 5- (3)1+x (4)21--x x分析:当各式的被开方数为非负数时,这些式子在实数范围内才意义。
如(1),就是求当x 是一个怎样的实数时,1-x 非负,因此可以解关于x 的一元二次不等式,分别得出x 的取值范围。
解:(1)由01≥-x 得1≥x 。
当1≥x 时,式子1-x 有意义。
(2)x ≥0(3)x 为一切实数(4)x ≥1且x ≠2 小结:要使一个式了有意义要从两方面来思考(1)分式的分母不为零; (2)偶次根号里的被开方数要是非负数 练习1:x 是怎样的实数时,下列各数在实数范围内有意义?(1)x 34- (2)2-x (3)12+x (4)31+-x三.二次根式的性质求下列各数的算术平方根的平方值,并说出这些值与原来的各数有什么关系?94,0,2,4解:42)4(22==,2)2(2=,0)0(2=,94)32()94(22==问:如果用字母a 表示数,上述结论是否成立?成立的条件是什么? 答:如果,0≥a 那么()a a =2,我们得到二次根式的基本性质()()02≥=a a a问题:请判断下列各式是否成立?(1)()552= (2)()552=- (3)()552-=- (4)()()0222≥=m m m解:(1)正确(2)正确 (3)错误 ,应该=5(4)正确例2计算(1)253⎪⎪⎭⎫ ⎝⎛ (2)()232 (3)()272- (4)()2n m答:(1)53(2)1234)3(222=⨯=⨯= (3)28)7()2(22=⨯-= (4)n m n m 222)(=⨯= 练习2:计算(1)()23.0 (2)2531⎪⎭⎫ ⎝⎛ (3)2321⎪⎭⎫ ⎝⎛- (4)()2b a (5)24332⎪⎪⎭⎫ ⎝⎛例3 化简:()xy yx ---22解:∵0≥-y x 即y x ≥ ∴yx x y -=-∴()x y yx ---22=()xy y x y x -=---2练习3:若521=--+-+b a b a ,求a 与b 的值。
21.2二次根式的乘除(2)教学目标:(1)理解b a ba =()0,0>≥b a . (2)利用b a ba =()0,0>≥b a 进行运算 教学重点:运用a ≥0,b>0)进行计算和化简. 教学难点:运用a ≥0,b>0)进行计算和化简.教学过程: 一、导入新课分别计算下列各式,并判断各题中的左式与右式的值是否相等?你能发现什么规律吗?请用语言叙述。
(1)94与94; (2)10049与10049; (3)6425与6425。
每题中的左式和右式的值相等。
发现的规律是:两个数的商的算术平方根等于被除数除数的算术平方根除以除数的算术平方根。
二、新课教学上面的规律,同学们能用式子表示吗?式子在什么条件下成立?答:b a ba =()0,0>≥b a 指出:1、这个式子表示的商的算术平方根的性质,即商的算术平方根等于被式的算术平方根除以除式的算术平方根;2、被除式0≥a ,除式0>b ;3、式子b a ba =()0,0>≥b a 可以用来求分式(或分数)的算术平方根。
练习1:选择题:(1)等式1313--=--a a a a 成立的条件是( ) A 、1≠a B 、3≥a 且1≠a C 、1>a D 、3≥a(2)如果b a是二次根式,应满足的条件是( )A 、b a ,同号B 、0,≥≥b o aC 、0,0>≥b aD 、0≥b a例1 化简: (1)49151; (2)1003。
解:(1)49151=7849644964== (2)1003=1003=103练习2:计算:(1)412(2)2563(3)361225例2 化简:(1)24925y x ; (2)4381125b a 。
解:(1)24925y x=yx y x35925224= (2)4381125b a =()()2222955955b aa b aa =⋅练习3:(1)4212116m n (2)6325169y x例3 化简:(1)2509.0421.1⨯⨯; (2)42234984y a a x x +; (3)()()()2789--⋅-.请同学说出各题的解题思路:答(1)中的被除数开方数的分子与分母都是两个因数之积,因此先运用商算术平方根的性质,再运用积的算术平方根的性质将分子与分母别化简。
二次根式第一课时一、教学目标1.核心素养:通过学习二次根式的概念,培养学生数感和符号意识.2.学习目标(1)根据算术平方根的意义了解二次根式的概念,能用二次根式表示实际问题中的数量和数量关系.(2)知道被开方数必须是非负数的理由,会求二次根式有意义的条件.3.学习重点从算术平方根的意义出发理解二次根式的概念.4.学习难点二次根式有意义的条件.二、教学设计(一)课前设计1.预习任务任务1 回顾:什么叫算术平方根?任务2 阅读教程P2,思考:什么叫二次根式?二次根式有意义的条件是什么?2.预习自测1.面积为3的正方形的边长为()A.3B.3±C. 3-D. 92. 面积为S 的正方形的边长为( ) A.s B.s ± C. s -D. 2s 3. 当x 为何值时,x 有意义( )A.0>xB.0<xC. 0≥xD. 0≤x预习自测1.A2.A3.C(二)课堂设计1.知识回顾(1)平方根:25的平方根是±5,3的平方根是3±,0的平方根是0,-5没有平方根.(2)算术平方根:25的算术平方根是5,3的算术平方根是3,0的算术平方根是0,-5没有算术平方根.2.问题探究问题探究一 什么样的式子是二次根式?★活动一 回顾旧知,整体感受用带根号的式子填空,看看写出的结果有什么特点?(1)面积为2的正方形的边长为,面积为S 的正方形边长为 ;(2)一个长方形硬纸板,长是宽的2倍,面积为130cm2,则它的宽为 cm ;(3)一个物体从高处自由落下,落到地面所用时间t (单位:秒)与开始落下时与地面高度h (单位:米)满足关系h=5t2.如果用含h 的式子表示t ,那么t= .活动二 总结反思,得出概念上面结果都是一些正数的算术平方根,我们知道一个正数有两个平方根;0的平方根是0;在实数范围里内负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0. 二次根式的概念:一般地,我们把形如a (a ≧0)的式子叫做二次根式.二次根式具备哪些特点?(1)有二次根号;(2)被开方数不能小于0.活动三 牛刀小试 初步运用例1.式子:2,x 1,2x ,5-,32,5a 中,二次根式的个数是( )A.1B.2C.3D.4【知识点:二次根式的定义】 详解:2,2x ,5-是二次根式,因此有3个,选C.点拨:二次根式是一种表示方法,既要看形式是否带有二次根号,又要看被开方数是否为非负数.问题探究二 二次根式有意义的条件是怎样的?▲活动一 回顾旧知 开启新知(1)式子:2,0,3-有意义吗?(2)对于任意实数a ,a 一定有意义吗?(3)实数x 满足什么条件,二次根式2-x 有意义?点拨:二次根式是否有意义的关键是看被开方数是否为非负数,因此,三个问题的结果显而易见.(1)式子:2,0有意义,3-没有意义;(2)对于任意实数a ,a 不一定有意义,因为a 有可能为负数;(3)二次根式2-x 要有意义,只需02≥-x 即可,即2≥x .活动二 牛刀小试 初步运用例2.当a 取怎样的实数时,下列各式在实数范围内有意义?【知识点:二次根式有意义的条件】(1)2a (2)12+a (3)11-a详解:(1)2a 中,无论a 取何值,2a 都有意义;(2)12+a 中,无论a 取何值,12+a 都是一个正数,所以,无论a 取何值,12+a 都有意义;(3)11-a 中,01>-a ,即1>a .点拨:二次根式是否有意义的关键是看被开方数是否为非负数,如果式子中,除了二次根式外,还有其它形式的式子,如(3),还得综合考虑,既要考虑二次根式有意义,还要考虑整个式子有意义.3.课堂小结【知识梳理】 形如)0(≥a a 的式子叫做二次根式.二次根式有意义的条件:被开方数为非负数.【重难点突破】二次根式有意义的条件探究.①当给定的代数式只是二次根式形式时,只需要满足被开方数为 即可;②当给定的代数式不只含有二次根式时,则要全面综合考虑,如:代数式21-x 有意义的条件就应同时满足:2-x ≠0和2-x ≥0,即2-x >0. 4.随堂检测1.下列各式不是二次根式的是( ) A. 9 B. )0(≥a a C. 3- D. 0【知识点:二次根式的定义】【参考答案】C【思路点拨】判定一个式子是否是二次根式,首先看是否带有有二次根号;然后看被开方数是否为非负数.2.下列式子中,二次根式的个数是( )(1)31;(2)5-;(3)22+x ;(4)3x ;(5)35A. 1B.2C.3D. 4【知识点:二次根式的定义】【参考答案】B【思路点拨】判定一个式子是否是二次根式,首先看是否带有二次根号;然后看被开方数是否为非负数.因此,(1)(3)是二次根式.3.若式子5-x 在实数范围内有意义,则x 的取值范围是( )A. 5≥xB. 5>xC. 5<xD. 5≤x【知识点:二次根式有意义的条件】【参考答案】A【思路点拨】二次根式有意义的条件就是被开方数要为非负数。
21.2二次根式的乘除(3)教学目的:(1)理解b a ba=()0,0>≥b a ; (2)运用b aba =()0,0>≥b a 进行二次根式的有关运算。
教学重点:运用b a ba=()0,0>≥b a 进行二次根式的有关运算。
教学难点:运用b ab a =()0,0>≥b a 进行二次根式的有关运算。
教学过程:一、复习1、分别用式子表示二次根式积的算术平方根的性质及二次根式的乘法法则。
二者的关系是什么? 答:二次根式积的算术平方根,等于积中各因式的算术平方根的积。
即()0,0≥≥⋅=b a b a ab二次根式的乘法法则是: ()0,0≥≥=⋅b a ab b a 这两个式子是互逆的关系。
2、二次根式商的算术平方根的性质是什么?并用式子表示。
答:二次根式商的算术平方根,等于被除式的算术平方根除以式的算术平方根,即b a b a =()0,0>≥b a 。
二、新课 把式子b a ba =()0,0>≥b a 反过来,得到b a b a =()0,0>≥b a 这是二次根式的除法法则。
运用这个法则可以进行二次根式的除法运算。
例1 计算 (1)672; (2)61211÷。
解:(1) 672=3232321267222=⨯=⨯== (2) 61211÷=6123÷=6123÷=623⨯=9=3练习1:计算(1)354- (2)531513÷例2 计算:(1)4540(2)345653n m n m ÷ 解:(1)4540=32298984540=== (3)345653n m n m ÷=mn n m n m n m n m n m n m 5353535353222234563456====指出:在(2)中把两个二次根式中的根号外面的数与被除数开方数分别相除,然后取其积。
练习2:(1)188146÷ (2)⎪⎭⎫ ⎝⎛-÷233212y x xy (3)y x y x x -÷-224 例3 计算 (1)21223222330÷⨯; (2)⎪⎭⎫ ⎝⎛-⨯÷b a a b b a ab b 3252362 分析:二次根式乘除的混合运算与有理数的乘除混合运算一样,按先后顺序进行。
二次根式教案四篇二次根式教案篇11、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
2、过程与方法:进一步体会分类讨论的数学思想。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
1、重点:准确理解二次根式的概念,并能进行简单的计算。
2、难点:准确理解二次根式的双重非负性。
课本第2— 3页一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。
二、课堂教学(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。
组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。
教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
(二)集体讲授阶段。
(15分钟左右)1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的.普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案篇2一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的'根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
二次根式教案二次根式教案(精选12篇)作为一名教职工,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
我们应该怎么写教案呢?以下是本店铺为大家整理的二次根式教案,欢迎阅读,希望大家能够喜欢。
二次根式教案 1教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点最简二次根式的定义。
教学难点一个二次根式化成最简二次根式的方法。
教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的.内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。
第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1把下列各式化成最简二次根式:例2把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
第21章二次根式导学案21.1二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:,a _ 0(a _ 0)和(..、a )2二a(a _ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a _ 0(a丄0)和(、、a)2 = a(a _ 0)。
三、学习过程(一)复习引入:(1)已知x2= a,那么a 是x的 ___________ ; x 是a的_____________ , 记为_________ , a 一定是__________ 数。
(2)4的算术平方根为2,用式子表示为爲 _________________ ;正数a的算术平方根为____________ , 0的算术平方根为_____________ ;式子a - 0(a _ 0)的意义是____________________________________________________ 。
(二)提出问题1、式子■. a表示什么意义?2、什么叫做二次根式?3、式子. a _ 0(a _ 0)的意义是什么?4、( ..a)2二a(a _0)的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 — V16 3,4-5, 3(a -0).X212、计算:(1) (4)2(2)(3)2(3) ( ..0.5)2(4) (J2根据计算结果,你能得出结论(.a)2-, 其中a启0,C a)2二a(a丄0)的意义是________________________________________________3、当a为正数时二;指a的_________________________ ,而0的算术平方根是__________ ,负数____________ ,只有非负数a才有算术平方根。
二次根式教案【必备7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、讲话致辞、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, job reports, speeches, contract agreements, policy documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!二次根式教案【必备7篇】二次根式教案篇1教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
第21章二次根式21.1 二次根式【知识与技能】1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2.理解a(a≥0)是非负数和(a)2=a.3.理解2a=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如a(a≥0)的式子叫做二次根式.2. a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.3.【教学难点】利用“a(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,a表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:a(a≥0)表示非负数a的算术平方根,也就是说,a(a≥0)是一个非负数,它的平方等于a.即有:(1)a≥0;(2)(a)2=a(a≥0).形如a(a≥0)的式子叫做二次根式.注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:2a等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.概括:当a≥0时,2a=a;当a<0时,2a=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)(a)2=a(a≥0);(2)当a≥0时,2a=a;当a<0时,2a=-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取..本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.21.2 二次根式的乘除法1.二次根式的乘法【知识与技能】a•=ab(a≥b,b≥0),并利用它们进行计算和化简.理解b【过程与方法】a•=ab(a≥0,b≥0)并运用它进行计算.由具体数据发现规律,导出b【情感态度】a•=ab(a≥0,b≥0),培养特殊到一般的探究精神,培养通过探究b学生对事物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab(a≥0,b≥0),及它的运用.b【教学难点】a•=ab(a≥0,b≥0).发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>”、“<”或“=”填空.2.利用计算器计算填空.a•=ab(a≥0,b 【教学说明】由学生通过具体数据,发现规律,导出b≥0).二、思考探究,获取新知(学生活动)让3、4个同学上台总结规律.教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为ba•=ab(a≥0,b≥0).:【教学说明】引导学生应用公式a•=ab(a≥0,b≥0).b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是()A.32cmB.33cmC.9cmD.27cm【答案】1.B 2.C 3.A 4.D【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab(a≥0,b≥0).2.教师总结归纳二次根式的乘法规定b1.布置作业:从教材“习题21.2”中选取.a•=ab(a≥0,b 这节课教师引导学生通过具体数据,发现规律,导出b≥0),并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.2.积的算术平方根【知识与技能】a•(a≥0,b≥0);1.理解ab=ba•(a≥0,b≥0).2.运用ab=b【过程与方法】a•(a≥0,b≥0),并运用它解题和化简.利用逆向思维,得出ab=b【情感态度】a•(a≥0,b≥0)以训练逆向思维,通过严谨解题,让学生推导ab=b增强学生准确解题的能力.【教学重点】a•(a≥0,b≥0)及其运用.ab=b【教学难点】a•(a≥0,b≥0)的理解与应用.ab=b一、情境导入,初步认识a•=ab(a≥0,b≥0).反过来,一般地,对二次根式的乘法规定为ba•(a≥0,b≥0).ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规定,利用逆向a•(a≥0,b≥0).思维,得出ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab =b a •(a ≥0,b ≥0)直接化简即可. 例2判断下列各式是否正确,不正确的请改正:三、运用新知,深化理解1.化简:(1)20;(2)18;(3)24;(4)54.2.自由落体的公式为s=21gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为120m ,则下落的时间是 s.四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即ab =b a •(a ≥0,b ≥0).1.布置作业:从教材“习题21.2”中选取.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力.3.二次根式的除法【知识与技能】 1.理解b a b a =(a ≥0,b >0)和bab a =(a ≥0,b >0),并运用它们进行计算.2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0),并用它进行计算.2.再利用逆向思维,得出bab a =(a ≥0,b >0),并运用它进行解题和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【情感态度】 通过探究b aba =(a ≥0,b >0)培养学生由特殊到一般的探究精神;让学生推导bab a =(a ≥0,b >0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力.【教学重点】 1.理解b a b a =(a ≥0,b >0),bab a =(a ≥0,b >0)及利用它们进行计算和化简.2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识(学生活动)请同学们完成下列各题. 1.写出二次根式的乘法规定及逆向公式. 2.填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评. 二、思考探究,获取新知刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:b ab a =(a ≥0,b >0) 反过来,bab a =(a ≥0,b >0) 下面我们利用这个规定来计算和化简一些题目.例1 计算:【教学说明】 直接利用b aba (a ≥0,b >0) 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点:(1)被开方数中不含分母;(2)被开方数中所含的因数(或因式)的幂的指数都小于2.【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解1.化简:3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题21.2”中选取.本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.21.3二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.本章复习【知识与技能】掌握本章重要知识,能熟练运用二次根式的有关运算法则进行运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的类比思想,分类讨论思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题的过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次根式的有关运算法则、性质解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系,边回顾边建立结构图.二、释疑解感,加深理解1.二次根式的意义:形如a(a≥0)的式子叫做二次根式,注意二次根式有意义的条件是被开方数a≥0,a表示a的算术平方根,它具有双重非负性,即a ≥0(a ≥0).2.二次根式的性质:主要要理解公式的应用.①)(2a =a (a ≥0),3.二次根式的化简与运算:(1)掌握的应用.(2)掌握二次根式的乘法运算:ab b a =•(a ≥0,b ≥0). (3)掌握积的算术平方根的运算b a ab •=(a ≥0,b ≥0). (4)掌握二次根式的除法运算:b a b a =(a ≥0,b >0),反过来bab a =(a ≥0,b >0).(5)掌握二次根式的加减法运算:先化成最简二次根式再进行合并,在二次根式的运算过程中,多项式乘法法则和乘法公式仍然适用,最后结果一定要化成最简二次根式.三、典例精析,复习新知 例1 若21-+x x 在实数范围内有意义,则x 的取值范围是 . 【分析】1+x 有意义的条件为x+1≥0,同时注意分母x-2≠0这一条件,所以x 的取值范围为x ≥-1且x ≠2.例2若5-a +(b+2)2=0,则a+b 的值为 .四、复习训练,巩固提高五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关二次根式的知识吗?能熟练进行二次根式的有关运算吗?你还有哪些困惑与疑问?1.布置作业:从教材本章“复习题”中选取.本节课通过学习归纳本章内容,以二次根式的概念及其有意义的条件、二次根式的性质及应用、二次根式的化简与运算等知识点为支撑,力求以点带面,查漏补缺,,加强对重点知识的训练,使学生在全面掌握知识点的前提下抓住重点.。
人教版九年级上册第21章二次根式第1节二次根式的性质第2课时精品教案教学目标知识技能:使学生理解并掌握=,并能利用这一结论进行计算.数学思考:通过对的化简,培养学生分类讨论的思想.解决问题:解决了这一类问题的化简问题.情感态度:培养学生用分类讨论的思想分析生活中出现的不同事物.教学重点:利用2a =a (a ≥0)进行计算和化简.教学难点:当a <0时,2a =-a 这一结论的推导和应用.教学内容:课本第4至5页.教学过程设计活动一.复习回顾,引入新课. (1).(19)2= . (2).(x )2=_______.通过这两道小题是复习旧知识,使学生清楚与本节课的内容不同的地方. 活动二.合作交流,新知探索.1.探索填空.22=_____ 24=_____ 21.0=__ __ 2)32(=_____ 20=_____ 22求的是22算术平方根,即求4的算术平方根是2;同理依次可得:4,0.1,32,0;2.总结得出:当a ≥0时,2a =a.当a <0时,2a =-a.3.例1.化简:(1)28;(2)16;(3)22)1(+x .解:(1)28=8;(2)16=24=4;(3)22)1(+x =x 2+1.4.练习.计算:(1)23.0; (2)2)72( (3)25; (4)210-.解:(1)23.0=0.3;(2)72)72(2=. (3)25=5;(4)210-=10-1=0.1.使学生理解2a (a ≥0)实际上是求a 2的算术平方根.培养学生的分析理解能力. 活动三.拓展升华,知识应用.1.议一议:2)4(-=_______=______;2)5(-=_______=______;2)10(-=______=______; 由上可知,2a 需要a 的范围吗?为什么?2a 当a<0时,2a =?2a = (a ≥0)= (a <0). 2.例2.计算:(1)2)3(-;(2)287⎪⎭⎫ ⎝⎛-;(3)2)1(-m . 解:(1)2)3(-=3 (2)287⎪⎭⎫ ⎝⎛-=87 (3)2)1(-m =m-1 (m ≥1)=1-m (m<1).3.代数式定义:用运算符号把数和字母连接起来的式子,叫做代数式.例如: 7,a , x+y,-2ab, t s, m 2,25,等都是代数式.引导学生从特殊到一般归纳完整的2a 化简的结论.并通过例题进一步使学生对2a 的化简有更深刻的理解.介绍代数式的定义是为今后的学习代数式化简做好准备. 活动四.知识巩固,课堂练习.课本第5页小练习.活动五.知识梳理,课堂小结.1.2a 的化简;2.2a 与(a )2的区别. 3.代数式定义. 活动五.知识反馈,作业布置.1.课本第6页第4,5,6题.2.补充题. (1)计算:①23 ②26.0 ③410- ④2)(π--.(2)已知直角三角形的两条直角边为 a 和 b ,斜边为 c .①如果 a =12, b =5,求 c ;②如果 a =3, c =4,求 b ;③如果 c =10,b =9,求 a ;④如果 a =b =2,求 c .。
21.1.1 二次根式⑴一、复习引入: 班 号 姓名: 1、填空:⑴两直角边长分别为2和3的直角三角形的斜边长为 ;⑵已知反比例函数xy 3=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________. ⑶面积为S 的正方形的边长是 。
2、问题:你能通过上面的数据归纳出二次根式的概念吗? 二、探究新知:3、阅读课本第2页[回顾]与[概括]部分的内容,并填空:⑴(0≥a );⑵二次根式概念:形如 (0≥a )的式子叫做二次根式,”称为 。
4、下列式子,哪些是二次根式,哪些不是二次根式:2,33,x1,x ()0>x ,0,2-,3- 答: 是二次根式; 不是二次根式。
5、二次根式应满足两个条件:⑴有 ;⑵被开方数是 。
6、例:x 是怎样的实数时,下列的二次根式有意义;⑴1-x ; ⑵x 21-;⑶x 1; ⑷12+x 7、课时练习:课本第3页练习第2题。
8、问题:()2a 等于什么?⑴填空:()=24 ;()=29 ;()=225 。
⑵归纳:()=2a (a 0)⑶练一练:()=216 ;()=22 ;()=23 。
9、课时练习:课本第3页练习第1题。
三、课时小结:10、二次根式概念:形如 的式子叫做二次根式,其中a 0。
11、()=2a (a 0)。
四、练习与作业: 班 号 姓名: 1、下列根式中,不一定是二次根式的是( ) A .5 B .3-π C .2m D .m2、在二次根式2-a 中,a 的取值范围是( )A .2>aB .2≥aC .2<aD .2≤a 3、使式子()21+-x 有意义的未知数x 的个数有( )A .0B .1C .2D .无数个 4、当x 时,12+x 是二次根式。
5、三角形的三边长分别为a 、b 、c 若()05432=-+-+-c b a ,则该三角形是 三角形。
6、能使二次根式x 25-有意义的正整数是: 。
7、计算:⑴()=25 ;⑵()=-23;⑶()=232 ;⑷()=-223 ; ⑸=⎪⎪⎭⎫ ⎝⎛232 ;⑹=⎪⎪⎭⎫⎝⎛2212 。
21.1 二 次 根 式杨 师 红教学目标:1、理解二次根式的定义,会用算术平方根的概念解释二次根式的意义2、会确定二次根式有意义的条件,知道a (a ≥0)是非负数,并会运用会进行二 次根式的平方运算,3、会对被开方数为平方数的二次根式进行化简通过探究()2a 和2a 所含运算、运算顺序、运算结果分析,归纳并掌握性质教学重点:1. a 有意义的条件;2. a ≥0时 a ≥0的应用;3.()2a 和2a 的运算、化简; 教学难点:当a <0时2a 的化简;教学过程:一、复习旧知,引入新课在勾股定理和四边形两章中,已经用到过简单的二次根式运算,在本章中将系统地学习二次根式的运算。
本课只学习二次根式的概念及其三个运算性质.二、探究新知(一)定义及非负性活动1、填空,完成课本思考1:65,S ,2,5h活动2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义. 活动3、给出二次根式的定义,介绍二次根式的读法.活动4、思考下列问题: ①9的运算结果是3,9是不是二次根式?3是不是?②定义中为什么要加a ≥0?若a<0,a 表示什么?有无意义?③当 a=0时,a 表示什么?结果是什么?当 a>0时,a 表示什么?可不可能为负数?a (a ≥0)是什么样的数呢?例1、当x 是怎样的实数时,下列二次根式有意义?在下列二次根式有意义的情况下,其运算结果是怎样的实数?2-x , 11+x , 32+x练习:1、课本思考2:当x 是怎样的实数时,2x ,3x 有意义?1、若m x -=-2,则x 和m 的取值范围是x_____;m______.2、已知053=-++y x ,求y x ,的值各是多少?(二)两个运算性质活动5、完成课本探究1活动6、对()2a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变.练习:课本例2活动7、完成课本探究2活动8、对2a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例3三、课堂训练完成课本中两个练习.1、m m =-1-1 成立的条件是_______.2、m m =+1+1成立的条件是_______.四、小结归纳1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象”,开方为“子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、布置作业必做:教材P5:1、2、3、4、5、6选做:教材P6:7、8。
课题:21.1二次根式一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程,知道什么是二次根式,会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2..三、教学过程(一)复习旧知,导入新课师:从本节课开始,我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式?这得从平方根说起.师:初二的时候我们学过平方根,那么什么是平方根?(稍停)师:(板书:x2=5,并指准)x2=5,5是x的什么?(稍停)5是x的平方;反过来,x是5的什么?(稍停)x是5的平方根.师:(指准x2=5)x2=5,5是x的平方,x是5的平方根.大家按照老师的说法,自己说几遍.(生自己说)师:哪位同学来说一说?生:……(让一两名同学说)师:(指准x2=5)x2=5,x是5的平方根,那么5的平方根x等于什么呢?(板书:5的平方根x=)生:……(让一两名学生回答)师:x=师:(指准5,另一个是5的算术平方根.师:(指准板书)5的平方根是12的平方根是什么?生:(齐答)12的什么?12的算术平方根.师:上面我们复习的是正数的平方根,下面我们来看0的平方根.师:(板书:x2=0,并指准)x2=0,x等于什么?生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x2=0得出x=0,这说明什么?(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0.师:下面我们再来看负数有没有平方根.师:(板书:x2=-5,并指准)一个数的平方等于-5,这样的数有没有?(稍停)任何一个数的平方,或者大于0,或者等于0,不可能小于0,所以这样的数没有(板书:不存在).这说明什么?(稍停)这说明-5没有平方根(板书:-5没有平方根).师:(指板书)从上面的讨论,我们可以得出一个结论,什么结论?(稍停)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习,回授调节1.填空:(1)9的平方根是,9的算术平方根是;(2)6的平方根是,6的算术平方根是;(3)0的平方根是,0的算术平方根是 .2.用带根号的式子填空:(1)一个直角三角形的两条直角边的长分别是2和3,则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下,他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t2.如果用含有h的式子表示t,则t= .(三)尝试指导,讲授新课(生报第2师:式子有什么共同的特点?生:……(问题的答案不是唯一的,鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方根,h5的算术平方根.另一方面,从式子的式子).师:a等于13a等于S a等于什么?生:(齐答)等于hS.的式子叫做二次根式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目,想一想怎么做这个题目.(生读题思考)师:x-2必须大于等于0.为什么被开方数x-2必须大于等于0?x-2的算术平方根,而负数没有平方根,所以被开方数x-2必须大于等于0.(以下师边讲解边板书,解题过程如下)解:由x-2≥0,得x≥2.当x≥2.(四)试探练习,回授调节3.填空:(1)当a 时,有意义;(2)当x 时,.24.选做题:当x 时,有意义;当x 时,有意义.(五)归纳小结,布置作业师:本节课我们首先复习了平方根的概念,然后学习了什么是二次根式.(指准板的式子叫做二次根式,这里的a必须大于等于0(板书:其中a≥0).(作业:P5习题1,P3练习2)四、板书设计课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程,知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力.二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境,导入新课师:上节课我们学习了二次根式的概念,什么样的式子是二次根式?(师出示下面的板书)(a≥0)的式子叫做二次根式.师:的式子叫做二次根式,这里的被开方数a必须大于等于0.譬如,是二次根式,.师:明确了二次根式的概念,本节课我们要学习什么?本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导,讲授新课师:二次根式有什么性质?二次根式有三个性质,我们先来看第一个性质.(师出示下面的板书)性质1(a≥0)是一个非负数.师:(指准板书)性质1.>0,所数;.表示a的算术平方根,而a的算术平方根总是大于等于0是一个非负数.师:下面我们来看二次根式的第二个性质.师:,2等于什么?生:等于3.(直到有学生猜出这个答案,师板书:=3)师:(指式子)2=3,为什么?(稍停)(师出示下图)面积=3师:(指准图)这是一个正方形,这个正方形的面积为3,那么它的边长等于什么?.(多让几名同学回答,然后师在图上板书:边长)师: 3.的平方等于什么?生:……(多让几名同学回答)师:3,可见,2=3.师:(板书:2=)利用同样的办法,我们可以得到2等于什么?生:(齐答)等于8.(生答师板书:8)师:(板书:2=)利用同样的办法,我们可以得到2等于什么?生:(齐答)等于a.(生答师板书:a )师:(指式子)2=a ,这就是二次根式的第二个性质(板书:性质2).师:(指准式子)这里的a 是被开方数,所以a 必须大于等于0(板书:(a ≥0)). 师:下面我们利用性质2来做几个题目. (师出示例1) 例1 计算:(1)2; (2)(2.(师边讲边解板书,解题过程如课本第4页所示) (三)试探练习,回授调节 1.计算:(1)2= (2)2=(3)2= (4)(2=(5)(2=(四)尝试指导,讲授新课师:前面我们学习了二次根式的性质1和性质2,下面我们学习性质3.师:)生:等于2.1.(直到有学生猜出这个答案,师板书:2.1)师:=2.1,为什么?(稍停)(师出示下图)面积=2.12师:(指准图)这是一个正方形,这个正方形的面积为2.12,那么它的边长等于什么?生:边长等于2.1.(多让几名同学回答,然后师在图上板书:边长=2.1)师:(指准图)我们知道,正方形面积的算术平方根等于边长,师:生:(齐答)等于6.(生答师板书:6)师:生:(齐答)等于a.(生答师板书:a )师:,这就是二次根式的第三个性质(板书:性质3)师:(指准右边的a )这里的a 是a 2的算术平方根,所以a ≥0(边讲边板书:(a ≥0)).师:学习了二次根式的性质2和性质3,有的同学觉得性质2和性质3好像是一样的.性质2和性质3是一样的吗?(稍停)师:(指准板书)性质2和性质3这两个等式的右边是一样的,而且a 都必须大于等于0,但性质2和性质3的左边是不一样的,大家仔细看一看,性质2的左边是什么,性质3的左边又是什么.(让生观察一会儿)师:(指准式子)谁来说说这两个等式的左边有什么不同? 生:……(多让几名同学说,要鼓励学生用自己的语言来表述)师:(指准2)这个式子表示什么?表示a 的算术平方根的平方,这个式子表示什么?表示a 2的算术平方根.a 的算术平方根的平方和a 2的算术平方根的意思是不一样的.师:下面我们利用性质来做几个题目. (师出示例2) 例2 化简:; (师边讲解边板书,解题过程如课本第5页所示) (五)试探练习,回授调节 2.化简:=3.直接写出结果:(1)2=(2=(六)归纳小结,布置作业师:本节课我们学习了什么?(稍停)我们学习了二次根式的三个性质.大家把这三个性质再看一遍.(生默读)(作业:P 5习题2.4.) 四、板书设计. ).课题:21.1二次根式(第3课时)一、教学目标1.通过基本训练,复习巩固二次根式的概念和性质.2.了解代数式的概念,会用代数式表示实际问题中的某一个量.二、教学重点和难点1.重点:用代数式表示实际问题中的某一个量.2.难点:用代数式表示实际问题中的某一个量.三、教学过程(一)基本训练,巩固旧知1.填空:(1)形如 (a≥0)的式子叫做二次根式.(2)二次根式的三个性质是:性质1(a≥0)是一个数;性质2:2= (a≥0);性质3= (a≥0).2.直接写出结果:2=(3)(23.判断正误:对的画“√”,错的画“×”.(1)2=7;();()(3)2=-7;()(4)(2=7;()(5)2-=7;();();(). ( )(二)尝试指导,讲授新课师:到现在我们已经学习了好几种式子,我们学习了整式(板书:整式)、分式(板书:分式)、二次根式(板书:二次根式).师:什么样的式子是整式?(边讲边板书:3,2a ,3+2a )3是一个整式,2a 是一个整式,3+2a 也是一个整式.师:什么样的式子是分式?(边讲边板书:32a ,2a 3+2a )32a 是一个分式,2a3+2a也是一个分式.师:什么样的式子是二次根式?(边讲边板书:是一个二次根也是一个二次根式. 师:整式、分式、二次根式都可以叫做代数式(连线并板书:代数式,如板书设计所示).师:除了整式、分式、二次根式是代数式,由整式、分式、二次根式混合组成的式子也是代数式(连线并板书:混合式,如板书设计所示).师:(板书:,并指准)譬如,2a式,把这两个式子加起来,得到2a+,.师:(板书:32a32a32a是一个二次根式,把这两个式子乘起来,得到32a32a.师:(指准板书)到现在为止,我们学过的代数式包括整式、分式、二次根式,以及由这三种式子混合组成的式子.师:下面我们来看一个列代数式的例子. (师出示例题)例 一个矩形的面积为S ,长宽之比为3:2,用代数式表示这个矩形的长和宽. (先让生读题,然后师边讲解边板书,解题过程如下)解:设这个矩形的长为3x,宽为2x.根据题意列方程得 3x·2x=S,整理得 x2=S6,∴∴这个矩形的长为(三)试探练习,回授调节4.用代数式表示:面积为S的圆的半径为 .5.一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.(四)归纳小结,布置作业师:本节课我们学习了代数式的概念.(指准板书)到目前为止,我们学过的代数式包括整式、分式、二次根式,以及由这三种式子混合组成的式子.(作业:P6习题5.6.)四、板书设计。
第二十一章二次根式学案教案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2(a≥02=a(a≥0(a≥0).(3a≥0,b≥0;a≥0,b>0a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1(a≥0a≥0)是一个非负数;)2=a(a≥0(a≥0)•及其运用.2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念.4.二次根式的加减运算.教学难点1(a≥02=a(a≥0)(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时章节测试讲评 2课时21.1 《二次根式(1)》学案课型: 上课时间:课时:学习内容:二次根式的概念及其运用学习目标:1(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________)(二)学生学习课本知识4、5页(三)、探索新知1、知识:,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如•.例如:形如、、是二次根式。
形如、、不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:、1x(x>0、、1x y+x≥0,y•≥0).解:二次根式有:;不是二次根式的有:。
例2.当x在实数范围内有意义解:由得:。
当时,在实数范围内有意义.(3)注意:1(a≥0)的式子叫做二次根式的概念;2(a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x11x+在实数范围内有意义例4(1)已知,求xy的值.(答案:2)(2)=0,求a2004+b2004的值.(答案:25)三、巩固练习教材P练习1、2、3.课本5页练习、8页第1题四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式1x (2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少2.3.x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.21.1 《二次根式(2)》学案课型: 上课时间:课时:学习内容:1(a≥0)是一个非负数; 22=a(a≥0).学习目标:1(a≥02=a(a≥0),并利用它进行计算和化简.2(a≥0)是一)2=a(a≥0);最后运用结论严谨解题.教学过程一、自主学习(一)复习引入1.什么叫二次根式2.当a≥0a<0有意义吗(二)学生学习课本知识5、6页(三)、探究新知1a≥0)是一个数。
(正数、负数、零)因为。
2、3、根据算术平方根的意义填空:)2=_______)2=_______2=______2=_______;)2=2,2=9,)2=3,2=13,)2=0,所以(4) 例1 计算1)2 = 2、(2 = 32 = 4、)2= (5)注意:1(a ≥02=a (a ≥0)及其运用.2(a ≥0)是一个非负数;•用探)2=a (a ≥0).二、学生小组交流解疑,教师点拨、拓展例2 计算 12(x ≥0) 223 2例3 在实数范围内分解下列因式:(1)x 2-3(2)x 4-4 (3) 2x 2-3三、巩固练习(一)计算下列各式的值: 2=2=(4)2=)2 = ( 2 = 22- (二) 课本P7、1四、课堂检测(一)、选择题1二次根式的个数是().A.4 B.3 C.2 D.1(二)、填空题1.(2=________. 2_______数.(三)、综合提高题 1.计算(12(2)--)2(3)()2(4)== == == ==2.把下列非负数写成一个数的平方的形式:(1)5= (2)= (3)16(4)x(x≥0)=3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-521.1 《二次根式(3)》学案课型: 上课时间:课时:学习内容:a(a≥0)学习目标:1(a≥0)并利用它进行计算和化简.2(a≥0),并利用这个结论解决具体问题.教学过程一、自主学习(一)、复习引入1(a≥0)的式子叫做二次根式;2(a≥0)是一个非负数; 3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢下面我们就来探究这个问题.(二)、自主学习学生学习课本知识6、7页(三)、探究新知1、填空:根据算术平方根的意义,;;=__ ;=___=_ _;.2、重点:(a≥0)例1 化简(1(2(3(4解:(1= (2=(3= (43、注意:(1a(a≥0).(2)、只有a≥0a才成立.二、学生小组交流解疑,教师点拨、拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数(2,则a可以是什么数(3,则a 可以是什么数-a>a ,a<0综上,a<0例3当x>2三、巩固练习教材P 7练习2.P8习题第2题四、课堂检测(一)、选择题1). A.0 B .23 C .423(二)、填空题1..2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a )=1;乙的解答为:原式(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a │=a ,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x ≤2时,试化简│x-2│21.2 二次根式的乘除(1)课型: 上课时间: 课时: 学习内容a≥0,b≥0),反之(a≥0,b≥0)及其运用.学习目标a≥0,b≥0(a≥0,b≥0),并利用它们进行计算和化简学习过程:一、自主学习(一)复习引入1.填空:(1=____;×(2=____=___;(3.1、学生交流活动总结规律.2、一般地,对二次根式的乘法规定为反过来例1.计算(1(2(3)×(4)== == == ==例2 化简(1(2(3(4(5== == == == ==二、巩固练习(1)计算:①②×③== == ==(2) 化简== == == == ==练习(3)教材P11三、学生小组交流解疑,教师点拨、拓展(一)例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4(二)归纳小结(1(a≥0,b≥0(a≥0,b≥0)及其运用.(2(a<0,b<0)b,如.四、课堂检测(一)、选择题1,•那么此直角三角形斜边长是(). A.cm B.cm C.9cm D.27cm2.化简). A C.D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1( 二)、填空题 1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米21.2 二次根式的乘除(2)课型: 上课时间:课时:学习内容:a≥0,b>0a≥0b>0)及利用它们进行计算和化简.学习目标:a≥0,b>0a≥0,b>0)及利用它们进行运算.教学过程一、自主学习(一)复习引入1.写出二次根式的乘法规定及逆向等式. 2.填空(1=____; 规律:(2;(3=____;(4.(二)、探索新知一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.二、巩固练习1、计算:(1(2÷(3 (4 == == == ==2、化简:(1(2(3 (4 == == == ==3、巩固练习教材P14 练习1.三、学生小组交流解疑,教师点拨、拓展1、 例3.=,且x 为偶数,求(1+x 的值.2、归纳小结(1a ≥0,b>0a ≥0,b>0)及其运用.并利用它们进行计算和化简. 四、课堂检测 (一)、选择题1 ).A .27.27CD .723==5==的结果是( ).A .2B .6C .13D(二)、填空题1.分母有理化:(1)=______;(2)=_____;(3) =______.2.已知x=3,y=4,z=5_______.三、综合提高题(1·(m>0,n>0) 二次根式的乘除(3)课型: 上课时间: 课时: 学习内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算. 学习目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.学习过程一、自主学习(一)复习引入1.计算(1,(2==,(3==2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.(二)、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢如果不是,把它们化成最简二次根式.2==例1.化简:(1)== == ==例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.二、巩固练习教材P14练习2、3三、学生小组交流解疑,教师点拨、拓展1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,,…… 从计算结果中找出规律,并利用这一规律计算++1)的值.==2、归纳小结(1).重点:最简二次根式的运用.(2).难点关键:会判断这个二次根式是否是最简二次根式. 四、课堂检测 (一)、选择题1y>0)化为最简二次根式是( ).A(y>0) B y>0) C (y>0) D .以上都不对2.把(a-1a-1)移入根号内得( ).A ..3的结果是( ) A .-3 B ...-二、填空题 1.(x ≥0)2._________. 三、综合提高题若x 、y 为实数,且y=12x +yx y -的值.二次根式的加减(1)课型: 上课时间:课时:学习内容:二次根式的加减学习目标:1、理解和掌握二次根式加减的方法.2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.学习过程一、自主学习(一)、复习引入计算.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3== == == ==以上题目,是我们所学的同类项合并.同类项合并就是字母不变,系数相加减.(二)、探索新知学生活动:计算下列各式.(1)(2)== ==(3(4)== ==由此可见,二次根式的被开方数相同也是可以合并的,如上看是不相同的,但它们可以合并吗也可以.所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算(1(2==== ==== 例2.计算(1)( 2)+==== ===归纳: 第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.二、巩固练习 教材P 19 练习1、2. 三、学生小组交流解疑,教师点拨、拓展1、 例3.已知4x 2+y 2-4x-6y+10=0,求(23+y )-(x2、归纳小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.重难点关键 1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式. 四、课堂检测 (一)、选择题1是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①17=1;④,其中错误的有( ). A .3个 B .2个 C .1个 D .0个 二、填空题1是同类二次根式的有________.2.计算二次根式的最后结果是________.三、综合提高题1-)的值.(结果精确到)2.先化简,再求值.(-(x=32,y=27.二次根式的加减(2)课型: 上课时间:课时:学习内容:利用二次根式化简的数学思想解应用题.学习目标:1、运用二次根式、化简解应用题.2、通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.学习过程一、自主学习(一)、复习引入上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,(二)、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米PQ的距离是多少厘米(结果用最简二次根式表示)C分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x依题意,得: 求解得:35 35PBQ 的面积为35平方厘米.PQ=35PBQ 的面积为35平方厘米,PQ 的距离为7厘米. 例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.解:由勾股定理,得AB=BC=所需钢材长度为: AB+BC+AC+BD== 二、巩固练习教材P19 练习3三、学生小组交流解疑,教师点拨、拓展1、 例3.若最简根式343a b a b -+23226ab b b -+式,求a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式) 分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同的根式; 23226ab b b -+化为最简二次根式:23226ab b b -+ 由题意得方程组:解方程组得: 2、本节课应掌握运用最简二次根式的合并原理解决实际问题. 四、课堂检测 (一)、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式) A .2 B 50.5 D .以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示) A.C..(二)、填空题(结果用最简二次根式)1.有一长方形鱼塘,已知鱼塘长是宽的2倍,面积是1600m2,•鱼塘的宽是_______m.2,那么该等腰直角三角形的周长是____.(三)、综合提高题1与n是同类二次根式,求m、n的值.2-1)2=)2-2·1+12=2-反之,+1=-1)2∴=-1)2-1求:(1;(2(3)你会算吗二次根式的加减(3)课型: 上课时间:课时:学习内容:含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.学习目标:1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.学习过程一、自主学习(一)复习引入1.计算(1)(2x+y)·zx== (2)(2x2y+3xy2)÷xy===2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2=== ===(二)、探索新知如果把上面的x、y、z改写成二次根式呢以上的运算规律是否仍成立呢•仍成立.例1.计算: (1(2)()÷=== ===例2.计算(1)((2))=== ===二、巩固练习课本P练习1、2.20三、学生小组交流解疑,教师点拨、拓展1、例3.已知,X==2解:原式==(x+1)==4x+2当X==2时∴原式=4X2+2=102、、归纳小结本节课应掌握二次根式的乘、除、乘方等运算. 四、课堂检测(一)、选择题 1的值是( ).A .203B .23C .23D .2032 ).A .2 B .3 C .4 D .1(二)、填空题 1.(-122的计算结果(用最简根式表示)是________.2.()()-(-1)2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________. 三、综合提高题12.当式表示)课外知识(1)、练习:下列各组二次根式中,是同类二次根式的是( ).A B C D(2)、互为有理化因式:•互为有理化因式是指两个二次根式的乘积是有理数,不含有二次根式:如23与3就是互为有理化因式;x+1与x-1也是互为有理化因式.练习:1、2+3的有理化因式是________;2、x-y的有理化因式是_________.3、 25的有理化因式是_______.二次根式复习课(1)课型: 上课时间:课时:学习目标:1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.学习重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.学习过程一、自主学习(一)复习1.二次根式有哪些基本性质用式子表示出来,并说明各式成立的条件.(1)(2)(3)2.二次根式的乘法及除法的法则是什么用式子表示出来.乘法法则: . 除法法则:反过来: . 3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、复习练习课本知识重点题目:习题、 1、2、7.习题、 1、2、3、6、7、10.习题、 1、3、4、5、8.复习题:1、2、3、5、6、9、11.二次根式复习课(2)课型: 上课时间:课时:学习目标:1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.学习重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.学习过程一、例题点讲例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.解:(1)、(2)、(3)、(4)、解:例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解:这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.例4分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2 B.a≥2C.a≠2 D.a<2A.x+2 B.-x-2C.-x+2 D.x-2A.2x B.2aC.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义2.把下列各式化成最简二次根式:新课标第一网系列资料。