[配套K12]2016届中考数学 2.4 一元二次方程根与系数的关系(1)学案(无答案)
- 格式:doc
- 大小:101.00 KB
- 文档页数:3
九年级数学一元二次方程的根与系数的关系一、一元二次方程的根与系数的关系在我们生活中,有很多问题都可以用一元二次方程来解决。
那么,什么是一元二次方程呢?简单来说,就是形如ax^2+bx+c=0的方程,其中a、b、c是已知的常数,x 是未知数。
而这个方程的解,就是我们要找的那个未知数x。
那么,如何求解这个方程呢?这就需要我们了解一元二次方程的根与系数的关系。
我们来看一下一元二次方程的一般形式:ax^2+bx+c=0。
在这个方程中,a、b、c 是已知的常数,而x是未知数。
我们的目标就是求出x的值。
为了实现这个目标,我们需要先了解一下一元二次方程的根与系数的关系。
二、一元二次方程的根与系数的关系1. 根的概念在一元二次方程中,x是未知数,而a、b、c是已知的常数。
我们的目标就是求出x的值。
为了实现这个目标,我们需要先了解一下根的概念。
根是指一个数与其对应的幂次相乘所得的结果等于原方程。
例如,对于方程ax^2+bx+c=0,它的两个根分别是:(1)当b^2-4ac≥0时,有两个实数根,分别为:x_1=(-b±√(b^2-4ac))/2ax_2=(-b±√(b^2-4ac))/2a(2)当b^2-4ac<0时,无实数根。
这里我们需要注意的是,当b^2-4ac<0时,方程没有实数根;而当b^2-4ac≥0时,方程有两个实数根。
这两个实数根分别称为一元二次方程的两个根。
2. 系数的概念在一元二次方程中,a、b、c是已知的常数。
它们分别表示了方程中各项的系数。
具体来说,a表示x^2项的系数,b表示x项的系数,c表示常数项的系数。
在求解一元二次方程时,我们需要关注这些系数之间的关系。
三、一元二次方程的解法及步骤在了解了一元二次方程的根与系数的关系之后,我们就可以运用这些知识来求解一元二次方程了。
下面我们来看一下求解一元二次方程的具体步骤:1. 我们需要判断方程是否有实数根。
根据前面我们学过的知识,当b^2-4ac≥0时,方程有实数根;而当b^2-4ac<0时,方程没有实数根。
第 2 章一元二次方程2.4一元二次方程根与系数的关系课题:2.4一元二次方程根与系数的关系教学目标:1、理解掌握一元二次方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a、b、c之间的关系。
2、能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知数。
3、会求已知方程的两根的倒数和与平方和、两根的差。
4、在推导过程中,培养学生“观察——发现——猜想——证明”的研究问题的思想与方法。
教学重点:根与系数的关系的推导及其简单应用。
教学难点:正确理解根与系数的关系。
教学过程:(一)问题引探问题1.在方程ax2+bx+c=0中,a的取值决定什么?b2-4ac的取值呢?同学们可知道a、b、c 的取值与一元二次方程ax2+bx+c=0的根还有其它关系?今天我们进一步研究一元二次方程的这种关系。
问题2.解方程x2-5x+6=0.先指出a、b、c各是多少,然后再解方程,计算两根的和与积,你能发现什么结论(现象)?问题3.解下列方程:(1)2x2+5x+3=0 (2)3x2-2x-2=0你能发现两根之和、两根之积与方程的系数之间有什么关系吗?问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________.问题5.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。
分小组讨论以上的问题,并作出推理证明。
即:如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=_____ ,x1x2= _______(二)尝试发展试一试:根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k 是常数)(1)2x2-3x+1=0 x1+x2= ________ x1x2= _________(2)3x2+5x=0 x1+x2= ________ x1x2= __________(3)5x2+x-2=0 x1+x2= _________ x1x2= __________(4)5x2+kx-6=0 x1+x2= _________ x1x2= _________尝试题1、已知方程6x2+kx-5=0的一个根为,求它的另一个根及k的值。
中考数学辅导之—一元二次方程根与系数之间的关系从暑假开始,我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中的第六章解直角三角形.一、基本内容1.一元二次方程含义:含有一个未知数,且未知数的次数最高是2的整式方程叫一元二次方程.2.一般形式:ax 2+bx+c=0(a ≠0)3.解法:①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)的形式可直接开平方.如(3x-1)2=5两边开平方得:513±=-x 513±=x 351,35121-=+=∴x x ②配方法:例:01232=--x x解:1232=-x x 31322=-x x 913191322+=+-x x 94)31(2=-x 3231±=-x 3231±=x 31,121-==∴x x 此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式的推导用这种方法.③公式法:)0(2)0(02≥∆∆±-=≠=++ab x ac bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)的形式,将一元二次方程转化成ax+b=0,cx+d=0的形式,变成两个一元一次方程来解.4.根的判别式:△=b 2-4acb 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根.b 2-4ac<0 方程无实根.b 2-4ac ≥0 方程有实根.有三种应用:①不解方程确定方程的根的情况.②利用方程的根的条件(如有两个不相等实根,无实根,有实根等)利用Δ建立不等式求m 或k 的取值范围.③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.5.根与系数间的关系,某x 1,x 2是ax 2+bx+c=0(a ≠0)的根,则ac x x a b x x =⋅-=+2121,. 应用:①不解方程,求方程中m 或k 的值或另一根.②不解方程,求某些代数式的值.③利用两根的关系,求方程中m 或k 的取值范围.④建立一个方程,使它与原方程有某些关系.⑤一些杂题.二、本次练习:(一)填空题:1.关于x 的方程mx mx m x x -=-+2223是一元二次方程,则m=____.2.将方程4x 2-kx+k=2x-1化成一元二次方程的形式是____.其一次项系数是____,常数项是____.3.代数式(x+2)2+(x-2)2的值与8(x 2-2)的值相等,则x=____.4.x x 252-+( )=(x- )2 5.方程2x 2+(k-1)x-6=0的一个根是2,则k=____.6.已知方程3x 2-2x-1=0的两根是x 1,x 2,则2221x x +=____;2112x x x x +=____; 3231x x +=____;2111x x +=____;||21x x -=____. 7.已知2x 2-(2m+1)x+m+1=0的两根之比是2:3,则m=____.8.以3和32-为根的方程是____. 9.以235,235-+为根的方程是____. 10.以2x 2-3x-1=0的两根平方和及倒数和为根的方程是____.11.以2x 2-5x+1=0的两根平方根的方程是____.12.以比3x 2-2x-4=0的两根大3的数为根的方程是____.13.以2x 2-3x-1=0的两根的相反数为根的方程是____.14.已知8x 2-(m-1)x+m-7=0的两根异号,且正根的绝对值大,则m 的取值范围是____.若它的两根互为相反数,则m=____.若m 互为倒数,则m=____.15.关于x 的一元二次方程x 2+2x+m=0的两根差的平方是16,则m=____.16.已知关于x 的方程2x 2-(4k+1)x+2k 2=1有两个不相等实根,则k 的取值范围是____.17.关于x 的方程(k-2)x 2-(2k-1)x+k=0有两个不相等实根,则k 的取值范围是____.18.已知方程kx 2-2kx+k=x 2-x+3有两个不相等实根,则k 的取值范围是____.19.关于x 的方程2x(kx-4)-x 2+6=0无实根,则k 的最小整数值是____.20.已知2x 2+(2m+1)x-m=0的两根平方和是413,则m=____.21.设x 1,x 2是关于x 的方程x 2+4k+3=0的两实根.y 1,y 2是关于y 的方程y 2-k 2y+p=0的根.若x 1-y 1=2,x 2-y 2=2则k=____,p=____.22.已知关于x 的方程2x 2+2x+c=0的根是x 1,x 2,则3||21=-x x ,那么c 的值是____.(二)解下列方程 1.030222=-+x x2.0532=--x x3.)5(2)5(32x x -=-4.8)12(212=-x 5.)(02722用配方法=+-x x6.0432=+-x x7.04)(22=--+ab x b a x 8.013482=--x x 9.)1(2322+=x x10.0)(222=---ab x b a abx11.0)23(22=-+--n n m x m x。
初三数学一元二次方程根与系数的关系及其应用知识精讲一元二次方程根与系数的关系及其应用一元二次方程ax bx c a 200++=≠()的根x x 12、是由系数a 、b 、c 决定的,它们之间有密切的关系。
x x b a x x c a1212+=-=, 这就是根与系数的关系,也称为韦达定理。
反之,一元二次方程的两根也制约着这个方程的系数,当a =1时,有()b x x =-+12,c x x =12,从而有以两个数x x 12、为根的二次项系数为1的一元二次方程是()x x x x x x 212120-++=。
需要指出,韦达定理应该是在判别式大于等于零的前提下使用,即在保证一元二次方程有实数根的条件下使用。
一元二次方程的韦达定理,揭示了根与系数的一种必然联系,利用这个关系,我们可以解决诸如已知一根求另一根,求根的代数式的值,构造方程,确定系数等问题,它是中学数学中的一个有用的工具。
例(2002·南京)已知:关于x 的方程x kx 220--= (1)求证:方程有两个不相等的实数根;(2)设方程的两根为x x 12、,如果()21212x x x x +>,求k 的取值范围。
解:(1)证明: ∆=-=+>b ac k 22480 ∴原方程有两个不相等的实数根 (2) x x k x x 12122+==-, 又() 21212x x x x +>∴>-∴>-221k k说明:本题侧重考察对基本知识点的掌握,难度不大,可以说是中考中的送分题,同学们应该把这类题的分数拿到手。
例(2000上海)已知关于x 的一元二次方程()mx m x m m 221200--+-=>()(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为x x 12、,且()()x x m 12335--=,求m 的值。
解:(1)证明:()[]()∆=----21422m m m=-+-+=+441484122m m m m mm m >∴4+>010, ∴方程有两个不相等的实数根 (2)由()()x x m 12335--= ()x x x x m 12123950-++-=x x m mx x m m1212212+=-=-()∴---+-=m m m mm 2321950 解得:m m 12115==-,经检验m m 12、都是方程的根。
12。
4一元二次方程的根与系数的关系中考考点1.理解一元二次方程的根与系数的关系(韦达定理).2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数.3.会求一元二次方程两个根的倒数和与平方和。
考点讲解1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=—,x1·x2=。
2.以x1,x2为根的一元二次方程是(x-x1)(x—x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0 (a≠0).3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=—p,x1·x2=q。
反之,以x1,x2为根的一元二次方程是:(x-x1)(x—x2)=0,展开代入两根和与两根积,仍得到方程:x2+px+q=0。
4.一元二次方程的根与系数关系的应用主要有以下几方面:(1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。
(2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。
可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值。
(3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。
如,方程2x2-3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。
[∵x1+x2=,x1·x2=,∴x12+x22=(x1+x2)2—2x1x2=()2-2×=](4)验根、求根、确定根的符号.(5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程).(6)已知两数和与积,求这两个数.(7)解特殊的方程或方程组.考题评析1.(北京市东城区)如果一元二次方程x2+3x-2=0的两个根为x1,x2,那么x1+x2与x1·x2的值分别为()(A)3,2 (B)-3,—2 (C)3,-2 (D)-3,2考点:一元二次方程的根与系数关系。
初三数学一元二次方程的根与系数的关系一元二次方程的根与系数的关系,就像是一场神秘又有趣的魔法秀。
你看啊,一元二次方程ax²+bx+c = 0(a≠0),它的两个根x1和x2就像两个调皮的小精灵。
而根与系数之间的关系呢,就像是一条神奇的纽带,把它们紧紧地拴在了一起。
韦达定理就像是这个魔法世界的一个秘籍。
x1+x2=-b/a,这就好比是两个小精灵在跳双人舞,它们的舞步总和与这个方程的系数b和a有着一种奇妙的默契。
就好像是它们按照上帝设定好的舞步规则,不管怎么跳,这个总和是固定的,按照-b/a这个节奏来。
再看x1x2=c/a,这就像两个小精灵在分享宝藏。
它们所分享的宝藏数量和方程里的系数c和a又有了这样奇特的联系。
如果把方程想象成一个大宝藏箱,那这两个根小精灵按照这个规则来分配宝藏,简直太有趣了。
有时候我觉得一元二次方程的根就像一对双胞胎,虽然它们各自独立,但又被系数这个“家长”管着。
不管它们怎么折腾,都逃不出根与系数关系这个“家规”。
要是方程的系数是厨师,根就是厨师做出来的菜。
不同的系数组合(厨师的厨艺),就会做出不同的根(菜肴),但这些菜肴(根)的味道(根与系数的关系)总是遵循着韦达定理这个美食菜谱。
当我们去求解一元二次方程的根的时候,就像是在寻找这两个小调皮鬼的藏身之处。
而根与系数的关系呢,就像是它们留下的小线索。
只要我们掌握了这个线索,就像是拥有了魔法棒,能轻松地在方程这个魔法森林里找到它们。
而且这个关系还特别有用。
比如说在一些复杂的数学题里,就像在一个充满迷雾的迷宫里,根与系数的关系就是那根能指引方向的丝线。
我们抓住这根丝线,就能顺利地走出迷宫,找到答案这个宝藏。
它也像一把万能钥匙,不管一元二次方程的题目怎么千变万化,只要我们掏出这把钥匙,就能打开通往正确答案的大门。
这根与系数的关系,真的是一元二次方程这个小世界里最奇妙的魔法规则了。
一元二次方程根与系数的关系—知识讲解(基础)责编:杜少波【学习目标】1. 理解并掌握一元二次方程的根与系数的关系;2. 能应用一元二次方程的根与系数的关系解决以下问题:已知方程的一根,不解方程求另一根及参数系数;已知方程,求含有两根对称式的代数式的值及有关未知数系数;已知方程两根,求作以方程两根或其代数式为根的一元二次方程.【要点梳理】要点一、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k x x k =+++;⑦12||x x -==;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==;⑨12x x -==⑩12||||x x +===(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a +a a ,b 为有理数).【典型例题】类型一、一元二次方程的根与系数的关系的应用(1)1.(2015秋•定陶县期末)已知方程x 2+5x ﹣3=0,不解方程,求作一个一元二次方程使它的根分别是已知方程各根的2倍.【思路点拨】设方程x 2+5x ﹣3=0的两根分别为a 、b ,根据根与系数的关系得到a+b=﹣5,ab=﹣3,再计算2a+2b 和2a•2b 的值,然后根据根与系数的关系写出新方程. 【答案与解析】解:设方程x 2+5x ﹣3=0的两根分别为a 、b ,则a+b=﹣5,ab=﹣3,∵2a+2b=2(a+b )=2×(﹣5)=﹣10, 2a•2b=4ab=﹣12,∴所求的新方程为x 2+10x ﹣12=0.【总结升华】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.举一反三:【变式】已知方程2x2-3x-3=0的两个根分别为a,b,利用根与系数的关系,求一个一元二次方程,使它的两个根分别是a+1,b+1.2.(2016•江西校级模拟)已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.【思路点拨】(1)由关于x的方程mx2+2x﹣1=0有实数根,分两种情况:①m=0时,为一元一次方程,必有实数根;②m≠0时,为一元二次方程,由判别式△≥0,可得22﹣4×m×(﹣1)≥0,解此不等式即可求得答案;(2)根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再代入+,计算即可求解.【答案与解析】解:(1)分两种情况:①m=0时,原方程即为2x﹣1=0,为一元一次方程,必有实数根;②m≠0时,原方程为一元二次方程.△=22﹣4×m×(﹣1)=4+4m≥0,解得:m≥﹣1,即m≥﹣1且m≠0.综上可知m≥﹣1;(2)∵x1+x2=﹣,x1x2=﹣,∴+===2.【总结升华】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:【答案】类型二、一元二次方程的根与系数的关系的应用(2)3.已知方程2560x kx +-=的一个根是2,求另一个根及k 的值.【思路点拨】根据方程解的意义,将x =2代入原方程,可求k 的值,再由根与系数的关系求出方程的另外一个根. 【答案与解析】方法一:设方程另外一个根为x 1,则由一元二次方程根与系数的关系,得125k x +=-,1625x =-,从而解得:135x =-,k =-7. 方法二:将x =2代入方程,得5×22+2k-6=0,从而k =-7.设另外一根为x 1,则由一元二次方程根与系数的关系,得1725x +=,从而135x =-, 故方程的另一根为35-,k 的值为-7.【总结升华】根据一元二次方程根与系数的关系12bx x a+=-,12cx x a=易得另一根及k 的值. 举一反三:【变式】(2015秋•泉州校级期中)若关于x 的一元二次方程x 2+9k+3x+k=0的一个根是﹣2,求方程另一个根和k 的值.【答案】解:由根与系数的关系得,解得:x 2=1,k=﹣2故方程的另一个根是x 2=1,k=﹣2.4.求作一个一元二次方程,使它的两根分别是133-,122.【答案与解析】解法一:因为1211532326x x +=-+=-,121125 32323x x⎛⎫=-⨯=-⎪⎝⎭,所以所求方程为25250 63x x+-=,即265500x x+-=.解法二:所求方程为1132032x x⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,即265500x x+-=.【总结升华】根据一元二次方程的根与系数的关系可知,只需求出x1+x2和x l-x2的值即可.。
一元二次方程根与系数的关系—知识讲解(提高)【学习目标】1. 理解并掌握一元二次方程的根与系数的关系;2. 能应用一元二次方程的根与系数的关系解决以下问题:已知方程的一根,不解方程求另一根及参数系数;已知方程,求含有两根对称式的代数式的值及有关未知数系数;已知方程两根,求作以方程两根或其代数式为根的一元二次方程.【要点梳理】要点一、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++;⑦12||x x -==⑧22212121222222121212()211()x x x x x x xx x x x x++-+==; ⑨12x x -==⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【典型例题】类型一、一元二次方程的根与系数的关系的应用(1)1. 阅读材料:若一元二次方程ax 2+bx+c=0(a≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1x 2=ca. 根据上述材料解决下列问题:已知关于x 的一元二次方程x 2=2(1-m )x-m 2;有两个实数根:x 1,x 2. (1)求m 的取值范围;(2)设y=x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值. 【思路点拨】(1)首先将原方程化为一般式,由关于x 的一元二次方程x 2=2(1-m )x-m 2有两个实数根,则可知△≥0,解不等式即可求得m 的取值范围; (2)由y=x 1+x 2=-ba,代入即可求得:y=2-2m ,根据(1)中m 的取值范围,即可求得最小值. 【答案与解析】【总结升华】此题考查了根与系数的关系,以及判别式的应用.此题比较简单,注意将方程化为一般形式.举一反三:【变式】(杭州校级月考)已知x1、x2是关于x的一元二次方程x2﹣2(m+2)x+m2=0的两个实数根.(1)当m=0时,求方程的根;(2)若(x1﹣2)(x2﹣2)=41,求m的值;(3)已知等腰三角形ABC的一边长为9,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.【答案】解:(1)当m=0时,方程即为x2﹣4x=0,解得x1=0,x2=4;(2)∵x1、x2是关于x的一元二次方程x2﹣2(m+2)x+m2=0的两个实数根,∴x1+x2=2(m+2),x1x2=m2,∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=m2﹣4(m+2)+4=m2﹣4m﹣4=41,∴m2﹣4m﹣45=0,解得m1=9,m2=﹣5.当m1=9时,方程为x2﹣22x+81=0,△=(﹣22)2﹣4×81=160>0,符合题意;当m1=﹣5时,方程为x2+6x+25=0,△=62﹣4×25=﹣64<0,不符合题意;故m的值为9;(3)①当9为底边时,此时方程x2﹣2(m+2)x+m2=0有两个相等的实数根,∴△=4(m+2)2﹣4m2=0,解得:m=﹣1,∴方程变为x2﹣2x+1=0,解得:x1=x2=1,∵1+1<9,∴不能构成三角形;②当9为腰时,设x1=9,代入方程得:81﹣18(m+2)+m2=0,解得:m=15或3,当m=15时方程变为x2﹣34x+225=0,解得:x=9或25,∵9+9<25,不能组成三角形;当m=3时方程变为x2﹣10x+9=0,解得:x=1或9,此时三角形的周长为9+9+1=19.2.(肇庆二模)设x 1、x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值: (1)(x 1﹣x 2)2;(2)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【思路点拨】欲求(x 1﹣x 2)2与的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案与解析】解:根据根与系数的关系可得:x 1+x 2=﹣2,x 1•x 2=.(1)(x 1﹣x 2)2=x 12+x 22﹣2x 1x 2=x 12+x 22+2x 1x 2﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2==10. (2)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=x 1x 2+1+1+==.【总结升华】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.举一反三:【高清ID 号:388522 关联的位置名称(播放点名称):根与系数的关系---例3】 【变式】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和. 【答案】(1)134; (2)3.类型二、一元二次方程的根与系数的关系的应用(2)3.(灌云县期末)已知关于x 的方程x 2+ax ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为2,求a 的值及该方程的另一根.【思路点拨】(1)根据方程的系数结合根的判别式即可得出△=a 2+8≥8,由此即可证出不论a 取何实数,该方程都有两个不相等的实数根;(2)将x=2代入原方程求出a 值,设方程的另一个根为m ,根据根与系数的关系即可得出2m=﹣2,解之即可得出结论.【答案与解析】解:(1)在方程x 2+ax ﹣2=0中,△=a 2﹣4×1×(﹣2)=a 2+8,∵a 2+8≥8,∴不论a 取何实数,该方程都有两个不相等的实数根. (2)将x=2代入原方程,4+2a ﹣2=0,解得:a=﹣1.设方程的另一个根为m , 由根与系数的关系得:2m=﹣2, 解得:m=﹣1.∴a 的值为﹣1,方程的另一根为﹣1.【总结升华】本题考查了根的判别式以及根与系数的关系,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.4. 求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【答案与解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-, 从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结升华】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数为根的一元二次方程是.”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.一元二次方程根与系数的关系—巩固练习(提高)【巩固练习】 一、选择题1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ). A .m ≠0 B .m >1 C .m <1且m ≠0 D .m >-12.已知a 、b 、c 是△ABC 的三条边,且方程2222cx bx a bx ax b ++=++有两个相等的实数根,那么这个三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 3.(曲靖一模)已知一元二次方程x 2﹣3x ﹣3=0的两根为α与β,则的值为( )A .﹣1B .1C .﹣2D .24.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ). A .2010 B .2011 C .2012 D .20135.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则ab的值是( ). A .95 B .59 C .20125- D .20129-6.(芦溪县模拟)设x 1,x 2是方程2x 2﹣6x+3=0的两根,则x 12+x 22的值是( ) A .15 B .12 C .6 D .3二、填空题7.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________. 8.(凉山州)已知实数m ,n 满足3m 2+6m ﹣5=0,3n 2+6n ﹣5=0,且m≠n,则n m m n+= .9.(濮阳校级自主招生)求一个一元二次方程 ,使它的两根分别是方程x 2﹣7x ﹣1=0各根的倒数.10.在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程的两根,那么AB 边上的中线长是 .11.已知方程2(k+1)x 2+4kx+3k-2=0 ,(1)当k 为 时,两根互为相反数;(2)当k 为 时,有一根为零,另一根不为零. 12.(仁寿县一模)关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根分别是x 1、x 2,且x 12+x 22=7,则m 的值是 .三、解答题13. 已知关于x 的方程22210x mx m --+=的两根的平方和等于294,求m 的值.14.已知关于x 的方程 kx 2-2 (k +1) x +k -1=0 有两个不相等的实数根,(1) 求k 的取值范围;(2) 是否存在实数k ,使此方程的两个实数根的倒数和等于0 ?若存在,求出k 的值;若不存在,说明理由.15.(杭州校级期中)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=﹣p ,x 1•x 2=q ,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x 2+px+q=0的两根.(2)已知实数a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,求+的值;(3)已知关于x 的方程x 2+mx+n=0,(n ≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【答案与解析】 一、选择题 1.【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m ≠0时,由题意知△=22-4·m ×1<0,所以m >1. 2.【答案】A ;【解析】方程化为(c-b)x 2+2(b-a)x+(a-b)=0,∴ △=4(b-a)2-4(c-b)(a-b)=0 即4(a-b)(a-c)=0,∴ a =b 或a =c ,∴ △ABC 为等腰三角形.3.【答案】A ;【解析】解:根据题意得α+β=3,αβ=﹣3,所以===﹣1.故选A .4.【答案】C ; 【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=.5.【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290bb+•+=,又因为1ab ≠,所以1a b ≠,故a 和1b 可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b •=,即95a b =.6.【答案】C ;【解析】解:∵x 1,x 2是方程2x 2﹣6x+3=0的两根,∴x 1+x 2=3,x 1x 2=,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=32﹣2×=6. 故选:C .二、填空题 7.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1. 8.【答案】﹣;【解析】解:∵m≠n 时,则m ,n 是方程3x 2+6x ﹣5=0的两个不相等的根,∴m+n=﹣2,mn=﹣.∴原式====﹣,故答案为:﹣.9.【答案】x 2+7x ﹣1=0;【解析】解:设方程x 2﹣7x ﹣1=0的两根为α、β,则有:α+β=7,α•β=﹣1. ∴==﹣7,=﹣1,∴以、为根的方程为x 2+7x ﹣1=0.故答案为:x 2+7x ﹣1=0.10.【答案】;【解析】因直角三角形两直角边a 、b 是方程的二根,∴有a+b=7①a·b=c+7②,由勾股定理知c 2=a 2+b 2③,联立①②③组成方程组求得c=5, ∴斜边上的中线为斜边的一半,故答案为.11.【答案】(1)k=0;(2)k=.【解析】解:设方程的两根为x 1, x 2,则x 1+x 2=-=-;x 1x 2= .(1)要使方程两根互为相反数,必须两根的和是零, 即x 1+x 2=-=0,∴k=0,当k=0时,△=(4k)2-4×2(k+1)(3k -2)=16>0 ∴当k=0时,方程两根互为相反数.(2)要使方程只有一个根为零,必须二根的积为零,且二根的和不是零, 即x 1x 2==0,解得k=.又当k=时,x 1+x 2=-≠0,当k=时,△=(4k)2-4×2(k+1)(3k -2)=>0,∴k=时,原方程有一根是零,另一根不是零.12.【答案】-1.【解析】解:根据题意得x 1+x 2=m ,x 1x 2=2m ﹣1,∵x 12+x 22=7,∴(x 1+x 2)2﹣2x 1x 2=7,∴m 2﹣2(2m ﹣1)=7,解得m 1=﹣1,m 2=5,当m=﹣1时,原方程变形为x 2+x ﹣3=0,△=1﹣4×(﹣3)>0,方程有两个不等实数根;当m=5时,原方程变形为x 2﹣5x+9=0,△=25﹣4×9<0,方程没有实数根; ∴m 的值为﹣1. 故答案为﹣1.三、解答题13. 【答案与解析】设方程的两根为x 1、x 2,则由根与系数关系,得122m x x +=,12122m x x -=. 由题意,得 2212294x x +=,即2121229()24x x x x +-=,∴ 212292224m m -⎛⎫-=⎪⎝⎭, 整理,得28330m m +-=.解得13m =,211m =-.当m =3时,△=28(21)490m m +-=>;当m =-11时,△=28(21)630m m +-=-<,方程无实数根. ∴ m =-11不合题意,应舍去. ∴ m 的值为3.14. 【答案与解析】(1) ∵方程有两个不相等的实数根,∴Δ=[-2(k +1)]2-4k (k -1)>0,且k ≠0,解得k >-13,且k ≠0 .即k 的取值范围是k >-13,且k ≠0 . (2) 假设存在实数k ,使得方程的两个实数根x 1 , x 2的倒数和为0.则x 1 ,x 2不为0,且01121=+x x ,即01≠-kk ,且01)1(2=-+kk k k ,解得k =-1 . 而k =-1 与方程有两个不相等实根的条件k >-13,且k ≠0矛盾, 故使方程的两个实数根的倒数和为0的实数k 不存在 .15.【答案与解析】解:(1)当p=﹣4,q=3,则方程为x 2﹣4x+3=0,解得:x 1=3,x 2=1.(2)∵a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,∴a 、b 是x 2﹣15x ﹣5=0的解, 当a ≠b 时,a+b=15,a ﹣b=﹣5, +====﹣47;当a=b 时,原式=2.(3)设方程x 2+mx+n=0,(n ≠0),的两个根分别是x 1,x 2,则+==﹣,•==,则方程x 2+x+=0的两个根分别是已知方程两根的倒数.。
中考数学精选例题解析 一元二次方程根与系数的关系知识考点:掌握一元二次方程根与系数的关系,并会根据条件和根与系数的关系不解方程确定相关的方程和未知的系数值。
精典例题:【例1】关于x 的方程10422=-+kx x 的一个根是-2,则方程的另一根是 ;k = 。
分析:设另一根为1x ,由根与系数的关系可建立关于1x 和k 的方程组,解之即得。
答案:25,-1 【例2】1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值: (1)2221x x + (2)21x x - (3)2222133x x x -+ 略解:(1)2221x x +=212212)(x x x x -+=417(2)21x x -=212214)(x x x x -+=213 (3)原式=)32()(2222221x x x x -++=5417+=4112 【例3】已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。
分析:有实数根,则△≥0,且16212221+=+x x x x ,联立解得m 的值。
略解:依题意有:⎪⎪⎩⎪⎪⎨⎧≥--+=∆+=+-=+-=+0)5(4)2(4165)2(22221222122121m m x x x x m x x m x x 由①②③解得:1-=m 或15-=m ,又由④可知m ≥49- ∴15-=m 舍去,故1-=m 探索与创新:【问题一】已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。
略解:由1632+-=∆m ≥0得m ≤21。
121+-=+m x x ,22141m x x =≥0∴1x 与2x 可能同号,分两种情况讨论:(1)若1x >0,2x >0,则⎩⎨⎧>>+02121x x x x ,解得m <1且m ≠0∴m ≤21且m ≠0 (2)若1x <0,2x <0,则⎩⎨⎧><+002121x x x x ,解得m >1与m ≤21相矛盾综上所述:当m ≤21且m ≠0时,方程的两根同号。
2.4一元二次方程根与系数的关系(1)
【学习目标】
1、发现与了解一元二次方程根与系数的关系;
2、会利用根与系数的关系求有关代数式的值;
3、会利用根与系数的关系解决已知一根求另一根及未知系数的问题. 【前置学习】
1.解方程,求出两个解1x 和2x ,计算两个解的和与积填入下表.
2.观察表格中方程两个解的和,两个解的积与原方程的系数之间的关系有什么规律?写出你的结论。
【典型例题】
例1、(1)方程2
560x x -+=的两根为121,6x x ==,你认为正确吗?为什么?
(2)根据一元二次方程根与系数的关系,求下列方程的两根的和与积。
①0192=-x ②226x x -= ③2
3210x x -+=
例2、已知21x x ,是方程2
2960x x -+=的两个根,求下列各式的值; (1)
2
111x x + (2)2
221x x + (3)12(3)(3)x x -- (4)21x x -
例3、已知关于x 的一元二次方程2
30x mx ++=的一个根是-1,求它的另一个根及m 的值.
变式练习:已知2是关于x 的一元二次方程2
40x x c -+=的一个根,求方程的另一个根及c 的
值。