解一元一次方程同步练习_题型归纳
- 格式:docx
- 大小:15.71 KB
- 文档页数:10
七年级数学上册一元一次方程解应用题专项分类练习汇总工程问题1、一艘轮船在两个码头间航行,顺水航行需要4个小时,逆水航行需要5个小时,水流的速度为1km/小时,轮船在顺水和逆水中的航行速度各是多少?2、我国古代数学著名的《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将这道题改编为:上有33头,下有88足,鸡兔各几何?3、某工厂计划26小时生产一批零件,后因每小时多生产5个,用24小时,不但完成了任务,还比原计划多生产60个,原计划生产多少个零件?44、某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调到第一车间10人,那么第一车间人数就53是第二车间人数的,求原来每个车间各有多少人?45、将一批工业最新动态信息输入管理储存网络,甲单独做需要6个小时,乙单独做需要4个小时,甲先做30分后,甲乙一起完成,则甲乙一起做还需要多少小时才能完成?6、一列火车以每分钟600米的速度过两座铁桥,过第二座桥比过第一座桥多用时5秒,已知第二座桥的长度比第一座桥的长度的2倍短50米,求两座铁桥长。
7、某船从A港顺流而下到达B港口,然后逆流返回,在到达A、B间的C港口时,一共航行的7个小时,已知此船在静水中的速度为8km/时,水流的速度为2千米/时,A、C两港口相距6千米,求A、B两港口间距离。
基础专项:工程问题与一元一次方程②1、某工地需要派48人去挖土和运土,如果每人每天平均挖出5方土或者运出3方兔,那么应该如何安排人员,正好能使挖出的土及时运走?2、一件工作,甲单独做需要15个小时完成,乙单独做需要10个小时,甲先做9个小时后,因甲方有任务调离,余下的任务由乙单独完成,那么晚乙还需要多少小时才能完成任务?3、学校举办一年一届的科技文化艺术节活动,需要制作一块活动展板,请来师徒两人,已知师傅单独完成需要4天,徒弟单独完成需要6天。
一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
一元一次方程练习题及答案_题型归纳其实一元一次方程并不难学,关键在于多做题多动手动脑,小编整理了关于一元一次方程练习题及答案,希望同学们可以多多练习和参考!一元一次方程练习题:一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做, 则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).A.0B.1C.-2D.-10.方程│3x│=18的解的情况是( ).A.有一个解是6B.有两个解,是6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足( ).A.a ,b3B.a= ,b=-3C.a ,b=-3D.a= ,b-312.把方程的分母化为整数后的方程是( ).13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米, 两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).A.增加10%B.减少10%C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.A.1B.5C.3D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分, 一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A.3B.4C.5D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片, 这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明. 已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)24.据了解,火车票价按的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.3687(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: 我快到站了吗?乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).一元一次方程练习题及答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3. (点拨:解方程x-1=-,得x= )4. x+3x=2x-65.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x0时,3x=18,x=6当x0时,-3=18,x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+30,b-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、 分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800 米, 列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)21x=63x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1) 103100每张门票按4元收费的总票额为1034=412(元)可节省486-412=74(元)(2) 甲、乙两班共103人,甲班人数乙班人数甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486此等式不成立,这种情况不存在.故甲班为58人,乙班为45人.24.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.121281=153.72154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G 站下的车.(注:一元一次方程练习题及答案,仅供练习和参考,要想熟练掌握一元一次方程的做题方法,还需同学们勤加练习和思考!祝同学们学习成绩越来越棒,加油!)初一数学一元一次方程相关链接》》》》一元一次方程教案一元一次方程的解法一元一次方程应用题一元一次方程练习题一元一次方程应用题归类。
专题6.4解一元一次方程专项训练【华东师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对一元一次方程解法的理解!1.(2020秋·北京房山·七年级统考期末)解方程:32−1=5+2.【答案】x=5【分析】方程去括号,移项合并,把x系数化为1,即可求出解;【详解】解:去括号得:6x-3=5x+2,移项合并得:x=5;【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.(2020秋·广东东莞·七年级统考期末)解方程:5r72−r174=3【答案】x=53.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】解:去分母,得:2(5x+7)﹣(x+17)=12,去括号,得:10x+14﹣x﹣17=12,移项,得:10x﹣x=12﹣14+17,合并同类项,得:9x=15,系数化为1,得:x=53.【点睛】本题考查的是解一元一次方程,需要熟练掌握解一元一次方程的步骤. 3.(2020秋·河南省直辖县级单位·七年级统考期末)解方程:2−4−1=−3r56【答案】=49【分析】先去分母,再取括号,然后移项,接着合并同类项,最后系数化为1,即可得出答案.【详解】解:去分母,得:32−−12=12−23+5去括号,得:6−3−12=12−6−10移项,得:−3−12+6=−10−6+12合并同类项,得:−9=−4系数化为1,得:=49【点睛】本题考查的是解一元一次方程,比较简单,需要熟练掌握解一元一次方程的步骤与方法. 4.(2021秋·福建厦门·七年级统考期末)解方程:1−2r13=K12.【答案】=1【分析】根据去分母解方程的基本步骤规范解答即可.【详解】解:去分母,可得:6−2(2+1)=3(−1),去括号,可得:6−4−2=3−3,移项,可得:−4−3=−3−6+2,合并同类项,可得:−7=−7,系数化为1,可得:=1.【点睛】本题考查了去分母解方程,熟练掌握解方程的基本步骤是解题的关键.5.(2023秋·安徽安庆·七年级统考期末)解方程:13−−1=−1.【答案】=32【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得,2−2−1=5−1整理得,2−−1=5−1去括号得,2−+1=5−5移项,合并同类项得,−4=−6系数化为1得,=32.所以原方程的解为=32.【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.6.(2023春·上海·六年级上海市进才实验中学校考期中)解方程:1−K56=3−2【答案】=−1【分析】方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【详解】解:去分母得,6−−5=33−去括号,得,6−+5=9−3移项得,−+3=9−6−5合并得:2=−2解得=−1.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.7.(2021春·吉林长春·七年级统考期中)解方程:r12−K1=3.【答案】x=5K2K2(a≠2)或x无解(a=2).【分析】去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去分母,得:o+1)−2(−1)=6,去括号,得:B+−2+2=6,移项,得:B−2=6−−2,合并同类项,得:(−2)=5−2,系数化为1,得:=5K2K2(≠2)或无解(=2).【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.8.(2021春·上海闵行·六年级统考期中)解方程:−0.01r0.010.02=2+0.4K0.30.5.【答案】=−193【分析】利用分数的基本性质,先将含有的小数化为整数,再按步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解即可.【详解】解∶原方程可化为−r12=2+4K35,去分母,得10−5+1=2×10+24−3,去括号,得10−5−5=20+8−6,移项,得10−5−8=20−6+5,合并同类项,得−3=19,系数化为1,得=−193.【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的步骤是解题的关键.9.(2021秋·黑龙江齐齐哈尔·七年级校考期中)解方程:(1)23−=−4+5(2)17−23=1−5+26.【答案】(1)=−13;(2)=332.【分析】(1)先去括号,然后移项合并同类项,最后系数化为1即可得;(2)先去分母,然后去括号、移项、合并同类项,最后系数化为1即可得.【详解】解:(1)23−=−4(+5)去括号得:6−2=−4−20,移项可得:−2+4=−20−6,合并同类项可得:2=−26,系数化为1可得:=−13;(2)17−23=1−5+26,去分母得:217−2=6−(5+2p,去括号得:34−4=6−5−2,移项可得:−4+2=1−34,合并同类项可得:−2=−33,系数化为1为:=332.【点睛】题目主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题关键.10.(2022秋·全国·七年级期末)解方程(1)x-K25=2K53+1;(2)0.7−0.17−0.20.03=1;【答案】(1)x=-8(2)x=1417【分析】(1)按解一元一次方程的步骤计算即可;(2)先把小数都处理成整数,再按解一元一次方程的步骤计算即可.【详解】(1)去分母,可得:15x-3(x-2)=5(2x-5)+15,去括号,可得:15x-3x+6=10x-25+15,移项,可得:15x-3x-10x=-25+15-6,合并同类项,可得:2x=-16,系数化为1,可得:x=-8.(2)原方程可化为:107-17−203=1,去分母,可得:30x-7(17-20x)=21,去括号,可得:30x-119+140x=21,移项,可得:30x+140x=21+119,合并同类项,可得:170x=140,系数化为1,可得:x=1417.【点睛】本题考查一元一次方程的解法,一般解方程步骤为:去分母,去括号,移项,合并同类项,系数化1.11.(2020秋·黑龙江齐齐哈尔·七年级统考期末)解方程(1)12+3=12−3(−3);(2)−K14=1−3−6;【答案】(1)x=65;(2)x=37【分析】(1)先去括号,再移项,然后合并同类项,最后系数化为1即可得出答案;(2)先去分母,再去括号,接着移项,然后合并同类项,最后系数化为1即可得出答案.【详解】解:(1)12x+3=12-3x+912x+3x=12+9-315x=18x=65(2)12x-3(x-1)=12-2(3-x)12x-3x+3=12-6+2x9x-2x=6-37x=3x=37【点睛】本题考查的是解一元一次方程,比较简单,需要熟练掌握解一元一次方程的步骤与方法. 12.(2020秋·辽宁沈阳·七年级统考期末)解方程:(1)4−3(20−p+4=0;(2)3K15=5K76+1.【答案】(1)=8;(2)=−17;【分析】(1)先去括号,再移项,接着合并同类项,最后系数化为1即可得出答案;(2)先去分母,再去括号,然后移项,接着合并同类项,最后系数化为1即可得出答案;【详解】解:(1)4−60+3+4=07=56=8(2)6(3−1)=5(5−7)+3018−25=−35+30+6−7=1=−17【点睛】本题考查的是解一元一次方程,比较简单,需要熟练掌握解一元一次方程的步骤. 13.(2022秋·湖南岳阳·七年级统考期末)解方程(1)32−3−4−1=2;(2)K13+1=2r34.【答案】(1)=5;(2)=−12.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】(1)解:6−9−4+1=2,6−4=2−1+9,2=10,=5;(2)解:4−1+12=32+3,4−4+12=6+9,4−6=9+4−12,−2=1,=−12.【点睛】此题考查了解一元一次方程的方法,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.14.(2022秋·福建龙岩·七年级统考期末)解方程:(1)4+32−3=12−+4;(2)6+2=7−−1.【答案】(1)=1711(2)=−1511【分析】(1)先去括号,再移项,合并同类项,最后把未知数的系数化为“1”即可;(2)先去括号,再移项,合并同类项,最后把未知数的系数化为“1”即可;【详解】(1)解:4+32−3=12−+4去括号得:4+6−9=12−−4,整理得:11=17,解得:=1711;(2)6+2=7−−1,去括号得:3−6+2=7−13+1,整理得:113=−5,解得:=−1511;【点睛】本题考查的是一元一次方程的解法,掌握解一元一次方程的步骤与方法是解本题的关键.15.(2022秋·江苏南通·七年级统考期末)解方程:(1)6−1−2=+2;(2)1−2K16=2r13【答案】(1)=2(2)=56.【分析】(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;【详解】(1)解:6(−1)−2=+2,6−6−2=+2,6−=2+6+2,5=10,=2.(2)1−2K16=2r13,6−(2−1)=2(2+1),6−2+1=4+2,−2−4=2−6−1,−6=−5,=56.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤解题的关键16.(2022秋·浙江台州·七年级校考期中)解方程:(1)4(+2)=−20;(2)2r13−K56=1.【答案】(1)=−7(2)=−13.【分析】(1)先去括号,再移项,合并同类项,未知项系数化为1,求解即可;(2)先去分母,再去括号,再移项,合并同类项,未知项系数化为1,求解即可;【详解】(1)解:去括号,得4+8=−20,移项,得4=−20−8,合并同类项,得4=−28,∴=−7.(2)解:去分母,得22+1−−5=6,去括号,得4+2−+5=6,移项,得4−=6−2−5,合并同类项,得3=−1,∴=−13.【点睛】本题考查了一元一次方程的解法,解答关键是按照去分母、去括号、移项、合并同类项和未知数化为1的基本步骤解题.17.(2023秋·云南红河·七年级统考期末)解下列方程:(1)4−3=6+5;(2)8−53=2−3K12.【答案】(1)=−4(2)=1【分析】(1)移项合并同类项,即可求解;(2)先去分母,再去括号,然后移项合并同类项,即可求解.【详解】(1)解:4−3=6+5,移项得:4−6=5+3,合并同类项得:−2=8,解得:=−4;(2)解:8−53=2−3K12,去分母得:28−5=12−33−1,去括号得:16−10=12−9+3,移项得:−10+9=12+3−16,合并同类项得:−=−1,解得:=1.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.18.(2022秋·辽宁沈阳·七年级校考期末)(1)3(1−p=2;(2)3r12−4K25=1.【答案】(1)=0.6;(2)=17【分析】(1)按照去括号,移项,合并同类项,化系数为1的步骤进行求解即可;(2)按照去分母,去括号,移项,合并同类项,化系数为1的步骤进行求解即可。
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt (2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
一元一次方程同步练习题及答案一元一次方程同步练习题及答案从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
以下是小编为大家整理的一元一次方程同步练习题及答案,希望对你有所帮助!一、选择题1、方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62、方程7(2x-1)-3(4x-1)=11去括号后,正确的是()A.14x-7-12x+1=11B.14x-1-12x-3=11C.14x-7-12x+3=11D.14x-1-12x+3=113、如果代数式与的值互为相反数,则的`值等于()A.B.C.D.4、如果与是同类项,则是()A.2B.1C.D.05、已知矩形周长为20cm,设长为cm,则宽为()A.B.C.D.二、填空题1、方程2x-0.3=1.2+3x移项得.2、方程12-(2x-4)=-(x-7)去括号得.3、若︱a﹣1︱+(b+2)2=0,则ab=.4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5、若2(4a﹣2)﹣6=3(4a﹣2),则代数式a2﹣3a+4=.三、解答题1、解下列方程(1)3(2x+5)=2(4x+3)-3(2)4y﹣3(20﹣y)=6y﹣7(9﹣y)(3)7(2x-1)-3(4x-1)=4(3x+2)-11、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.【知能升级】1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1―ax=―5的解是偶数,看看你能找出几个.2、解方程(1)|4x-1|=7(2)2|x-3|+5=13答案一、选择题1、C2、C3、D4、A5、B二、填空题1、2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、(1)x=6(2)y=(3)x=2、x=-9【知能升级】1、a=1,2,3,4,62、(1)x=2,(2)x=7,-1。
第十八讲:解一元一次方程K【课堂引入】今天给大家讲一个故事,故事的主人翁是丢番图,希腊数学家丢番图(公元37世纪)的墓碑上记载着:他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一:再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部生命的一半;儿子死后,他又在极度的悲伤中度过了四年,也与世长辞了。
根据以上的信息,请你计算出:丢番图死时多少岁;解法一:算式解法:(4+5)÷(1--------)=61227解法二方程解法:设丢番图活了X岁.1111X=—x+——x+-x+5+—x+46 127 2解的X=(你会解吗?)或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为,168……但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让卡尔门特,他在1997年8月4日去世时享年122岁。
所以丢番图的年龄为岁*?【同步知识梳理】1.方程中的合并同类项解方程时,将含有未知数的几个项合成一项叫合并同类项(第二章整式的加减里已学习过),它的依据是乘法的分配律,是分配律的逆用.2.移项方程中的任何一项,都可以在改变符号后,从方程的一边移到方程的另一边,这种变形叫移项.移项的依据是等式的基本性质1,移项的目的是将含有未知数的项移到方程的一边,将不含未知数的项移到另一边.3.系数化1系数化1的目的,是将形如OX=6的方程化成X=2的形式,也就是求出方程的解χ=2.a a系数化1的依据是等式性质2,方程两边同时乘以系数。
(。
工0)的倒数或者同除以系数a本身.a4.解较简单的一元一次方程的一般步骤(1)移项,即通过移项把含有未知数的项放在等式的左边,把不含有未知数的项(常数项)移到等式的右边.(2)合并,即通过合并将方程化为QX=b(a≠0).(3)系数化1,即根据等式性质2:方程两边同时都除以未知数系数即得方程的解X=a5.去括号(1)去括号时,括号外的数都要连同前面的“土”号看作是一个数,然后按分配律分别相乘,防止符号出错或漏乘.(2)去括号时,若既有小括号,又有中括号和大括号,一般先去小括号,再去中括号,最后去大括号;有时也可以先去大括号,再去中括号,最后去小括号.6.去分母(1)去分母时,方程两边最好乘各分母的最小公倍数.(2)去分母时,分数线往往消失掉后变成括号.(3)去分母时,不含分母的项往往容易忽略,保持不变,这就错了.应该是同乘以各分母的最小公倍数,因为它的理论依据是等式性质.7.解一元一次方程的一般步骤(1)通常是去分母、去括号、移项、合并同类项、系数化为L(2)解具体的一元一次方程时,并不是以上几个步骤步步用到,应该是有分母则去分母,有括号就去括号,没有分母或括号则不用去分母或去括号.(3)解具体的一元一次方程时,并不一定是按照自上而下的顺序解方程,有时要根据方程的形式、特点灵活安排求解步骤,熟练后还可以合并或简化某些步骤.><【课堂练习】题型一:移项、系数化1例1、下列各变形中,不正确的是( )A.¼x+3=6,可得x=6-3B.从2x=x-2,可得2x-X=-2D.从2x-4=3x+8,可得2x-3x=8+4C.从X +1 = 2x,可得X -2x = 1例2、将下列方程中未知数的系数化为1:(1)2x=—4; (2)—X=2; (3)—3x=5; (4)—x=—变式训练:1、下列方程变形正确的是()A.由3+x=5得%=5+3 C.由12y=0得y=22、将下列方程中含有未知数的项移到方程的左边,将不含未知数的常数项移方程的右边:(1) 6+x=10; X 5(2) ---=4x 33(3) 7-6x=5-4x ;1 1 U(4) X ——=—x+522题型二:解方程例2、当X ,时,代数式4x-5的值为5.变式训练:1、若代数式3x+7的值为一2,则X=2、方程2x —6=X 的解是X=3、解方程:3x-7+4x=61一2;B.由7x = -4得XD.由3 = x — 2得X = 2+ 34、解方程:8x+7÷2x=l+llx-6题型三:去分母、去括号例3、去括号正确的是()A.a2-(a-b+c)=a2-a-h+cB.5+。
一元一次方程全章归类题型(典型)一元一次方程全章归类复题(典型)考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用1、判断下列等式中是一元一次方程的:A.3x=y-1B.2(x-1)=2x+1C.3(x-1)=-2x-3D.3x2-2=3E.x+1=02、在方程3x-y=2,x+1/x-2=x,x2-2x-3=0中一元一次方程的个数为:A.1个B.2个C.3个D.4个3、如果-3x2a-1+6=0是一元一次方程,那么a=2/3,方程的解为x=1/3.(特别注意)考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现1、已知等式3a=2b+5,则下列等式中不一定成立的是:A)3a-5=2b;B)3a+1=2b+6;C)3ac=2bc+5;D)a=2b+5.2、解方程1-5/(b+.33x+3x^2)=6/2x,去分母,得:A)1-x-3=3xB)6-x-3=3xC)6-x+3=3xD)1-x+3=3x3、下列方程变形中,正确的是:A)方程3x-2=2x+1,移项,得3x-2x=-1+2;B)方程3-(x-1)=2(x-1),去括号,得3-x=2x-2;C)方程2/3x-1/3x=2,未知数系数化为1,得x=6;D)方程-25x+10=-10x化成3x-1=0.考点三、解一元一次方程1).5x-.7=6.5-1.3x;2)2x-1/2x+5=1;3)236.4(x-.6)=.1x+1.3;4)320.2(5x-10)-10x=-25.考点四、列一元一次方程,解与实际生活无关的题目(可以是选择题、填空题、解答题)1、方程(x+m)/2=x-4与方程(x-16)=-6的解相同,则m的值为-23.2、已知5x+3=8x-3和5x+a/7=0这两个方程的解是互为相反数,则a=36/7.3、某数的4倍减去3比这个数的一半大4,则这个数为16.4、若与5、一个两位数,个位上的数字是十位上的数字的3倍,它们的和是12,那么这个两位数是21.6、写出一个以x=-1/2为解的一元一次方程:2x+1=0.7、XXX在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y-11=y-22,解得y=33.XXX遇到了一元一次方程的问题,他通过查阅书籍找到了解决方法。
解一元一次方程例题
1.题目:解方程 3x + 2 = 5x - 8。
【分析】将方程移项后,合并同类项,化为最简比即可。
【解答】解:移项得: 3x−5x=−8−2,合并同类项得:−2x=−10,系数化为11得: x=5。
2. 题目:解方程 4(x−3)=2x−6。
【分析】首先去掉括号,然后移项、合并同类项,最后系数化为11即可求解。
【解答】解:去括号得: 4x−12=2x−6,移项得:44x−2x=−6+12,合并同类项得:2x=6,系数化为11得: x=3。
3. 题目:解方程−3x+5=−4x+2。
【分析】将方程移项后,合并同类项,化为最简比即可。
【解答】解:移项得:−3x+4x=2−5,合并同类项得: x=−3。
通过以上几个例题,我们可以看到解一元一次方程的基本步骤是移项、合并同类项和系数化为1。
在解题过程中,要注意计算正确和符号问题。
解一元一次方程同步练习_题型归纳6.2 解一元一次方程A卷:基础题一、选择题1.判断下列移项正确的是()A.从13-x=-5,得到13-5=x B.从-7x+3=-13x-2,得到13x+7x=-3-2C.从2x+3=3x+4,得到2x-4=3x-3 D.从-5x-7=2x-11,得到11-7=2x-5x 2.若x=m是方程ax=5的解,则x=m也是方程()的解A.3ax=15 B.ax-3=-2 C.ax-0.5=- D.ax= -103.解方程=1时,去分母正确的是()A.4x+1-10x+1=1 B.4x+2-10x-1=1C.2(2x+1)-(10x+1)=6 D.2(2x+1)-10x+1=6二、填空题4.单项式- ax+1b4与9a2x-1b4是同类项,则x-2=_______.5.已知关于x的方程2x+a=0的解比方程3x-a=0的解大5,则a=_______.6.若关于x的一元一次方程=1的解是x=-1,则k=______.三、计算题7.解一元一次方程.(1)-7=5+x;(2)y- = y+3;(3)(y-7)- [9-4(2-y)]=1.四、解答题8.利用方程变形的依据解下列方程.(1)2x+4=-12;(2)x-2=7.9.关于x的方程kx+2=4x+5有正整数解,求满足条件的k的正整数值.10.蜻蜓有6条腿,蜘蛛有8条腿,现有蜘蛛,蜻蜓若干只,它们共有360条腿, 且蜘蛛数是蜻蜓数的3倍,求蜻蜓,蜘蛛各有多少只?五、思考题11.由于0. =0.999…,当问0. 与1哪个大时?很多同学便会马上回答: “当然0. 1,因为1比0. 大0.00…1.”如果我告诉你0.=1,你相信吗? 请用方程思想说明理由.B卷:多彩题一、提高题1.(一题多解题)解方程:4(3x+2)-6(3-4x)=7(4x-3).2.(巧题妙解题)解方程:x+ [x+ (x-9)]= (x-9).二、知识交叉题3.(科内交叉题)已知(a2-1)x2-(a+1)x+8=0是关于x的一元一次方程.(1)求代数式199(a+x)(x-2a)+3a+4的值;(2)求关于y的方程a│y│=x的解.三、实际应用题4.小彬和小明每天早晨坚持跑步,小彬每秒跑6米,小明每秒跑4米.(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小彬站在百米跑道的起点处,小明站在他前面10米处, 两人同时同向起跑,几秒后小彬追上小明?四、经典中考题5.(2008,重庆,3分)方程2x-6=0的解为________.6.(2008,黑龙江,3分)如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃的价格是________元.7.(2008,北京,5分)京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同. 如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?C卷:课标新型题一、开放题1.(条件开放题)写出一个一元一次方程,使它的解是-11,并写出解答过程.二、阅读理解题2.先看例子,再解类似的题目.例:解方程│x│+1=3.解法一:当x0时,原方程化为x+1=3,解方程,得x=2;当x0时,原方程化为-x+1=3,解方程,得x=-2.所以方程│x│+1=3的解是x=2或x=-2.解法二:移项,得│x│=3-1,合并同类项,得│x│=2,由绝对值的意义知x=2, 所以原方程的解为x=2或x=-2.问题:用你发现的规律解方程:2│x│-3=5.(用两种方法解)三、图表信息题3.(表格信息题)2007年4月18日是全国铁路第六次大提速的第一天,小明的爸爸因要出差,于是去火车站查询列车的开行时间,下面是小明的爸爸从火车站带回家的时刻表:2007年4月18日起次列车时刻表始发站发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸找出以前同一车次的时刻表如下:2006年次列车时刻表始发站发车时间终点站到站时间A站14:30 B站第三日8:30比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:(1)提速后该次列车的运行时间比以前缩短了多少小时?(2)若该次列车提速后的平均速度为每小时200千米,那么,该次列车原来的平均速度为多少?(结果精确到个位)4.解关于x的方程:kx+m=(2k-1)x+4.参考答案A卷一、1.C 点拨:A.-x从左边移到右边变成x,但-5从右边移到左边没有改变符号,不正确;B.-7x没有移项,不能变号,不正确;C.3移项变号了,4移项变号了,正确;D. -5x移项没变号,不正确.拓展:(1)拓展是从方程一边移到另一边,而不是在方程的一边交换位置;(2) 移项要变号,不变号不能移项.2.A 点拨:因为x=m是方程ax=5的解,所以am=5,再将x=m分别代入A,B,C,D中,哪个方程能化成am=5,则x=m就是哪个方程的解.3.C 点拨:去分母,切不可漏乘不含分母的项,不要忽视分数线的“括号”作用.二、4.0 点拨:根据同类项的概念知x+1=2x-1,解得x=2.5.-6 点拨:方程2x+a=0的解为x=-,方程3x-a=0的解为x= ,由题意知- = +5, 解得a=-6.6.1 点拨:把x=-1代入,求关于k的一元一次方程.三、7.解:(1)移项,得-x=5+7,合并同类项,得- =12,系数化为1,得x=-24.(2)去分母,得2y-3=3y+18,移项,得2y-3y=18+3,合并同类项,得-y=21,系数化为1,得y=-21.(3)去分母,得9(y-7)-4[9-4(2-y)]=6,去括号,得9y-63-4(9-8+4y)=6, 9y- 63-36+32-16y=6.移项,得9y-16y=6+36+63-32,合并同类项,得-7y=73.系数化为1,得y=-.点拨:按解一元一次方程的步骤,根据方程的特点灵活求解.移项要变号,去分母时,常数项也要乘分母的最小公倍数.四、8.解:(1)方程两边都减去4,得2x+4-4=-12-4,2x=-16,方程两边都除以2,得x=-8.(2)方程两边都加上2,得x-2+2=7+2,x=9,方程两边都乘以3,得x=27.点拨:解简单一元一次方程的步骤分两大步:(1)将含有未知数一边的常数去掉;(2)将未知数的系数化为1.9.解:移项,得kx-4x=5-2,合并同类项,得(k-4)x=3,系数化为1,得x= ,因为是正整数,所以k=5或k=7.点拨:此题用含k的代数式表示x.10.解:设蜻蜓有x只,则蜘蛛有3x只,依据题意,得6x+83x=360,解得x= 12, 则3x=312=36.答:蜻蜓有12只,蜘蛛有36只.点拨:本题的等量关系为:蜻蜓所有的腿数+蜘蛛所有的腿数=360.此题还可设蜘蛛有x只,列方程求解,同学们不妨试一下.五、11.解:理由如下:设0. =x,方程两边同乘以10,得9. =10x,即9+0.=10x,所以9+x=10x,解得x=1,由此可知0.=1.B卷一、1.分析:此题可先去括号,再移项求解,也可先移项,合并同类项, 再去括号求解.解法一:去括号,得12x+8-18+24x=28x-21,移项,得12x+24x-28x=-21+18-8,合并同类项,得8x=-11,系数化为1,得x=-.解法二:移项,得4(3x+2)+6(4x-3)-7(4x-3)=0,合并同类项,得4(3x+2)-(4x-3)=0.去括号,得12x+8-4x+3=0.移项、合并同类项,得8x=-11,系数化为1,得x=-.点拨:此方程的解法不唯一,要看哪种解法较简便,解法二既减少了负数,又降低了计算的难度.2.分析:此题采用传统解法较繁,由于(x-9)= (x-9),而右边也有(x-9),故可把(x-9)看作一个“整体”移项合并.解:去中括号,得x+ x+ (x-9)= (x-9),移项,得x+ x+ (x-9)-(x-9)=0,合并同类项,得x=0,所以x=0.点拨:把(x-9)看作一个“整体”移项合并,能化繁为简,正是本题的妙解之处.二、3.分析:由于所给方程是一元一次方程,故x2项的系数a2-1=0且x项的系数- (a+1)0,从而求得a值,进而求得原方程的解,最后将a,x 的值分别代入所求式子即可.解:由题意,得a2-1=0且-(a+1)0,所以a=1且a-1,所以a=1.故原方程为-2x+8=0,解得x=4.(1)将a=1,x=4代入199(a+x)(x-2a)+3a+4中,得原式=199(1+4)(4-21)+3 1+4=1997.(2)将a=1,x=4代入a│y│=x中,得│y│=4,解得y=4.点拨:本题综合考查了一元一次方程的定义、 解一元一次方程及代数式求值等知识.三、4.分析:(1)实际上是异地同地相向相遇问题;(2)实际上是异地同时同向追及问题.解:(1)设x秒后两人相遇,依据题意,得4x+6x=100,解得x=10.答:10秒后两人相遇.(2)设y秒后小彬追上小明,依据题意,得4y+10=6y,解得y=5.答:5秒后小彬能追上小明.点拨:行程问题关键是搞清速度、时间、路程三者的关系, 分清是相遇问题还是追及问题.拓展:相遇问题一般从以下几个方面寻找等量列方程:(1)从时间考虑,两人同时出发,相遇时两人所用时间相等;(2)从路程考虑,①沿直线运动,相向而行,相遇时两人所走路程之和=全路程.②沿圆周运动, 两人由同一地点相背而行,相遇一次所走的路程的和=一周长;(3)从速度考虑,相向而行,他们的相对速度=他们的速度之和.追及问题可从以下几个方面寻找等量关系列方程:(1)从时间考虑,若同时出发,追及时两人所用时间相等;(2)从路程考虑,①直线运动,两人所走距离之差=需要赶上的距离.②圆周运动,两人所行距离之差=一周长( 从同一点出发);(3)从速度考虑,两人相对速度=他们的速度之差.四、5.x=3点拨:2x-6=0,移项,得2x=6,系数化为1,得x=3.6.145 点拨:设一盒福娃x元,则一枚奥运徽章的价格为(x-120)元,所以x+( x-120)=170,解得x=145.7.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x+40)千米.依题意,得= (x+40),解得x=200.答:这次试车时,由北京到天津的平均速度是每小时200千米.点拨:本题相等关系为:北京到天津的路程=天津到北京的路程.采用间接设未知数比较简单.C卷一、1.分析:只要写出的方程是一元一次方程,并且其解是-11即可.解:.去分母,得3(x+1)-12=2(2x+1),去括号,得3x+3-12=4x+2, 移项, 得3x-4x=2+12-3,合并同类项,得-x=11.系数化为1,得x=-11.拓展:此类问题答案不唯一,只要合理即可. 有利于培养同学们的逆向思维及发散思维.二、2.分析:解答此题的关键是通过阅读,正确理解解题思路, 然后仿照给出的方法解答新的题目即可.解:法一:当x0时,原方程化为2x-3=5,解得x=4;当x0时,原方程化为-2x-3=5,解得x=-4.法二:移项,得2│x│=8,系数化为1,得│x│=4,所以x=4,即原方程的解为x=4或x=-4.点拨:由于未知数x的具体值的符号不确定,故依据绝对值的定义,分x0或x 0两种情况加以讨论.三、3.分析:分别求出该次列车提速前后的运行时间,再求差,求列车原来的平均速度,需求出A,B两站的距离.解:(1)提速后的运行时间:24+12:20-8:20=28(小时),提速前的运行时间: 24:00-14:30+24+8:30=42(小时),所以缩短时间:42-28=14(小时).答:现在该次列车的运行时间比以前缩短了14小时.(2)设列车原来的平均速度为x千米/小时,根据题意得,20028=42x,解得x=133 133.答:列车原来的平均速度为133千米/时.点拨:弄懂表格给出的信息,求出各段相应的时间是解答本题的关键.4.分析:由于未知数x的系数含有字母,因此方程解的情况是由字母系数及常数项决定的.解:化简原方程,得(k-1)x=m-4.当k-10时,有唯一解,是x= ;当k-1=0,且m-40时,此时原方程左边=0x=0,而右边0,故原方程无解;当k-1=0,且m-4=0时,原方程左边=(k-1)x=0x=0,而右边=m-4=0,故不论x 取何值,等式恒成立,即原方程有无数解.合作共识:将方程,经过变形后,化为ax=b的形式,由于a,b值不确定,故原方程的解需加以讨论.点拨:解关于字母系数的方程,将方程化为最简形式(即ax=b),需分a0,a=0 且b=0,a=0且b0三种情况加以讨论,从而确定出方程的解.。