固体物理(清华大学)--N01_C03B
- 格式:docx
- 大小:225.71 KB
- 文档页数:16
第二章:化学键与晶体形成在固体物理发展的早期阶段,人们从化学的角度来研究固体,所以化很大的精力去计算各种固体的结合能(binding energy),并依此对固体进行粗略的分类。
后来在原子物理和量子力学发展以后,人们依据电子在实空间的分布来对固体进行分类,也就是化学键或者是晶体的键合(crystal binding)的理论。
最精确的固体分类是在能带理论发展以后才实现的。
原子物理研究了单个原子中的电子能级.首先,考虑一个电子,单个电子是以一定的几率在原子核周围的空间中分布,几率分布的密度()()2r r ψ=ρ(()r ψ是单个电子的波函数). 根据量子力学,三维空间中单个电子的波函数),()()( φθ=ψlm n Y r R r 是能量E,轨道角动量2L和分量z L 三个算符的共同本征函数,其量子数分别为n, l, m(221n E n -=,n=n ’+l+1),一组量子数确定电子的一个轨道.在考虑一个原子中的多个电子的时候,忽略了电子之间很强的库仑排斥作用(很奇怪和大胆的近似,但误差不大),认为多个电子根据泡利不相容原理(Pauli ’s exclusion principle)以及洪特规则(Hund ’s rule)依次排入单个电子的轨道.这就分别形成了(1s,2s,2p,3s,3p,3d,...)等电子壳层和亚壳层.在原子结合成为固体的过程中,内部满壳层的电子(core electrons)基本保持稳定,价电子(valence electrons)在实空间会随着原子之间的相互作用重新分布。
按化学家的语言说,就是在原子之间形成了化学键(Chemical bond)。
不同的固体拥有不同的化学键。
晶体:原子、离子或分子呈空间周期性排列的固体,以区别于内部不具有周期性的非晶体。
原子间引力:一般来说,晶体比自由原子的空间混乱集合稳定,这意味着原子之间存在等效的相互吸引力(本质是库仑相互作用加上量子效应),从而构成晶体。
目 录
2009年清华大学材料科学基础(与物理化学或固体物理)考研真题及详解
2008年清华大学材料科学基础(与物理化学或固体物理)考研真题及详解
2007年清华大学材料科学基础(与物理化学或固体物理)考研真题及详解
2006年清华大学材料科学基础考研真题及详解
2005年清华大学材料科学基础考研真题及详解
2004年清华大学材料科学基础考研真题及详解
2003年清华大学材料科学基础考研真题(之一)及详解
2003年清华大学材料科学基础考研真题(之二)及详解
2002年清华大学材料科学基础考研真题及详解
2009年清华大学材料科学基础(与物理化学或固体物理)考研真题及详解。
第二卷固体物理知识点(参考黄昆的书,学有余力也建议学习韦丹固体物理,各有特色)第一章晶体结构1.1 晶格的相关概念及几种不同晶格1.2 理解原胞概念1.3 晶面晶向的标定1.4 倒易点阵的定义及相关性质1.5 立方体、正四面体、正六角柱的对称操作1.6 五种旋转对称的推导1.7 十四种布拉伐格子,结合材料科学基础,弄清楚。
1.8 表1-2记住,材科基会考第二章固体的结合2.1 离子性结合的特点,推导马德隆常数,系统内能的表示,求平衡距离和体变模量2.2 共价结合的特点2.3 金属性结合的特点,排斥作用来源2.4 范德瓦尔斯结合的特点,Lennard-Jones 势的相关推导第三章晶格振动与晶体的热学性质3.1 了解简谐近似、简正坐标、振动模的概念3.2 格波、声子概念,一维单原子链的色散关系等计算,q 的范围,长波极限特点3.3 一维双原子链相关推导,q 的取值范围,声学波光学波的概念,长波极限的特点3.4 声学波,光学波的数量判断,q 的分布密度,第一布里渊区的概念,画法3.5 了解LST 关系3.6 确定色散关系的几种方法及其原理3.8 爱因斯坦模型和德拜模型的假设、结果、适用范围、缺陷及全部推导过程3.9 不同条件下推导晶格振动模式密度3.10 热膨胀产生原因3.11晶格热传导原理,热导率的影响因素,N、U过程,不同温度下晶格热导原理第四章能带理论4.1 布洛赫定理内容,简约波矢概念4.2 一维周期长中求带隙大小,解释其成因4.3 三维周期场的布里渊区和能带,SC、BCC、FCC的简约布里渊区及相关数据。
结合2015年十一题和课后4.8弄懂图4-114.5 紧束缚近似的概念,该近似下求SC、BCC、FCC的能带函数E(k)4.7 不同维度下求能态密度,近自由电子的等能面,费米面,费米半径的相关计算第五章晶体中电子在电场和磁场中的运动5.1 波包概念,E、F、v、a、m*的相关公式及计算5.2 恒定电场下电子的运动过程,振荡频率5.3 导体、半导体、绝缘体的能带特点5.4 了解廊道能级概念5.5 回旋共振的应用5.6 德·哈斯-范·阿尔芬效应的原理及作用第六章金属电子论(可参考材科学习辅导第九章:功能材料基础)6.1 电子热容量公式(掌握大致证明过程),电子热容量与晶格热容量大小比较及原理6.3 了解定态导电过程中的玻尔兹曼方程6.4 了解弛豫时间的概念及电导率公式6.5 了解对各向同性散射过程中弛豫时间表达式的理解6.6 晶格散射的 U 过程和 N 过程,弛豫时间公式中包含的两个重要结论第七章至第十一章:出现频率极低,搞懂相关真题,学有余力关注其中一些概念即可。
课程编号:011908 总学分:3学分固体物理(Solid-State Physics)课程性质:学科大类基础课适用专业:应用物理学专业学时分配:课程总学时:48学时。
其中:理论课学时:46学时(含演示学时);实验学时:0学时;上机学时:0学时;习题课学时:2学时。
先行、后续课程情况:先行课:高等数学、热力学与统计物理,;后续课:量子力学,原子物理。
教材:《固体物理学》,黄昆,韩汝琦,高等教育出版社参考书目:《固体物理学》,陆栋,上海科学技术出版社《固体物理基础》,阎守胜,北京大学出版社《固体物理简明教程》,蒋平,徐至中,复旦大学出版社一、课程的目的与任务固体物理学是应用物理和物理类各专业的一门必修基础课程,是继四大力学之后的一门基础且关键的课程,它的主要内容是研究固体的结构及组成粒子(原子、离子、电子等)之间的相互作用与运动规律,阐明固体的性能和用途,尤其以固态电子论和固体的能带理论为主要内容。
通过固体物理学的整个教学过程,使学生理解晶体结构的基本描述,固体电子论和能带理论,以及实际晶体中的缺陷、杂质、表面和界面对材料性质的影响等,掌握周期性结构的固体材料的常规性质和研究方法,了解固体物理领域的一些新进展,为以后的专业课学习打好基础。
二、课程的基本要求教学内容的基本要求分三级:掌握、理解、了解。
掌握:属于较高要求。
对于要求掌握的内容(包括定理、定律、原理等的内容、物理意义及适用条件)都应比较透彻明了,并能熟练地用以分析和计算有关问题,对于能由基本定律导出的定理要求会推导。
理解:属于一般要求。
对于要求理解的内容(包括定理、定律、原理等的内容、物理意义及适用条件)都应明了,并能用以分析和计算有关问题。
对于能由基本定律导出的定理不要求会推导。
了解:属于较低要求。
对于要求了解的内容,应该知道所涉及问题的现象和有关实验,并能对它们进行定性解释,还应知道与问题直接有关的物理量和公式等的物理意义。
三、课程教学内容绪论:了解固体的分类和固体物理学的研究内容;了解固体物理学的发展历史;了解固体物理学的研究方法。
清华大学固体物理:第六章晶格动力学6. 1固体物理性质的变化依赖于他们的晶格动力学行为:红外、拉曼和中子散射谱;比热,热膨胀和热导;和电声子相互作用相关的现象如金属电阻,超导电性和光谱的温度依赖关系是其中的一部分。
事实上,借助于声子对这些问题的了解最令人信服地说明了訂前固体的量子力学图像是正确的。
晶格动力学的基础理论建立于30年代,玻恩和黄昆1954年的专题论文至今仍然是这个领域的参考教科书。
这些早期的系统而确切地陈述主要建立了动力学矩阵的一般性质,他们的对称和解析性质,没有考虑到和电子性质的联系,而实际上正是电子性质决定了他们。
直到1970年才系统地研究了这些联系。
一个系统电子的性质和晶格动力学之间的联系的重要性不仅在原理方面,主要在于通过使用这些关系,才有可能讣算特殊系统的晶格动力学性质。
现在用db initio量子力学技术,只要输入材料化学成分的信息,理论凝聚态物理和计算材料科学就可以il•算特殊材料的特殊性质。
在晶格动力学性质的特殊情况下,基于晶格振动的线性响应理论,大量的ab initio计算在过去十年中通过发展密度泛函理论已经成为可能。
密度泛函微扰理论是在密度泛函理论的理论框架之内研究晶格振动线性响应。
感谢这些理论和算法的进步,现在已经可以在整个布里渊区的精细格子上精确讣算出声子色散关系,直接可以和中子衍射数据相比。
山此系统的一些物理性质(如比热、熱膨胀系数、能带隙的温度依赖关系等等)可以计算。
1从固体电子自山度分离出振动的基本近似是Born-Oppenhermer (1927)的绝热近似。
在这个近似中,系统的晶格动力学性质曲以下薛定涔方程的本征值,R和本征函数决定。
,h22ERRR,,, (6. 1. 1) 22MRIII这里RRER是笫I个原子核的坐标,是相应原子核的质量,是所有原子核坐标的集合,是RMIII系统的系统的限位离子能量,常常称为Born-Oppenhermer能量表面。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
北京工业大学“固体物理Ⅰ”课程教学大纲英文名称:Solid State Physics课程编号:课程类型:专业限选课学时:32 学分:2面向对象:材料科学与工程专业及相关专业先修课程:普通物理、材料科学基础一、课程性质和目的(任务)《固体物理Ⅰ》是材料科学与工程专业的专业限选课。
其任务是让学生掌握固体物理的基本规律、基本概念和处理固体物理学问题的特有方法,为后续课程的学习奠定必要的理论基础,同时培养学生综合所学知识分析问题和解决问题的能力。
二、课程教学内容及要求总体目的和要求:(1)了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用。
(2)掌握固体物理学的基本概念和基本规律,培养掌握科学知识的方法。
(3)熟悉应用固体物理学理论分析和处理问题的手段方法。
章节要求第一章绪言(1学时)要求了解固体物理的发展过程和当前固体物理研究进展,了解固体物理理论与材料性能与应用之间的关联性。
第二章晶体结构(5学时)要求学生掌握晶体的宏观特性、晶体的微观结构、常见的晶体结构、晶体的对称性和晶面与晶向的概念;了解倒格子与布里渊区的概念[1] 了解晶格基矢,晶格的周期性、空间点阵的概念,掌握原胞、晶胞,晶列、晶面指数的表示方法[2] 理解晶体结构的对称性[3] 理解密堆积、配位数[4] 了解倒易点阵,倒格子(布里渊区)第三章晶体结合(6学时)要求学生掌握晶体结合的普遍特性;熟悉离子键,共价键,金属键,分子键,氢键和的特性;理解晶体结合类型与原子负电性的关系。
[1] 掌握晶体结合的一般性描述[2] 理解晶体结合的基本类型及特性[3] 了解晶体结合与原子的负电性第四章晶格振动(6学时)要求学生重点掌握一维单原子链的振动方程与格波解的形式,理解一维双原子链振动和三维晶格振动;掌握声子的概念与特性;理解模式密度的概念;理解晶格热容与晶格振动的关系;了解晶格中的热传递。
[1] 掌握一维晶格振动[2] 了解三维晶格振动[3] 掌握声子的概念[4] 理解晶格振动的模式密度和晶格热容[5] 了解晶格热传导第五章能带理论(8学时)要求学生掌握能带理论的基本假定,重点掌握周期场中单电子的一般属性,了解近自由电子近似方法和紧束缚近似方法;深刻理解晶体中电子的准经典运动;理解固体导电性能的能带解释;了解能态密度的定义和一些简单的计算。
绪论一固体物理的研究对象固体物理是研究固体的结构及其组成粒子原子离子电子等之间相互作用与运动规律以阐明其性能与用途的学科 固体按结构分类取向对称晶体学上不允许的长程平移序和同时具有长程准周期性准晶准晶体短有序程无明确周期性非晶态非晶体长程有序规则结构晶态晶体:)(,:)(,:)( 二固体物理的发展过程人们很早注意到晶体具有规则性的几何形状还发现晶体外形的对称性和其他物理性质之间有一定联系因而联想到晶体外形的规则性可能是内部规则性的反映十七世纪C Huygens 试图以椭球堆集的模型来解释方解石的双折射性质和解理面十八世纪RJH 认为方解石晶体是由一些坚实的y ua &&相同的平行六面体的小基石有规则地重复堆集而成的到十九世纪费多洛夫熊夫利巴罗等独立地发展了关于晶体微观几何结构的理论系统为进一步研究晶体机构的规律提供了理论依据1912年劳埃首先提出晶体可以作为X 射线的衍射光栅索末菲发展了固体量子论费米发展了统计理论在这些研究的基础上逐渐地建立了固体电子态理论能带论和晶格动力学固体的能带论提出了导电的微观机理指出了导体和绝缘体的区别并断定有一种固体它们的导电性质介乎两者之间叫半导体四十年代末五十年代初以锗硅为代表的半导体单晶的出现并以此制成了晶体三极管进而产生了半导体物理这标志着固体物理学发展过程的又一次飞跃为了适应微波低噪音放大的要求曾经出现过固体量子放大器脉泽1960年出现的第一具红宝石激光器就是由红宝石脉泽改造而成的可以说固体物理学尖端技术和其他学科的发展相互推动相辅相成的作用反映在上述的固体新材料与新元件的发现和使用上新技术和其他学科的发展也为固体物理学提供了空前有利的研究条件三固体物理的学科领域随着生产及科学的发展固体物理领域已经形成了象金属物理半导体物理晶体物理和晶体生长磁学电介质包括液晶物理固体发光超导体物理固态电子学和固态光电子学等十多个子学科同时固体物理的本身内核又在迅速发展中主要有1研究固体中的元激发及其能谱以更深入更详细地分析固体内部的微观过程揭示固体内部的微观奥妙2研究固体内部原子间结合力的综合性质与复杂结构的关系掌握缺陷形成和运动以及结构变化相变的规律从而发展多功能的复合材料以适应新的需要3研究在极低温超高压强磁场强辐射条件下固体的性质4表面物理----在研究体内过程的基础上进入了固体表面界面的研究5非晶态物理----在研究晶态的基础上开始进入非晶态的研究即非晶体中原子电子的微观过程四固体物理的研究方法固体物理主要是一门实验性学科但是为了阐明所揭示出来的现象之间的内在的本质联系就必须建立和发展关于固体的微观理论实验工作与理论工作之间要相互密切配合以实验促进理论以理论指导实验相辅相成相得益彰第一章晶体结构固体的结构决定其宏观性质和微观机理本章主要阐明晶体中原子排列的几何规则性1-1 一些晶格的实例晶体组成微粒具有空间上按周期性排列的结构基元当晶体中含有多种原子多种原子构成基本的结构单元格点结点结构中相同的位子图1-1-1 结构中相同的位子点阵晶体中格点的总体又称为布拉菲点阵布拉菲格子这种格子的特点是每点周围的情况都一样如果晶体由完全相同的一种原子组成则这种原子所组成的网格也就是布拉菲格子和结点所组成的相同如果晶体的基元中包含两种或两种以上的原子则每个基元中相应的同种原子各构成和结点相同的网格不过这些网格相对地有位移而形成所谓的复式格子显然复式格子是由若干相同的布拉菲格子相互位移套构而成晶格通过点阵中所有节点的平行直线簇和平行平面簇构成的网格元胞反映晶格周期性的最小重复单元侧重最小重复单元每个元胞中只有一个格点晶胞晶体学单胞既反映晶格周期性又反映晶格的空间对称性的最小重复单元侧重空间对称性每个元胞可能不止一个格点一单原子组成的元素晶格1简单立方晶格图1-1-2 原子球的正方排列及其各层球完全对应层叠形成的简单立方晶格2体心立方晶格的典型单元及堆积方式图1-1-3体心立方晶格的典型单元及体心立方晶格的堆积方式3原子球最紧密排列方式与面心立方晶格和六角密排晶格图1-1-4原子球最紧密排列方式当层叠是ABABAB方式则构成六角密排晶格当层叠是ABCABCABC方式则构成面心立方晶格4金刚石类晶格金刚石类晶格是由面心立方单元的中心到顶角引8条对角线在其中互不相邻的4条对角线的中点各加一个原子就得到金刚石类晶格结构也可看成面心立方沿体对角线平移1/4体对角线套购而成除金刚石外半导体硅和锗也具有类似金刚石类晶格结构图1-1-5金刚石类晶格结构的典型单元二化合物晶体的结构1NCl类晶格结构其好似于简单立方晶格只是每一行相间地排列着正的和负的离子N a+和Cl-碱金属和卤族元素的化合物都具有类似的结构Cl类晶格结构2C其好似体心立方晶格只是体心和顶角是不同的离子3闪锌矿ZS类晶格结构和金刚石类晶格结构相仿只要在金刚石晶格立方单元的对角线位置上放置一种原子在面心立方位置上放置另一种原子441-2晶格的周期性对于晶格的周期性通常用元胞和基矢来描述图1-2-1 中除4外均为最小单元由此元胞的选取并不是唯一的但各种晶格元胞都有习惯的选取方式并用元胞的边矢量作晶格的基矢基矢之间并不都相互正交图1-2-1平面元胞示意图1 简单立方晶格的元胞三个基矢分别zy x e a a e a a e a v v v v v v ===32,,为a 13321a a a a =×⋅vv r2 面心立方晶格的元胞三个基矢分别为)(2),(2),(2321j i a a j i a a j i a a v v v v v v v v v +=+=+=43321a a a a =×⋅vv r3体心立方晶格的元胞三个基矢分别为)(2),(2),(2321k j i a a k j i a a k j i a a v v v v v v v v v v v v −+=+−=++−=23321a a a =×⋅v v r a)3322a l a l ++}设为元胞中任意一处的位子矢量r vQ代表晶体中的任一物理量则Q ()(11a l r Q r +=vv l 1l 2l 3为整数即任意两元胞中相对应的点的物理性质相同我们可以用表示一种空间点阵{a l a l a l v v v 321++即一组l 1l 2l 3的取值表示格子中的一个格点l 1l 2l 3所有可能的集合就表示一个空间格子实际晶体可以看成在上述空间格子的每个格点上放置一组基元可为多种原子这个空间格子表征了晶格的周期性称为布拉菲格子Cu 的面心立方晶格Si 的金刚石晶格和NaCl 晶格均具有相同的布拉菲格子—面心立方格子它们的晶格结构虽然不同但具有相似的周期性自然界中晶格的类型很多但只可能有十四种布拉菲格子。
一、简介微纳电子系本科生一级学科名称为电子科学与技术,二级学科名称为微电子学。
二、课程设置课程编号:30260093 课程名称:固体物理学课程属性:专业核心课开课学期:09秋任课教师:王燕内容简介:固体物理学是固体材料和固体器件的基础。
该课程主要研究晶体的结构及对称性,晶体中缺陷的形成及特征,晶格动力学,能带理论的基础知识以及晶体中的载流子输运现象等。
是微纳电子专业的核心课。
课程编号:40260103 课程名称:数字集成电路分析与设计课程属性:专业核心课开课学期:09秋任课教师:吴行军内容简介:本课程从半导体器件的模型开始, 然后逐渐向上进行, 涉及到反相器, 复杂逻辑门 (NAND , NOR , XOR , 功能模块(加法器,乘法器,移位器,寄存器和系统模块(数据通路,控制器,存储器的各个抽象层次。
对于这些层次中的每一层,都确定了其最主要的设计参数,建立简化模型并除去了不重要的细节。
课程编号:40260173 课程名称:数字集成电路分析与设计(英课程属性:专业核心课开课学期:09秋任课教师:刘雷波内容简介:数字集成电路的分析与设计,包括:CMOS 反相器、组合和时序逻辑电路分析与设计、算术运算逻辑功能部件、半导体存储器的结构与实现、互连线模型与寄生效应的分析。
并介绍常用数字集成电路的设计方法和流程。
课程编号:30260072 课程名称:微电子工艺技术课程属性:专业核心课开课学期:09秋任课教师:岳瑞峰内容简介:本课程授课目的是使学生掌握微电子制造的各单项工艺技术, 以及亚微米 CMOS 集成电路的工艺集成技术。
本课程讲授微电子制造工艺各单项工艺的基本原理(包括氧化、扩散、离子注入、薄膜淀积、光刻、刻蚀、金属化工艺等,并介绍常用的工艺检测方法和 MEMS 加工技术、集成电路工艺集成技术和工艺技术的发展趋势等问题。
另通过计算机试验,可学习氧化、扩散、离子注入等工艺设备的简单操作和模拟。
课程编号:40260054 课程名称:半导体物理与器件课程属性:专业核心课开课学期:09春任课教师:许军内容介绍:主要讲授半导体材料的基本物理知识,半导体器件的工作原理以及现代半导体器件的新进展。
809《固体物理》中科院研究生院硕士研究生入学考试《固体物理》考试大纲本《固体物理》考试大纲适用于中国科学院凝聚态物理及相关专业的硕士研究生入学考试。
《固体物理》是研究固体的结构、组成粒子的相互作用以及运动规律的学科,是物理研究的一个重要组成部分,是许多学科专业的基础课程。
本科目的考试内容包括晶体结构、晶格振动、能带理论和金属电子论等。
要求考生深入理解其基本概念,有清楚的物理图象,能够熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力。
一、考试内容(一)晶体结构1、单晶、准晶和非晶的结构上的差别2、晶体中原子的排列特点、晶面、晶列、对称性和点阵的基本类型3、简单的晶体结构4、倒易点阵和布里渊区5、X射线衍射条件、基元的几何结构因子及原子形状因子(二)固体的结合1、固体结合的基本形式2、分子晶体与离子晶体,范德瓦尔斯结合,马德隆常数(三)晶体中的缺陷和扩散1、晶体缺陷:线缺陷、面缺陷、点缺陷2、扩散及微观机理3、位错的物理特性4、离子晶体中的点缺陷和离子性导电(四)晶格振动与晶体的热学性质1、一维链的振动:单原子链、双原子链、声学支、光学支、色散关系2、格波、简正坐标、声子、声子振动态密度、长波近似3、固体热容:爱因斯坦模型、德拜模型4、非简谐效应:热膨胀、热传导5、中子的非弹性散射测声子能谱(五)能带理论1、布洛赫定理2、近自由电子模型3、紧束缚近似4、费密面、能态密度和能带的特点(六)晶体中电子在电场和磁场中的运动1、恒定电场作用下电子的运动2、用能带论解释金属、半导体和绝缘体,以及空穴的概念3、恒定磁场中电子的运动4、回旋共振、德·哈斯-范·阿尔芬效应(七)金属电子论1、金属自由电子的模型和基态性质2、金属自由电子的热性质3、电子在外加电磁场中的运动、漂移速度方程、霍耳效应二、考试要求(一)晶体结构1.理解单晶、准晶和非晶材料原子排列在结构上的差别2.掌握原胞、基矢的概念,清楚晶面和晶向的表示,了解对称性和点阵的基本类型3.了解简单的晶体结构4.掌握倒易点阵和布里渊区的概念,能够熟练地求出倒格子矢量和布里渊区5.了解X射线衍射条件、基元的几何结构因子及原子形状因子(二)固体的结合1.了解固体结合的几种基本形式2.理解离子性结合、共价结合、金属性结合、范德瓦尔斯结合等概念(三)晶体中的缺陷和扩散1.掌握线缺陷、面缺陷、点缺陷的概念和基本的缺陷类型2.了解扩散及微观机理3.了解位错的物理特性4.大致了解离子晶体中的点缺陷和离子性导电(四)晶格振动与晶体的热学性质a)熟练掌握并理解其物理过程,要求能灵活应用:一维链的振动(单原子链、双原子链)、声学支、光学支、色散关系b)清楚掌握格波、简正坐标、声子、声子振动态密度、长波近似等概念c)熟练掌握并理解其物理过程,要求能灵活应用:固体热容:爱因斯坦模型、德拜模型d)了解非简谐效应:热膨胀、热传导e)了解中子的非弹性散射测声子能谱(五)能带理论a)深刻理解布洛赫定理b)熟练掌握并理解其物理过程,要求能灵活应用:近自由电子模型c)熟练掌握并理解其物理过程,要求能灵活应用:紧束缚近似d)深刻理解费密面、能态密度和能带的特点(六)晶体中电子在电场和磁场中的运动a)熟练掌握并理解其物理过程:恒定电场作用下电子的运动b)能够用能带论解释金属、半导体和绝缘体,掌握空穴的概念c)熟练掌握并理解其物理过程:恒定磁场中电子的运动d)能够解释回旋共振、德·哈斯-范·阿尔芬效应(七)金属电子论a)熟练掌握金属自由电子的模型和基态性质b)了解金属自由电子的热性质c)熟练掌握并理解其物理过程:电子在外加电磁场中的运动、漂移速度方程、霍耳效应三、主要参考书目黄昆原著,韩汝琦改编,《固体物理学》高等教育出版社,1988年10月编制单位:中国科学院研究生院编制日期:2006年6月6日修订日期:2008年7月6日。
3.4 倒易点阵与布里渊区(Reciprocal Lattice and Brillouin Zone) 在晶格振动理论中原子的振动以机械波的形式在晶体中传播,在能带理论中电子的几率分布用波函数的形式描述,是在整个晶体中分布的几率波。
上述两种波都受制于晶格的周期性。
倒易空间就是定
义在晶格上的波()r ψ的波矢k 的空间.
从数学上讲,倒易点阵和Bravais 点阵互相是对应的傅里叶空间。
倒易点阵基矢(Reciprocal Basis)与晶格基矢正交归一: a a i j ij *⋅=2πδ。
倒易点阵基矢:()()()()
a a a a a a a a a a a a c
c
c c 123231123312222***,=⨯=⨯=⋅⨯=⨯πππΩΩΩΩ即原胞体积。
倒易格矢量:
*3*2*1a l a k a h G hkl ++=,其中h, k, l 为任意整数.构成倒易点
阵。
Bravais 点阵的倒易点阵也是Bravais 点阵,在绝大多数情况傅里叶
变换并不改变点阵的晶格结构.普遍而言
倒易点阵属于点阵同一晶系.
(1) 面心立方与体心立方互为正、倒易点阵。
例子:面心---体心互
换。
)ˆˆˆ(2
),ˆˆˆ(2),ˆˆˆ(2321z y x a a z y x a a z y x a a -+=+-=++-= (2) 体心四方变成面心四方,也就是回到体心四方.
)ˆˆˆ(2
1),ˆˆˆ(21),ˆˆˆ(21321z c y a x a a z c y a x a a z c y a x a a -+=+-=++-= (3) 底心正交还是变成体心正交.
z c a y a x a a y b x a a ˆ),ˆˆ(2
1),ˆˆ(21321=-=+= 倒易点阵在晶体学中的应用:晶面的定量描述。
倒格矢
G ha ka la hkl =++123***垂直于()hkl 晶面。
面间距d G hkl hkl =2π/。
所以
倒格矢hkl G 可以代表()hkl 晶面.
证明:设晶面在基矢上的截距为x y z ,,,Miller 指数()h k l x y z ,,,,=⎛⎝ ⎫⎭
⎪111。
被晶面截出的基矢方向的矢量差为 u ya xa 1221=-,2
323a y a z u
-=和3131a z a x u -=。
以Miller 指数组成倒格矢 G ha ka la hkl =++123***,正好与三个截距矢量差都垂直:() G u hx ky hkl ⋅=-+=1220π。
所以 G hkl
与由 u 12, u 23和 u 31张成的晶面垂直。
晶
面的间距也可以计算出来:d xa G G xh G G hkl hkl hkl hkl hkl =⋅== 122///ππ.。