第2章 自动控制系统的数学模型
- 格式:ppt
- 大小:2.93 MB
- 文档页数:104
第二章 控制系统的数学模型2-1 控制系统的时域模型一、建立系统微分方程的基本步骤(P23,第二自然段):⑴ 分析系统工作原理、各变量之间的关系,确立系统的输入变量和输出变量; ⑵ 依据支配系统工作的基本规律,逐个列写出各元件的微分方程;⑶ 消去中间变量,列写出只含有输入和输出变量以及它们的各阶导数的微分方程; ⑷ 将方程写成规范形式。
例2-1:系统输入i u ,输出o u ;从输入到输出顺序列写各元件方程, td id Lu L =,i R u R =,⎰=t id C u o 1,及o R L i u u u u ++=利用输出电压与回路电流的关系消去中间变量,t d u d C i o =,22t d u d C t d id o =;o o o i u t d u d RC td u d LC u ++=22 写成规范的微分方程(标准形式):i o o o u u td u d RC t d u d LC =++2;或 i o u u p T p T =++)1(221,其中LC T =1,RC T =2,t d dp =。
“系统初始条件均为零”是指在零时刻以前系统的输入和输出及他们的各阶导数均为零。
在复数域,复变量s 对应微分算子,而s /1对应积分运算。
“输出对输入的响应” 是指,初始条件为零时,系统输出的运动情况。
因此,可以直接列写控制系统在复数域的方程。
就本例而言有:)()(s sI L s U L =,)()(s I R s U R =,)(1)(s I sC s U o =,及 )()()()(s U s U s U s U o R L i ++=; 消去中间变量)()(s U s C s I o ⋅=,得()()1(221U s U s T s T i o =++例2-2:系统输入F ,输出x ;力平衡方程:)()()()(2s X K s f s F s X ms +-=;整理得,)()()(2s F s X K s f ms =++。
第二章自动控制系统的数学模型本章要点系统的数学模型是对系统进行定量分析的基础和出发点。
本章主要介绍从微分方程、传递函数和系统框图去建立自动控制系统的数学模型。
内容包括系统微分方程的建立步骤、传递函数的定义与性质、系统框图的建立、等效变换及化简、系统各种传递函数的求取以及典型环节的数学模型。
为了对自动控制系统性能进行深入的分析和设计,须定量计算系统的动、静态性能指标。
而要完成此项任务,就必须掌握其变化规律,用一个反映其运动状态的数学表达式描述系统的动态过程。
这种描述系统各变量之间关系的数学表达式称为系统的数学模型。
系统数学模型的建立主要有解析法和实验法。
解析法是从系统元件所遵循的一些基本规律出发去推导系统的数学模型。
如果不了解系统的结构和运动规律,则应采用实验法建立数学模型,即在系统的输入端加上测试信号,在根据测试出的输出响应信号建立其数学模型。
系统的数学模型有多种,经典控制理论中常用的数学模型有:微分方程(时域数学模型)、传递函数(复域数学模型)、频率特性(频域数学模型)和动态结构图(几何模型)。
第一节系统的微分方程微分方程是描述系统的输入量和输出量之间关系最直接的方法。
当系统的输入量和输出量都是时间t的函数时,其微分方程可以确切描述系统的运动过程。
一、系统微分方程的建立步骤1.根据系统的组成结构、工作原理和运动规律,确定系统的输入量和输出量。
2.从输入端开始,根据各环节所遵循的运动规律,依次列写微分方程。
联立方程,消去中间变量,求取一个只包含系统输入量和输出量的微分方程。
3.将方程整理成标准形式。
即把含输出量的各项放在方程的左边,把含输入量的各项放在方程的右边,方程两边各导数按降幂排列,并将有关系数化为具有一定物理意义的表示形式,如时间常数等。
二、举例说明例2-1求图2-1所示RC网络的微分方程。
解:由图可知,输入量为u i(t) , 输出量为u o(t) ,根据电路遵循的基尔霍夫电压定律,有dtt du Ct i t u R t i t u o o i )()()()()(=+=消去上式中的中间变量i(t) ,得)()()(t u dtt du RCt u o o i += 整理得 ()()()o o i du t RCu t u t dt+= 例2-2 求直流电动机的微分方程。