污水厂自动化控制系统技术方案
- 格式:doc
- 大小:1.70 MB
- 文档页数:72
污水处理厂自动化监控系统技术设计方案一、概述污水处理厂自动化监控系统是指对污水处理过程进行自动化控制和实时监测的系统。
该系统通过采集、传输、处理和显示等手段,实现对污水处理工艺的全面监测和控制,提高处理效果和运行稳定性。
本文将介绍污水处理厂自动化监控系统的技术设计方案。
二、系统架构1.传感器层:该层通过安装各种传感器实时检测进水口、出水口、沉淀池、曝气池等位置的温度、PH值、浊度、COD、氨氮等污染指标,将检测数据传输给控制层。
2.控制层:该层负责实时接收传感器层传来的数据,并根据预设的逻辑控制策略进行控制。
该层包括PLC控制器、电气控制柜和网络通信设备等。
3.上位机监控层:该层通过上位机软件对整个系统进行监控和管理。
上位机软件可以实现对各个设备的状态、参数、运行情况等进行监测和分析,并能进行分布式控制操作。
4.SCADA系统层:该层主要用于监控数据的存储和管理,实现数据的长期存档与查询。
三、系统功能1.实时监测:通过传感器层采集污水处理过程中的各项指标数据,实现对工艺参数的实时监测。
2.控制策略:根据监测数据和预设策略,自动控制进水口、曝气池、沉淀池、出水口等设备的运行状态,使其达到最佳状态。
3.报警与故障处理:系统根据设定的阈值,当监测到异常情况时,能够自动报警,并自动采取相应的措施,如关闭进水口、提醒维护人员等。
4.数据存储与查询:系统能够将监测数据存档并实现长期存储,方便后续查询和分析。
5.远程监控:系统通过网络通信设备,实现对污水处理厂的远程监控和控制。
四、关键技术1.传感器选择:根据不同的污染指标选择合适的传感器,保证监测数据的准确性和稳定性。
2.集中控制:通过PLC控制器实现对所有设备的中央控制,确保各设备的运行同步性和稳定性。
3.数据传输:采用工业以太网等可靠的通信手段,实现传感器数据与控制层、上位机监控层、SCADA系统层之间的数据传输。
4.上位机软件开发:基于客户需求,开发功能强大、稳定可靠的上位机软件,实现对控制层各设备的监控、控制和管理。
目录1 概述 (1)1.1 工程范围 (1)1.2 适用标准 (2)1.3 设计原则 (3)2 系统设计方案 (4)2.1 系统一般说明 (4)2.2 自控系统设计 (4)2.2.1 自控系统控制方式 (4)2.2.2 自控系统网络拓扑 (5)2.2.3 自控系统组成功能 (7)2.2.4 中央控制站组成及功能 (7)2.2.5 系统软件描述 (8)2.3 电气系统方案 (10)3 系统调试方案 (13)4 售后服务 (16)4.1 服务体系 (16)4.2 服务内容 (17)4.3 服务保证措施 (17)1概述1.1工程范围本承包商将负责完成电气、仪表及监控系统设计、制造、测试、运输、安装、调试和试运行并按工作顺序移交符合要求的资料。
主要工程内容如下:现场低压配电柜至各设备现场,用电设备控制及电缆敷设,以及新建构筑物的防雷接地系统,视频监控系统、仪表系统等。
现场传感器和检测仪表的安装、调试;控制系统设备(PLC)的硬件和软件;SCADA系统硬件和软件;通讯和接口;仪表电缆、监控系统电缆(光缆)的供货、敷设;仪表系统/自控系统工作接地、保护接地和防雷接地;新老系统的有机衔接联系;文件编制;系统所需设备的设计、制造、采购、运输、仓储、工程施工、安装、测试、试运行、人员培训、售后服务、按规定时间移交所需资料以及在规定的工期内实现系统总体运行;与其他相关系统的接口设计、安装、调试、配合协调。
根据本标特点进行细致的需求分析,结合工艺流程和总平面图对系统方案进一步具体化和优化。
负责本系统与相关子系统之间的连接工作,包括连接器材等设备的提供。
对相关系统实施联动测试验收,明确该子系统是否符合设计要求,并出具测试验收报告或提出整改方案,直至验收通过。
从系统设计、信息传输、布线、供电、信号和电源的过电压保护、电磁兼容性(EMC)等方面采取有效技术及提供相应的管理手段来保证系统安全可靠地运行。
负责保证仪表控制系统达到系统功能及性能的设计要求,对仪表控制系统所有设备器材的设计、制造、采购、运输、仓储、工程施工、安装、测试、试运行、人员培训、售后服务、按规定时间移交所需资料以及在规定的工期内实现系统总体运行正常。
水厂自动化控制系统水厂自动化控制系统是一种利用先进的计算机技术和自动化控制技术,对水厂的生产过程进行全面监控和控制的系统。
该系统通过传感器、执行器和计算机等设备,实时采集和处理水厂的各种数据,并根据预设的控制策略,自动调节和控制水厂的运行参数,以达到安全、高效、节能的生产目标。
一、系统概述水厂自动化控制系统主要由以下几个部份组成:1. 数据采集与传输模块:负责采集水厂各个环节的数据,并通过网络传输到控制中心。
2. 控制中心:负责实时监控和控制水厂的运行状态,接收和处理数据,并根据预设的控制策略,发送控制信号给执行器。
3. 执行器:根据控制中心发送的信号,对水厂的设备进行自动控制,如调节阀门、开关泵站等。
二、系统功能1. 实时监测:系统能够实时监测水厂各个环节的运行状态,包括水源水质、水位、流量、压力等参数的监测。
2. 远程控制:控制中心可以通过网络远程控制水厂的设备,如远程开关泵站、调节阀门等。
3. 数据分析与报表:系统能够对水厂的历史数据进行分析和统计,并生成相应的报表,为水厂的运行管理提供参考依据。
4. 报警与故障处理:系统能够根据设定的阈值,对异常情况进行报警,并提供相应的故障处理指导。
三、系统优势1. 自动化程度高:水厂自动化控制系统能够实现对水厂生产过程的全面自动化控制,减少人工干预,提高生产效率。
2. 数据准确性高:系统通过传感器实时采集数据,减少了人为误差,提高了数据的准确性。
3. 节能环保:系统能够根据实时数据和预设策略,自动调节设备的运行参数,实现节能减排的目标。
4. 远程监控与控制:控制中心可以通过网络实现对水厂的远程监控和控制,提高了运维的便利性和效率。
四、系统应用案例以某市某水厂为例,该水厂引用了水厂自动化控制系统,取得了以下显著效果:1. 生产效率提升:系统实现了水厂生产过程的全面自动化控制,减少了人工操作的时间和成本,提高了生产效率。
2. 节能减排:系统通过优化控制策略,减少了设备的能耗,实现了节能减排的目标。
污水处理厂自动控制系统及方案一、内容描述首先我们要明白的是这个自动控制系统的任务和目标,简单来说就是确保污水从进入处理厂到处理完成的过程能够自动化进行。
系统可以自动控制各种设备的运行,比如水泵、搅拌机、过滤设备等,确保它们按照预定的程序和时间进行工作。
这样一来不仅提高了处理效率,还大大节省了人力成本。
接下来这个系统是怎么工作的呢?它主要通过一系列传感器和控制器来监测和处理污水,传感器会实时监测污水的各种指标,比如温度、流量、PH值等。
一旦这些指标超出了预设的范围,控制器就会发出指令,调整相关设备的运行状态,确保污水能够得到妥善处理。
这个过程是完全自动化的,极大地提高了处理效率和质量。
1. 污水处理厂的重要性及其对环境的影响我们都知道,水是生命之源,没有水我们的生活将陷入困境。
但随着城市化进程的加快,污水处理成为一项重要的任务。
污水处理厂的存在,就像是城市的“清洁卫士”,它们的工作直接关系到我们的生活环境质量。
首先污水处理厂的重要性不言而喻,它承担着处理城市污水的重任,确保我们的生活和工业用水得到妥善处理,避免污水直接排放对环境和生态系统造成破坏。
想象一下如果没有这些处理厂,污水将直接流入河流、湖泊,甚至地下水,那将是一场环境灾难。
其次污水处理厂对环境的影响是深远的,经过处理的污水,其有害物质和污染物被有效去除,水质得到明显改善。
这不仅保护了我们的水资源,还避免了污水对环境的污染。
同时处理过的污水还可以回用于农业、工业等领域,实现水资源的循环利用。
这样一来不仅节约了水资源,还降低了对环境的压力。
污水处理厂在我们的生活中扮演着不可或缺的角色,它们默默地承担着清洁的使命,保护着我们的环境和水资源。
所以对于污水处理厂的自动控制系统及方案的研究和优化,就显得尤为重要和必要了。
2. 自动化控制在污水处理厂的应用背景随着城市的发展,污水处理成为一项至关重要的任务。
污水处理厂作为城市基础设施的重要组成部分,其运行效率直接关系到环境保护和居民生活质量。
污水处理厂自动控制系统及方案一、引言污水处理厂是为了处理城市或工业区域产生的污水而建设的设施。
为了提高处理效率和降低运营成本,自动控制系统在污水处理厂中起着至关重要的作用。
本文将详细介绍污水处理厂自动控制系统的相关内容,包括系统的组成、工作原理、方案设计和优势等。
二、系统组成污水处理厂自动控制系统主要由以下几个组成部分构成:1. 监测传感器:用于实时监测污水处理厂的各项指标,如水位、流量、浊度、温度等。
传感器可以通过物理或化学方法来检测这些指标,并将数据传输给控制器。
2. 控制器:控制器是系统的核心部分,根据传感器传输的数据,通过预设的算法和逻辑来控制污水处理过程中的各个环节。
控制器可以自动调节进水量、投加药剂的量、搅拌器的速度等,以达到最佳的处理效果。
3. 执行器:执行器根据控制器的指令,执行相应的动作。
例如,根据控制器的调节,执行器可以控制闸门的开启和关闭、泵的启停等。
4. 人机界面:人机界面是用户与系统交互的界面,通常是一个触摸屏或计算机界面。
通过人机界面,操作人员可以监视和控制整个系统的运行状态,并进行必要的调整和设置。
三、工作原理污水处理厂自动控制系统的工作原理如下:1. 监测:传感器实时监测污水处理厂的各项指标,如水位、流量、浊度、温度等。
监测数据通过信号传输给控制器。
2. 数据分析:控制器接收传感器传输的数据,并进行分析和处理。
根据预设的算法和逻辑,控制器判断当前污水处理过程中是否需要进行调节或控制。
3. 控制:根据数据分析的结果,控制器通过执行器控制相应的设备。
例如,根据水位监测数据,控制器可以调节闸门的开启和关闭,以控制进水量。
4. 人机交互:操作人员可以通过人机界面监视和控制整个系统的运行状态。
如果系统出现异常或需要调整,操作人员可以通过人机界面进行相应的操作。
四、方案设计设计一个高效可靠的污水处理厂自动控制系统需要考虑以下几个方面:1. 传感器选择:根据实际需求选择合适的传感器,确保能够准确监测污水处理过程中的各项指标。
《污水处理厂自动控制系统设计》篇一一、引言随着环境保护意识的增强,污水处理成为了当前城市建设的重点。
自动控制系统在污水处理厂的应用,不仅能够提高处理效率,还能有效降低人力成本和资源消耗。
本文将探讨污水处理厂自动控制系统的设计,从系统架构、控制策略、技术应用等方面进行详细分析。
二、系统架构设计1. 整体架构污水处理厂的自动控制系统设计应采用分层分布式架构,包括监控层、控制层和执行层。
监控层负责收集数据、显示界面和远程控制;控制层负责根据监控层的数据进行逻辑运算和决策;执行层则负责执行控制层的指令,包括各类泵站、阀门的开关等。
2. 硬件配置硬件配置应包括工业级计算机、PLC(可编程逻辑控制器)、传感器、执行器等。
传感器负责实时监测水质参数,如COD(化学需氧量)、氨氮等;PLC负责接收传感器数据,进行逻辑运算并发出控制指令;执行器包括各类电机、电磁阀等,根据控制指令执行操作。
三、控制策略设计1. 自动化控制策略根据污水处理厂的工艺流程,制定相应的自动化控制策略。
包括进水控制、曝气控制、污泥处理等环节的自动化。
进水控制应根据水量和水质变化自动调节进水泵站的流量;曝气控制则根据水中溶解氧的浓度自动调节曝气机的运行状态;污泥处理则根据污泥的产量和性质进行自动化处理。
2. 智能控制策略引入人工智能算法,如模糊控制、神经网络等,对污水处理过程进行智能控制。
通过学习历史数据和实时数据,智能控制系统能够自动调整控制参数,优化处理效果,降低能耗。
四、技术应用1. 物联网技术的应用物联网技术能够实现设备间的互联互通,对污水处理厂的各项设备进行实时监控和管理。
通过物联网技术,可以实现对污水处理厂的远程监控和智能控制,提高管理效率。
2. 大数据分析技术的应用大数据分析技术可以对污水处理厂的运行数据进行深度挖掘和分析,找出运行过程中的问题并优化。
通过对历史数据的分析,可以预测未来一段时间内的运行状态和可能出现的问题,提前采取措施进行干预。
污水处理系统自控方案(含详细设备及
PLC配置)
简介
本文档旨在提供一份污水处理系统的自控方案,包括详细的设备配置和PLC(可编程逻辑控制器)配置。
设备配置
污水处理系统包括以下设备:
1. 进水口:用于接收进入系统的污水。
2. 鼓风机:通过给予曝气池足够的氧气以加速污水中的水解与硝化作用。
3. 搅拌器:用于保持曝气池中悬浮物和生物活性的均匀分布。
4. 水解池:利用细菌分解有机物质。
5. 硝化池:利用硝化细菌将污水中的氨氮转化为硝酸盐。
6. 去除器:用于去除硝酸盐中的硝酸盐。
7. 澄清池:用于沉淀和分离污水中的悬浮物。
8. 出水口:用于排放经过处理的污水。
PLC配置
为了实现污水处理系统的自控,我们使用PLC实施以下配置:
1. 确定传感器位置和类型,用于监测系统参数,如进水流量、
水位、温度和压力等。
2. 编写程序以控制鼓风机、搅拌器、去除器和其他设备的操作
方式和时间。
3. 配置报警系统,当系统参数超出设定的范围时发出警报。
4. 连接PLC和监控系统,用于实时监测和记录系统的运行状
态和数据。
5. 实施远程控制功能,可通过网络远程监控和控制污水处理系统。
结论
本文档提供了污水处理系统的自控方案,包括详细的设备配置
和PLC配置。
通过使用PLC实施自动化控制,系统能够更高效地
运行,并减少人工干预的需求。
希望此方案能为您的污水处理系统
提供参考。
污水厂电气自动化系统综合设计【摘要】本文主要围绕污水厂电气自动化系统展开研究,从污水处理工艺介绍和电气系统设计要求入手,分析了污水厂电气自动化系统的设计方案和集成优化方法。
通过对系统可靠性进行分析,提出了相应的改进建议。
结论部分总结了设计的重点和亮点,展望了未来的创新应用和发展前景。
该研究旨在提高污水处理效率,降低人工成本,实现系统智能化和可靠性,具有一定的应用前景和推广价值。
【关键词】污水厂、电气自动化系统、设计、工艺、要求、方案、集成、优化、可靠性分析、总结、创新性、展望、成果应用、前景展望1. 引言1.1 1. 研究背景污水处理是保障城市环境卫生和人民健康的重要工作之一。
随着城市化进程的加快和人口增长,污水处理厂的规模和复杂程度也在不断增加。
传统的污水处理厂存在着运行成本高、维护困难、能耗大等问题,因此迫切需要提高污水处理厂的自动化水平,以提高处理效率和节约costs。
随着信息技术、自动化技术和智能控制技术的不断发展,污水处理厂电气自动化系统的设计和应用已经成为提高污水处理工艺水平和降低运行costs 的重要途径。
提高污水厂电气自动化系统的水平和可靠性,具有重要的现实意义和广阔的应用前景。
研究污水厂电气自动化系统综合设计,不仅有助于提高污水处理厂的运行效率和处理质量,还有利于节约能源、降低costs、减少污染物排放,推动污水处理技术的进步和城市环境保护的发展。
1.22. 研究意义水处理是现代社会中不可或缺的环境工程领域之一,污水处理厂在城市建设中扮演着至关重要的角色。
随着城市化进程的加快和人口规模的不断增加,污水处理厂的工作量和压力也在不断增加,而污水厂电气自动化系统正是为了应对这种增长而被引入和应用的。
研究污水厂电气自动化系统的意义主要体现在以下几个方面:电气自动化系统可以提高污水处理的效率和质量,减少人力资源的浪费,降低运行成本;电气自动化系统可以提高污水处理的稳定性和可靠性,确保系统运行的连续性和安全性;电气自动化系统可以实现远程监控和远程操作,方便管理人员对系统的监测和控制;电气自动化系统还可以提高污水处理厂的环保水平,减少对环境的污染,更好地保护生态环境。
天水工业园区之答禄夫天创作污水处理厂自控系统技术方案北京华联电子科技发展有限公司2014年9月29天水工业园区污水厂自控系统方案及相关技术说明一、系统概述:天水工业园区污水处理厂的自控系统由PLC站与监控操纵站控制管理系统组成的自控系统和仪表检测系统两大部分组成。
前者遵循“集中管理、分散控制、资源共享”的原则;后者遵循“工艺必须、先进实用、维护简便”的原则。
为了满足武威工业园区污水处理厂工程实现上述要求,必须包管控制系统的先进性和可靠性,才干包管本厂设备的平安、正常、可靠运行。
本方案本着质量可靠、技术先进、性价比高的原则,结合我公司在实施其它类似项目中的设计、实施和组织的成功经验,充分考虑技术进步和系统的扩展,采取分层分布式控制技术,发挥智能控制单元的优势,降低并分散系统的故障率,包管系统较高的可靠性、经济性和扩展性,从而实现对各现场控制设备的操纵、控制、监视和数据通讯。
1.1 系统基本要求工控通讯网络为光纤冗余环型工业以太网,通讯波特率≥100Mbps,系统自适应恢复时间<300ms,通讯距离(无中继器)≥1Km,网络介质要求使用可直埋的光缆, 在出现故障时, 可在线增加或删除任意一个节点, 都不会影响到其他设备的运行和通讯。
本系统采取先进的监控操纵站控制系统,即系统采取全开放式、关系型、面向对象系统结构,支持分歧计算厂家的硬件在同一网络中运行,并支持实时多任务,多用户的操纵系统。
主要用于污水厂的生产控制、运行操纵、监视管理。
控制系统不但有可靠的硬件设备,还应有功能强大,运行可靠,界面友好的系统软件、应用软件、编程软件和控制软件。
控制系统在严格的工业环境下能够长期、稳定地运行。
系统组件的设计符合真正的工业等级,满足国内、国际的平安尺度。
而且易配置、易接线、易维护、隔离性好,结构坚固,抗腐蚀,适应较宽的温度变更范围。
系统具备良好的电磁兼容性,支持I/O模板在系统运行过程中进行带电热插拔。
能够承受工业环境的严格要求。
污水处理厂自动控制系统与方案一、引言污水处理厂是为了保护环境和人民身体健康而建设的重要设施。
为了提高处理效率和降低运营成本,自动控制系统在污水处理厂中起着关键作用。
本文将详细介绍污水处理厂自动控制系统的设计方案,包括系统组成、功能模块和实施步骤。
二、系统组成污水处理厂自动控制系统主要由以下几个组成部份构成:1. 传感器:用于监测污水处理过程中的关键参数,如流量、浊度、温度等。
2. 控制器:根据传感器提供的数据,控制污水处理设备的运行状态和参数设定。
3. 执行器:根据控制器的指令,控制污水处理设备的启停、调节和维护等操作。
4. 数据采集系统:负责将传感器采集到的数据传输给控制器进行处理和分析。
5. 人机界面:提供操作界面和数据展示功能,方便操作人员进行监控和管理。
三、功能模块污水处理厂自动控制系统的功能模块主要包括以下几个方面:1. 进水监测与控制:通过传感器监测进水的流量和水质,根据设定的参数进行自动调节,确保进水达到处理要求。
2. 污水处理过程控制:根据处理工艺要求,通过控制器对污水处理设备进行自动调节,如调节曝气时间、搅拌速度等,以达到最佳处理效果。
3. 水质监测与调节:通过传感器监测处理后的出水水质,根据设定的水质标准进行自动调节,以保证出水水质符合排放标准。
4. 故障报警与维护:系统能够监测设备运行状态,一旦发现异常情况,及时报警并提供相应的维护建议,以保证设备正常运行。
5. 数据记录与分析:系统能够记录处理过程中的关键参数,并对数据进行分析,为运营管理提供科学依据。
四、实施步骤1. 系统需求分析:根据污水处理厂的规模和处理要求,确定自动控制系统的功能和性能需求。
2. 设计方案制定:根据需求分析结果,制定自动控制系统的硬件和软件设计方案,包括传感器选型、控制器配置、数据采集系统设计等。
3. 系统集成与调试:按照设计方案,进行系统硬件的安装和软件的编程,进行系统集成和调试,确保系统各功能模块正常运行。
自动化控制系统目录1概述 (3)1.1 设计原则 (3)1.2 自动化系统功能综述 (3)1.3 系统配置 (5)1.3.1 网络结构 (5)1.3.2 具体配置(详细配置见附图一) (6)2控制流程图及各部分功能详述 (6)2.1 生产过程监测系统(中控室) (6)2.2 生产过程的监测(现场)与自动控制系统 (9)2.2.1 1#PLC预处理控制站 (9)2.2.2 2#PLC BAF生物滤池处理子站 (14)2.2.3 3#PLC污泥脱水系统处理子站 (18)2.2.4 4#PLC中央控制室处理子站 (21)2.3 生产管理计算机网络系统 (22)2.4 全厂CCTV电视监视系统 (23)3系统设计制作、调试及技术服务 (24)3.1环境条件 (24)3.2 控制箱柜设计 (25)3.3产品制造、运输、保管 (26)3.4控制系统集成 (27)3.5检验及调试 (30)4质量保障能力 (32)4.1设计、设备制造能力和条件 (32)4.2售后服务体系及质量保障能力 (37)5自控系统施工组织及安装 (41)5.1 项目进度计划安排 (41)5.2 施工组织 (41)5.3仪表安装及测试 (48)5.4电缆 (52)5.5 管线敷设及电缆桥架 (53)5.6电缆托架 (59)5.7防雷和接地 (60)5.8 施工验收 (61)6自动化控制系统I/O表 (62)1 概述根据XXX城市总体规划,通过对污水量的预测,并结合城市发展前景,确定污水处理厂建设规模为:设计规模2万m3/d。
根据污水量和投资状况,我方在进行系统组态时,将全厂作为一个整体来考虑,并可方便地扩展或升级。
系统选用符合国际标准的产品,其技术先进、结构开放,能够长期提供技术支持、备品备件有保障。
同时,还充分考虑经济适用性、节省投资和与远期工程的衔接,与远期公用的控制子站,控制点数一次考虑,远期独立的部分另设控制子站或远程控制单元。
本污水厂自控系统采用“集中管理、分散控制、数据共享”的分层、分布式的拓扑结构,符合当前工业自动化监测系统发展趋势,能够实现全厂工艺参数及设备集中监测和生产过程的自动控制。
系统包括:满足要求的控制系统硬件设备、监控和编程软件、辅助装置以及操作台、控制箱柜等。
1.1 设计原则集中管理、分散控制、数据共享;具有高度的开放性、可靠性、稳定性和安全性;具有较强的兼容性、扩充性、可扩展性;易于操作使用、可修改;所有标志性、提示性、警告性、显示性的部分采用中文简体。
自控仪表系统必须在充分考虑本工程污水处理工艺特性的基础上,按照具有先进技术水平的现代化污水处理厂进行设计。
设计方案中,既要考虑操作、管理水平的先进性,同时也考虑到高新技术应用的合理性、经济性,在保证生产管理要求的前提下,尽可能节约投资,获得良好的技术经济指标,并能保证系统长期稳定高效地运行。
1.2 自动化系统功能综述根据XX污水厂2×104m3/d的设计规模和BAF工艺的特点,本着技术先进,性价比高,实用可靠的原则进行设计。
依据集中监测为主,分散控制为辅的基本原则,本工程采用PLC(可编程控制器)为基础的监测控制和数据采集系统,在中央控制室利用PC(工业级PC)机对厂内各工况进行实时监控,并有信号报警和联锁等设施以保证生产正常运行。
生产的过程自动控制采用独立控制,即设备控制层PLC各个子站与上位监控计算机相互独立,可以不依靠上位机独立运行,保证了生产过程的独立性和安全性。
本方案采用的集散型计算机控制系统设计方案满足如下要求:(1)根据工艺流程及设备运行要求配置仪表、检测装置,建立监控系统;(2)采用分散控制,集中管理的方式,建立污水处理厂中央控制系统,管理整个污水处理厂的运行;(3)中控系统采用具有开放的符合TCP/IP协议的计算机网络,并可以与管理系统以及与上级系统和周边系统链接;(4)主要机械设备的控制采用就地控制、现场控制、中央控制的三层控制模式,现场控制站设置PLC及控制操作人机界面;(5)其它设备采用现场控制、中央控制的两层控制模式;(6)在每个工艺节点处设置基于PLC的智能控制装置,各PLC之间及PLC 与中央控制系统之间以高速数据通讯网络---光纤EtherNet(以太网)连接。
污水处理厂工程自动化系统实现的以下基本功能:(1)具有实时监测全厂的生产过程参数(如流量、液位等)、水质参数(如PH值、SS、DO等)、电量参数(如电流、电压、功率因数、有功电度、无功电度等),并对其进行采集、处理、储存、显示和打印;实时监测全厂主要设备的运行状态(如格栅机、提升泵、鼓风机、阀门等),并对其信号进行采集显示。
对污水厂重要设备(如提升泵、鼓风机、阀门等)的开/关次数和运行时间进行累计并生成设备管理报表,使用户能够科学合理的安排生产设备检修时间。
(2)全自动控制现场设备(如格栅机、提升泵、鼓风机、阀门等)。
(3)在中控室可以实现对全厂设备和仪器仪表的监测和控制。
(4)上位机采用全中文操作界面。
界面友好美观,操作简便易学,响应迅速,可以实现实时动态显示过程参数、水质参数、电气参数的趋势图;可以动态显示全厂生产工艺流程图和各工艺单元流程图,并且可以在流程图上选择弹出多级细部详图。
具有自动生成各种生产统计报表。
(5)具有自动进行越限报警和设备故障报警,并可根据相应的报警数据进行分析。
具有故障追忆功能,能够自动记录系统或某台设备故障前和故障过程中的状态信息。
(6)本自控系统具有以下三种控制方式手动模式:通过就地控制箱或MCC上的按钮实现对设备的启停操作,这种操作模式主要在单机调试、单机检修或非正常情况下常用。
遥控模式:操作人员通过操作面板或中控系统操作站的监控画面用鼠标器或键盘来控制现场设备,也称为“半自动控制”,主要是指操作人员通过对受控对象(系统或过程)的某一环节或设备进行简单的参数设定或发出控制指令,这一环节或设备即按照控制要求执行控制,操作人员只需查看其状态以及有无报警显示等。
如鼓风机远程风量调整、提升泵房的一步化控制等。
根据操作人员是否在受控系统或过程的现场来看,半自动控制有远程(通过中央控制室操作员站上实现)和就地(通过PLC控制柜上的人机界面触摸屏上实现)两种操作方式。
自动方式:也称为“全自动控制”,主要是指操作人员通过对受控对象(系统或过程)的关键运行参数进行简单的设定或发出控制指令,系统或过程即按照要求进行闭环自动控制,操作人员只需观察系统或过程的状态以及有无报警显示等。
例如全自动粗格栅机控制、提升泵房的机组优化控制、BAF生化处理池自动控制等。
根据操作人员是否在受控系统或过程的现场来看,全自动控制有远程(通过中央控制室操作员站上实现)和就地(通过PLC控制柜上的人机界面触摸屏上实现)两种操作方式。
三种方式的控制级别由高到低为:手动控制、遥控控制、自动控制。
1.3 系统配置1.3.1 网络结构在综合楼设立中央控制室,下设1#PLC预处理控制子站、2#PLCBAF生物滤池处理子站、3#PLC污泥脱水系统处理子站和4#PLC污中央控制处理子站。
PLC处理子站通过开放式的与商用以太网兼容的光纤EtherNet环网与1#、2#工作站相连接并通过工作站与上位管理系统相连。
在中央控制室可对主要设备实施开、停控制。
同时,设备运转状态也通过EtherNet送入上位计算机,在计算机上对全厂设备运转情况进行显示监控。
中央控制室还设置了以太网交换机,与厂级管理自动化层以太信息网络相连接。
自控系统配置两套互为热备的监控操作站、一台故障打印机、一台图表打印机。
中央控制系统下设两套现场控制站。
按照控制对象的功能、设备量,根据本厂工艺流程和平面布置图,设置现场控制站和中央控制室。
1.3.2 具体配置(详细配置见附图一)中央监控系统由两台配置了实时监控软件的工业计算机(互为热备)。
可编程序逻辑控制器(PLC):采用世界知名公司的最新产品。
选择货源充足中文资料丰富、备品备件方便,技术服务方便、国内有维修处的生产商的产品。
PLC的选型充分考虑其可靠性、先进性、可扩充性,应能满足中高控制性能的要求,能承受工业环境的严格要求。
平均故障间隔时间(MTBF)为15年。
根据标书技术指标和技术条件的要求以及设计者的总体考虑,优先选择Siemens公司的S7 300系列PLC。
S7 300系统提供的通讯接口有EtherNet、ProfiBus、RS485和RS-232等。
其工业总线-EtherNet可达100Mbit/s。
此外Siemens是世界上著名的自动化设备生产供应商,其PLC产品处于世界领先地位,可靠性极高。
在中国、在成都,用户可以得到完善地技术支持与服务。
本工程选用具有两个DP口的S7 315-2DP作为主控制器,其主要功能模块为EtherNet通讯模块CP 343-1、32点数字量输入模块SM 321、16点数字量输出模块SM 322、8点模拟量输入模块SM 331、4点模拟量输出模块SM 332等。
详细配置见附图一及设备一览表。
2 控制流程图及各部分功能详述2.1 生产过程监测系统(中控室)在办公楼设立中央控制室。
中央控制室内设有两台21”纯平高分辨率计算机工作站等,且两台计算机工作站互为备用(分为主操作站和备用操作站),其中主操作站安装有PLC编程软件,具有远程编程功能,程序可方便地通过网络分别下载到指定现场控制站,以便在调试过程中在中央控制室远程随时修改程序。
中央控制室可对整个分布式控制系统进行系统组态管理、系统监测、数据实时监测、显示、处理、控制各PLC子站的状态、通信、数据和信息等完成报警和报表打印,在厂级管理层可以通过Internet将结果、效益分析等发往有关部门。
中控子系统主要由以下几个部分组成:1)二台配置了实时监控软件的工业计算机(互为备用),工业控制计算机作为中控室人机接口,并通过网络适配器与工业控制系统及全厂管理网系统无缝链接;2)用于与现场PLC子站相连的网络通讯接口适配器---以太网卡;3)用于数据库的Data服务器;4)报表打印机和事故报警打印机,互为备用;5)以太网交换机;6)办公打印机;7)生产管理网使用的若干台电脑;8)不间断UPS电源。
其主要功能:远控各PLC现场子站,实时接收PLC采集的各种数据,建立全厂检测参数数据库,处理并显示各种数据;监测全厂工艺流程和各细部的动态图形;从检测项目中,按需要显示历史记录和趋势分析曲线;重要设备主要参数的工况及事故报警、打印制表;编制和打印生产日、月、年统计报表;对各种数据实时存储;实现通过服务器对工艺流程、历史记录、各种设备工作状态、报表等的浏览。
应用工程软件包括:整个污水厂的监测控制、在线测试、离线测试、硬件测试软件、显示功能。
其主要完成以下功能:完善的Internet 功能;采用标准的Windows NT平台;包含支持世界主要硬件厂商的各种网络驱动程序,支持Ethernet、现场总线监控;有系统员和操作员安全保密功能;支持1600×1280高分辨率彩色图形显示器;支持各种Windows标准打印机及外围设备;为了便于用户功能的定制,监控软件内嵌完全的VBA,而不只是VBA的一个子集;能够支持友善的中文化界面;支持开放的、符合ODBC特征的数据库,并能与编程软件及其他的专业数据库软件共享数据库;为用户提供丰富方便的图形组态、系统组态功能,易于构成各种服务器、图形工作站;丰富的报警功能、分析报表功能,在线编辑功能、打印功能。