高三数列强化训练三
- 格式:doc
- 大小:169.00 KB
- 文档页数:4
2021年高三强化训练(三)数学理含答案一.选择题:(共60分,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.已知R是实数集,,则( )A.(1,2)B. [0,2]C.D. [1,2]2.已知a+2ii=b-i, (a,b∈R),其中i为虚数单位,则a+b=()A.-1 B.1 C.2 D.33.“”是“函数在单调递增”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件4.设是两条不同的直线,是一个平面,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则5.数列是公差不为0的等差数列,且为等比数列的连续三项,则数列的公比为()A.B.4 C.2 D.6.已知向量a=(x-1,2),b=(y,-4),若a∥b,则向量与向量的夹角为()A.45°B.60°C. 135°D.120°7.已知某个几何体的三视图如下,那么可得这个几何体的体积是()A. B.C.D.8.若右边的程序框图输出的是,则条件①可为()A.B.C.D.9.某铁路局近日对所属六列高速列车进行编组调度,决定将这六列高速列车编成两组,每组三列,且和两列列车不在同一小组,如果所在小组三列列车先开出,那么这六列列车先后不同的发车顺序共有( )A. 种B. 种C. 种D. 种10、已知函数有两个不同的零点,且方程有两个不同的实根,若把这四个数按从小到大排列构成等差数列,则实数的值为()A B C D11.已知是直线上一动点,是圆:的两条切线,是切点,若四边形的最小面积是,则的值为()A. B. C. D.12.函数若方程有且只有两个不等的实数根,则实数a的取值范围为A.(-∞,0)B.[0,1)C.(-∞,1)D.[0,+∞)第Ⅱ卷二.填空题:( 每小题5分共20分)13.设函数,其中,则展开式中的系数为14.椭圆上有一个动点P,圆E :,过圆心E任意作一条直线与圆E交于A,B两点。
数学强化训练(数列)1. 等比数列{a n }中,a 4,a 8是关于x 的方程x 2+10x +4=0的两个实根,则a 2a 6a 10=( )A. 8B. −8C. 4D. 8或−82. 已知等差数列{a n }{b n }的前n 项和分别为S n ,T n (n ∈N ∗)若S nT n=2n−1n+1则实数a 12b 6( ) A. 154B. 158C. 237D. 33. 定义数列{a n }的“项的倒数的n 倍和数”为T n =1a 1+2a 2+⋯+na n(n ∈N ∗),已知T n =n 22(n ∈N *),则数列{a n }是 ( )A. 单调递减的B. 单调递增的C. 先增后减的D. 先减后增的4. 已知数列{a n }中,a 1=2,a n =-1an−1(n ≥2),则a 2010等于 ( )A. −12B. 12C. 2D. −25. 数列{a n }满足a n +a n +1=(-1)n •n ,则数列{a n }的前20项的和为 ( )A. −100B. 100C. −110D. 110 6. 等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A. 1+log 35B. 2+log 35C. 12D. 10 7. 设数列{a n }的前n 项和为S n ,若S n =2a n -2n +1(n ∈N +),则数列{a n }的通项公式为______. 8. 在数列{a n }中,若a 1=1,a n+1=2a n +3(n ∈N ∗),则数列的通项公式是______ . 9. 已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin2x +2cos 2x2,记y n =f(a n ),则数列{y n }的前7项和为______.10. 已知数列{a n }的通项公式为a n =n +λn ,若{a n }为递增数列,则实数λ的取值 范围是________.11. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为______.12. 已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式a n =______.13. 已知数列{a n }的前n 项和为S n ,且S n =a n +n 2−1(n ∈N ∗). (Ⅰ)求数列{a n }的通项公式(Ⅱ)定义x =[x ]+<x >,其中[x ]为实数x 的整数部分,<x >为x 的小数部分, 且0≤<x ><1,记c n =<a n a n+1S n>,求数列{c n }的前n 项和T n .14.设数列{a n}满足:a1=1,a n+1=2a n+1.(1)证明:数列{a n}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.15.已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2-na n+12=0设数列{b n}满足b n=a n2t n}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(1)求证:数列{n√n(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n-a14n2=16b m成立,求满足条件的所有整数a1的值.答案和解析1.【答案】B解:根据题意,等比数列{a n}中,有a4a8=a2a10=(a6)2,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a4<0,a8<0,则有a6=a4q2<0,即a6=-2,a2a6a10=(a6)3=-8;2.【答案】A解:由题意可设,,,(k≠0).则a12=S12-S11=288k-12k-242k+11k=45k.b6=T6-T5=36k+6k-25k-5k=12k.∴实数=.3.【答案】A解:当n=1时,,解得a1=2.当n≥2时,,所以,综上有,所以a1>a2>a3>…,即数列{a n}是单调递减的.(或用).4.【答案】A解:数列{a n}中,a1=2,a n=-(n≥2),则a2=-=-,a3=-=2,a4=-=-,a5=-=2,…,则数列{a n}为最小正周期为4的数列,则a2010=a4×502+2=a2=-,5.【答案】A解:∵数列{a n}满足,∴a2k-1+a2k=-(2k-1).则数列{a n}的前20项的和=-(1+3+……+19)=-=-100.6.【答案】D解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.7.【答案】a n=(n+1)•2n解:∵S n=2a n-2n+1(n∈N+),∴n=1时,a1=2a1-4,解得a1=4;n≥2时,a n=S n-S n-1=2a n-2n+1-,化为:a n-2a n=2n,∴=1,∴数列是等差数列,公差为1,首项为2.∴=2+(n-1)=n+1,∴a n=(n+1)•2n.8.【答案】a n=2n+1-3解:∵a n+1=2a n+3,两边同时加上3,得a n+1+3=2a n+6=2(a n+3)∴=2数列{a n+3}是一个等比数列,首项a1+3=4,公比为2故数列{a n+3}的通项公式是a n+3=4•2n-1=2n+1,∴a n=2n+1-3,9.【答案】7解:根据题意数列{a n}满足a n+2-2a n+1+a n=0则数列{a n}是等差数列,又由a4=,则a1+a7=a2+a6=a3+a5=2a4=π,函数f(x)=sin2x+2cos2=sin2x+cosx+1,f(a1)+f(a7)=sin2a1+cosa1+1+sin2a7+cosa7+1=sin2a1+cosa1+1+sin2(π-a1)+cos(π-a1)+1=2,同理可得:f(a2)+f(a6)=f(a3)+f(a5)=2,f(a4)=sinπ+cos+1=1,则数列{y n}的前7项和f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)+f(a7)=7;10.【答案】(-∞,2)解:∵数列{a n}的通项公式为a n=n+(n=1,2,3,…),数列{a n}是递增数列,∴a n+1-a n=(n+1)-n+=>0恒成立所以=∴当n=1时,有最小值2,即实数λ的取值范围是(-∞,2).11.【答案】-1解:由题意可得,a n=a1+(n-1)(-1)=a1+1-n,S n==2,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1-6),解得a1=-12.【答案】1n(n+1)解:因为a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1、2公差为1的等差数列,所以当n≥2时a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=n+,又因为a1=1满足上式,所以,13.解:(Ⅰ)∵S n=a n+n2−1(n∈N∗),当n ≥2时,a n =S n −S n−1=a n +n 2−1−[a n−1+(n −1)2−1], 整理得:a n -1=2n -1,∴a n =2n +1; (Ⅱ)由(Ⅰ)知,S n =n 2+2n , ∴a n a n+1S n=(2n+1)(2n+3)n 2+2n =4n 2+8n+3n 2+2n=4+3n 2+2n .∴当n =1时,c 1=<4+1>=0,当n ≥2时,有0<3n 2+2n <1.∴c n =3n 2+2n =32(1n −1n+2)(n ≥2). ∴T n =c 1+c 2+…+c n=0+32(12−14+13−15+14−16+⋯+1n−1−1n+1+1n −1n+2) =32(12+13−1n+1−1n+2)=5n 2+3n−84n 2+12n+8.验证n =1成立,∴T n =5n 2+3n−84n 2+12n+8. 14.(1)证明:a 1=1,a n +1=2a n +1.可得:a n +1+1=2(a n +1).∴数列{a n +1}是等比数列,公比为2,首项为2.∴a n +1=2n ,可得a n =2n -1.(2)解:n •(a n +1)=n •2n .数列{n •(a n +1)}的前n 项和T n =2+2×22+3×23+…+n •2n , ∴2T n =22+2×23+…+(n -1)•2n +n •2n +1, ∴-T n =2+22+…+2n -n •2n +1=2(2n −1)2−1-n •2n +1=(1-n )•2n +1-2,故T n =(n -1)•2n +1+2.15.(1)证明:数列{a n }满足a n >0,4(n +1)a n 2-na n +12=0,∴2√n +1a n =√n a n +1,即n+1√n+1=2n √n ,∴数列{n√n }是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得:n √n =a 1×2n−1,∴a n 2=n a 12•4n -1.∵b n =a n 2tn,∴b 1=a 12t,b 2=a 22t2,b 3=a 32t3, ∵数列{b n }是等差数列,∴2×a 22t2=a 12t+a 32t3,∴2×2a 12×4t=a 12+3a 12×42t2, 化为:16t =t 2+48,解得t =12或4.(3)解:数列{b n }是等差数列,由(2)可得:t =12或4. ①t =12时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 1212+na 124×3n )2-a 14n 2=16×ma 124×3m,∴a 12(n3+n 23n −n 2)=4m 3m ,n =1时,化为:-13a 12=4m3m >0,无解,舍去. ②t =4时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 124+na 124)2-a 14n 2=16×ma 124,∴n a 12=4m ,∴a 1=2√m n.∵a 1为正整数,∴√m n=12k ,k ∈N *.∴满足条件的所有整数a 1的值为{a 1|a 1=2√mn,n ∈N *,m ∈N *,且√m n=12k ,k ∈N *}.。
高中数列强化练习题及讲解在这个阳光明媚的午后,让我们来一场数学的奇幻之旅,探索数列的奥秘。
数列,就像是一串珍珠,每一颗都闪耀着智慧的光芒。
而我们今天要玩的,就是把它们串起来,变成一串美丽的项链。
首先,让我们来点“倒装”修辞,把问题倒过来看。
比如说,数列\( a_n = n^2 \),如果我们倒过来看,就是 \( a_n = 2^n \),这是不是有点像把苹果倒过来看,变成了橙子呢?哈哈,开个小玩笑,数学可不会这么调皮。
接下来,我们来点“排比”,让数列的项排成一队,像是在排队买票。
比如,数列 \( a_n = 2n - 1 \),它的前几项就是 1, 3, 5, 7... 看,它们排得多整齐,一个接一个,像是在说:“我比前一个多2哦!”再来点“设问”,让我们自问自答。
比如,有人问:“数列 \( a_n = n \) 是等差数列吗?”我们回答:“是的,它的公差是1,所以每一项都比前一项多1,就像我们每天比昨天多活了一天。
”现在,让我们来点“夸张”,给数列加点料。
比如,数列 \( a_n = 100n \),如果我们说:“这个数列的项,每一项都比前一项多100倍!”是不是感觉这个数列的增长速度像是坐火箭一样快?最后,我们来点“反问”,让我们的数列自己说话。
比如,数列\( a_n = 1/n \),如果我们问:“这个数列的项,是不是越到后面越小?”它可能会回答:“当然,我可是越来越谦虚的。
”好了,数列的奇幻之旅就到这里。
希望这些幽默风趣的修辞手法,能让你在数学的世界里找到欢乐。
记住,数学不仅仅是冰冷的公式和数字,它也可以是充满乐趣和惊喜的冒险。
下次再见,别忘了带上你的数学魔杖,我们一起去探索更多的数学奥秘!。
高三数学 提高题专题复习数列多选题练习题含答案一、数列多选题1.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”.则以下结论正确的是( )A .若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B .若{}n a 是等比数列,且公比q 满足||1q <,则数列{}n a 是“T 数列”C .若12(1)2n n n a n n ++=+,则数列{}n a 是“T 数列”D .若2241n n a n =-,则数列{}n a 是“T 数列 【答案】BC 【分析】写出等差数列的前n 项和结合“T 数列”的定义判断A ;写出等比数列的前n 项和结合“T 数列”的定义判断B ;利用裂项相消法求和判断C ;当n 无限增大时,n S 也无限增大判断D . 【详解】在A 中,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故A 错误. 在B 中,因为{}n a 是等比数列,且公比q 满足||1q <, 所以()11111112111111n nn n a q a a q a a q aS qq q q q q-==-+<------,所以数列{}n a 是“T 数列”,故B 正确. 在C 中,因为11211(1)22(1)2n n n n n a n n n n +++==-+⋅+⋅,所以122311111111111||122222322(1)22(1)22n n n n S n n n ++=-+-++-=-<⨯⨯⨯⨯⋅+⋅+⋅∣∣.所以数列{}n a 是“T 数列”,故C 正确.在D 中,因为22211141441n n a n n ⎛⎫==+ ⎪--⎝⎭,所以222111114342143141n S n n ⎛⎫=+++++⎪⨯-⨯--⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故D 错误. 故选:BC. 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.2.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk k S k +=--【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a 对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k k S k ++=--结论计算即可.【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2, 则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对又()10101552+=,故9552a = 又()11111662+=,60a 则为第11组第5个数第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2 故460216a ==,A 对对于D. 每一组的和为0122++ (1)2122121k k k --+==-- 故前k 组之和为1222++…()122122221k k k k k k +-+-=-=---21222k k k S k ++=--故D 错. 对于B.由D 可知,615252S =--()551152+=,()661212+=01261815222252764S S =+++=--+=故B 错 故选:AC 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.3.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.4.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯①12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.5.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.6.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,7.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r +-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-.选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即p q ==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知,1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值.【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅< D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.10.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.。
(数列综合训练)1、数列{}n a 是公差不为零的等差数列,并且5813,,a a a 是等比数列{}n b 的相邻三项,若25b =,则n b =255()3n -⋅.2、三个实数a ,b ,c 成等比数列,若有a +b +c =1成立,则b 的取值范围是[)⎥⎦⎤⎝⎛-31,00,1 .3、在数列{}n a 中,若1111,30(2,N)n n n n a a a a a n n --=+-=≥∈,则通项n a 是132n -. 4、等差数列{}n a 中,若7320a a -=,则20092001a a -= 40 . 5、在数列{}n a 中,2*1254,,2n n a n a a a an bn n N =-+++=+∈其中,a b 为常数,则ab =1-.6、数列{}n a 满足11(*)2n n a a n N ++=∈,11a =,n S 是{}n a 的前n 项和,则21S = 6 .7、已知等差数列{}n a 的首项1a 及公差d 都是整数,前n 项和为nS (n N *∈).若1431,3,9a a S >>≤,则通项公式n a =1n +.8、已知命题:“在等差数列{}n a 中,若()210424a a a ++=,则11S 为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为18 .9、数列{}n a 满足()112,2n n n a a pa n +==+∈*N ,其中p 为常数.若存在实数p ,使得数列{}n a 为等差数列或等比数列,则数列{}n a 的通项公式n a =2n . 10、已知数列{}n a 满足11a =, )()41(*1N n a a n n n ∈=++,12321444-⋅++⋅+⋅+=n n n a a a a S ,类比课本中推导等比数列前n 项和公式的方法,可求得54n n n S a -=n .11、已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数)则数列{}n a 的通项公式为11()3n n a -=.12、已知函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩,数列{}n a 满足*(),n a f n n N =∈,且数列{}n a 是递增数列,则实数a 的取值范围是 (2,3). 13、已知数列{}n a *()n N ∈满足1,,2,,n n n n n a t a t a t a a t +-≥⎧=⎨+-<⎩,且11t a t <<+,其中2t >,若*()n k n a a k N +=∈,则实数k 的最小值为 4 . 14、若数列}{n a 满足k a a a a nn n n =++++112(k 为常数),则称数列}{n a 为等比和数列,k 称为公比和.已知数列}{n a 是以3为公比和的等比和数列,其中2,121==a a ,则=2009a 10042.。
一、数列多选题1.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦答案:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12+为首项,12+为公比的等比数列, 所以()()1nF n n +-=⎝⎭()11515()n F F n n -+=++, 令1nn n F b-=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以n b⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+,所以()11152n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.2.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列答案:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对;选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.3.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.答案:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <,所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 4.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 5.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列D .1n a +是n a 与2n a +的等差中项答案:ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列是等差数列,所以,即,所以A 正确;B. 因为数列是等差数列,所以,那么,所以数解析:ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型. 6.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题. 7.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-答案:AC 【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与. 【详解】等差数列的前项和为.,, , 解得,, .故选:AC . 【点睛】本题考查等差数列的通项公式求和公解析:AC 【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S . 【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.8.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <答案:AD 【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】解:根据等差数列前项和公式得:,所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:解析:AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.9.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( ) A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值答案:AC 【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值. 【详解】解:在递增的等差数列中, 由,得,又,联立解得,, 则,. .故正确,错误;可得数列的解析:AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.10.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -答案:BD 【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确. 【详解】因为,所以,所以, 因为公差,所以,故不正确;,故正确; ,故不正确; ,故正确. 故选:BD.解析:BD 【分析】 由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;13518351835()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD. 【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。
高三数列专题练习30道带答案高三数列专题训练二学校:___________姓名:___________班级:___________考号:___________一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T .2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T . 6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T .10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =.(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T .11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+. (1)求数列{}n a的通项公式;(2)若2n a n b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T .13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。
2024届高考数学数列进阶训练——(3)等比数列1.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=()A.21B.42C.63D.842.等比数列{}n a 的公比为q ,前n 项和为n S .设甲:0q >,乙:{}n S 是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件3.若等比数列的前4项和为1,前8项和为17,则这个等比数列的公比为().A.2B.-2C.2或-2D.2或14.在等差数列{}n a 和正项等比数列{}n b 中,10115a b =,3716b b ⋅=,则{}n a 的前2021项和为()A.2021B.4042C.6063D.80845.设等差数列{}n a 的公差0d ≠,14a d =,若k a 是1a 与2k a 的等比中项,则k 的值为()A.3或6B.3或-1C.6D.36.已知等差数列{}n a 的首项和公差均不为0,且满足2a ,57,a a 成等比数列,则36111810a a a a a a ++++的值为()A.1314B.1213C.1112D.137.设等比数列{}n a 的前n 项和为n S ,22414S S S =+,则224a a a =+()A.13B.14C.12D.38.已知数列{}n a 的首项11a =,前n 项和为n S ,且满足()*122n n a S n ++=∈N ,则满足2100111100010n n S S <<的n 的最大值为()A.7 B.8 C.9D.109.设等比数列{}n a 的前n 项和为n S ,且满足14639,94a a S S +==,若2log n nb a =,则数列{}n b 的前10项和是()A.-35B.-25C.25D.3510.已知n S 是等比数列{}n a 的前n 项和,若存在*m ∈N ,满足228m m S S =,22212m m a m a m +=-,则数列{}n a 的公比为()A.12B.13C.2D.311.(多选)已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是()A.1n a ⎧⎫⎨⎬⎩⎭B.{}22log n a C.{}1n n a a ++ D.{}12n n n a a a ++++12.(多选)在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1418a a +=,2312a a +=,则下列说法正确的是().A.2q =B.数列{}2n S +是等比数列C.8510S = D.数列{}lg n a 是公差为2的等差数列13.(多选)设n S 是单调的等比数列{}n a 的前n 项和,若23511,264a a a ==,则()A.418a =-B.公比为12-C.n n a S +为常数D.{}2n S -为等比数列14.已知数列{}n a 是首项为2,公比为3的等比数列,若数列{}n b 满足11b a =,1n n n b a b +=,则{}n b 的通项公式n b =_____________.15.一个等比数列中,前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有________项.16.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若9362S S S =+,则当631S S +取得最小值时,9S 的值为____________.17.若数列{}n a 的前n 项和21n n S =-,则1223341n n a a a a a a a a +++++= ____________.18.已知等比数列{}n a 的前n 项和为n S ,1S ,3S ,2S 成等差数列.(1)求{}n a 的公比q ;(2)若133a a -=,求n S .答案以及解析1.答案:B解析:设等比数列{}n a 的公比为(0)q q ≠,则2411121a a q a q ++=,又因为13a =,所以4260q q +-=,解得22q =,所以()235713542a a a a a a q ++=++⋅=,故选B.2.答案:B解析:本题考查等比数列的定义和求和、充要条件.若10a <,0q >,则{}n S 是递减数列.若{}n S 是递增数列,则1110n n n n S S a a q ++-==>,一定可得0q >.故甲是乙的必要条件但不是充分条件.3.答案:C解析:由448811S q S q-=-,得4117q +=,2q =±.4.答案:D解析:在正项等比数列{}n b 中,237516b b b ⋅==,解得54b =,即10114a =,所以数列{}n a 的前2021项和()12021202110112021202180842a a S a +===,故选D.5.答案:D解析:因为k a 是1a 与2k a 的等比中项,所以212k k a a a =,所以[][]2111(1)(21)a k d a a k d +-=+-.又14a d =,所以22(3)4(23)k d d k d +=⋅+,所以3k =.6.答案:A解析:已知等差数列{}n a 的首项1a 和公差d 均不为0,且满足257,,a a a 成等比数列,257a a a ∴=⋅,()()()211146a d a d a d ∴+=++,2110d a d ∴=-.0d ≠Q ,110d a ∴-=,3611118101317301713316301614a a a a d d d a a a a d d d +++-+∴===+++-+.故选A.7.答案:A解析:设{}n a 的公比为q ,由22414S S S =+,得423S S =,显然1q ≠±,则()()421113111a q a q qq--=--,所以213q +=,所以222224221113a a a a a a q q ===+++.故选A.8.答案:C解析:因为122n n a S ++=,所以122(2)n n a S n -+=≥,两式相减,得12(2)n n a a n +=≥.又11a =,212a =,所以{}n a 是首项为1,公比为12的等比数列,100111111000210n⎛⎫<+< ⎪⎝⎭,即1111000210n⎛⎫<< ⎪⎝⎭,则n 的最大值为9.9.答案:C解析:设等比数列{}n a 的公比为q .由题意知1q ≠,则()()()31631191,4911,11a q a a q q q q ⎧+=⎪⎪⎨⎪-=-⎪--⎩解得11,42,a q ⎧=⎪⎨⎪=⎩所以131224n n n a --=⨯=,所以3n b n =-,所以数列{}n b 的前10项和()11010105(27)252b b T +==⨯-+=.故选C.10.答案:D解析:设等比数列{}n a 的公比为q .当1q =时,2228mmSS =≠,不符合题意.当1q ≠时,228m m S S = ,()()2111112811m m m a q q q q a q --∴⋅=+=--,得27m q =.又22212m m a m a m +=-,221272m m q m +∴==-,解得3m =,327q ∴=,3q ∴=,故选D.11.答案:AD 解析:A 项,设1n n b a =,则111n n n n b a b a q ++==,即{}n b 是以11a 为首项,1q为公比的等比数列,故A 项正确;B 项,取2nn a =,则()()2222log log 22n n a n ==,即(){}22log n a 是等差数列而不是等比数列,故B 项错误;C 项,取(1)nn a =-,则10n n a a ++=,{}1n n a a ++不是等比数列,故C 项错误;D 项,设12n n n n c a a a ++=++,则1123c a a a =++()2211131024a q qa q ⎡⎤⎛⎫=++=++≠⎢ ⎪⎝⎭⎢⎥⎣⎦,且112312n n n n n n n n c a a a q c a a a ++++++++==++,所以{}n c 是等比数列,故D 项正确.12.答案:ABC解析:由1418a a +=,2312a a +=,得()31118a q +=,()2112a q q +=,由公比q 为整数,解得12a q ==,2nn a ∴=,()12212221n n n S +-==--,122n n S +∴+=,∴数列{}2n S +是公比为2的等比数列,9822510S ∴=-=,又lg lg 2n a n =Q ,∴数列{}lg n a 是公差为lg 2的等差数列.故选ABC.13.答案:CD解析:设等比数列{}n a 的公比为q .由数列{}n a 为等比数列,35164a a =,得24164a =,又2242102a a q q ==>,所以418a =,因此A 项错误.又212a =,所以24214a q a ==,解得12q =或12q =-.若12q =-,则234111,,248a a a ==-=,显然不满足数列{}n a 是单调数列,因此B 项错误.由上述可知12q =,则11a =,所以111111()112(),2()12212nn n n n na a q S ----=⋅===--,则2n n a S +=,因此C 项正确.因为111122(2()22n n n S ---=--=-,所以{}2n S -是首项为1-,公比为12的等比数列,因此D 项正确.故选CD.14.答案:(1)(2)223n n n --⨯解析:由题设可得12b =,1123n n n nb a b -+==⨯,所以当2n ≥时,2111n n n b b b b b b -=⨯⨯⨯=L ()()()0122232323n -⨯⨯⨯⨯⨯⨯⨯=L (1)(2)01(2)22323n n n n n --+++-⨯=⨯L .当1n =时,12b =也满足上式.故(1)(2)223n n n n b --=⨯.15.答案:12解析:设该等比数列为{}n a ,由已知123212,4n n n a a a a a a --==及等比数列的性质,得()318n a a =,所以12n a a =.又因为()661231642n n a a a a a a ===L ,所以该数列有12项.16.答案:733解析:设等比数列{}n a 的公比为q .由9362S S S =+可知1q ≠,所以()()()9361111112111a q a q a q qqq---=+⨯---,化简得()9361121q q q -=-+-,即963220q q q --+=,即()()63120q q --=,得32q =,()()6116331113111111a q a qq S S q q a a q ---∴+=+=+---,当且仅当11311a q q a -=-,即1a =631S S +取得最小值,此时()()991911113a q q S q q --===--.17.答案:2423n ⨯-解析:当1n =时,111a S ==;当2n ≥时,1122n n n n n a S S --=-=-,1n =时也适合,则12n n a -=,则1112242n n n n n a a -+=⋅=⨯,()()12233412142412421433n n n n n a a a a a a a a +--⨯-++++===- .18.(1)答案:12q =-解析:依题意有()21111112)(a a a q a a q a q ++=++,由于10a ≠,故220q q +=,又0q ≠,从而12q =-.(2)答案:81132nn S ⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦解析:由已知可得211132a a ⎛⎫--= ⎪⎝⎭,故14a =,从而141281113212n n n S ⎡⎤⎛⎫--⎢⎥⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭.。
数列强化训练三
一、选择题
1.(北京市朝阳区2009年4月高三一模理)各项均不为零的等差数列}{n a 中,若
2110(,2)n n n a a a n n *-+--=∈≥N ,则2009S 等于 ( )
A .0
B .2
C .2009
D .4018
2. (北京市西城区2009年4月高三一模抽样测试理) 若数列{}n a 是公比为4的等比数列,且
12a ,则数列2{log }n a 是( )
A. 公差为2的等差数列
B. 公差为lg 2的等差数列
C. 公比为2的等比数列
D. 公比为lg 2的等比数列
3.(2009福州三中)已知等差数列{a n }的前n 项和为Sn ,若714S =,则35a a +的值为( ) A .2
B .4
C .7
D .8
4.(2009厦门一中文)在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于 ( ) A .18 B 27 C 36 D 9
5.(2009长沙一中期末)各项不为零...
的等差数列}{n a 中,02211273=+-a a a ,则7a 的值为
A .0
B .4
C .04或
D .2
6.(2009宜春)在等差数列}{n a 中,39741=++a a a ,27963=++a a a ,则数列}{n a 的前9项之和9S 等于
A.66 B .99 C .144 D..297
7.(辽宁省部分重点中学协作体2008年高考模拟)设等差数列}{n a 的前n 项和为
=
+++==1413121184,20,8,a a a a S S S n 则若
A .18
B .17
C .16
D .15
8.( 上海市部分重点中学高三第一次联考) 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是( ) A 、16S
B.S 15
C 、17S
D 、18S
9.(山东省潍坊市2007—2008学年度高三第一学期期末考试) 各项都是正数的等比数列}{n a 的公比1≠q ,且132,2
1
,
a a a 成等差数列,则5443
a a a a ++的值为( )
A .
25
1- B .
2
1
5+ C.
2
1
5- D .
215+或2
1
5- 10.(湖南省2008届十二校联考第一次考试)在等比数列==+=10
18
10275,5,6,}{a a a a a a a n 则
中 A .2
332--
或 B .
3
2
C .
2
3 D .2
332或
11. (2008年天津市十二区县重点学校高三毕业班联考(一))正项等比数列{}n a 满足
142=a a ,133=S ,n n a b 3log =,则数列{}n b 的前10项和是
A .65
B .-65
C .25 D. -25
12. (上海市嘉定一中2007学年第一学期高三年级测试(二)) 等差数列{a n }共有2n 项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( )
A .3
B -3
C .-2
D .-1
二、填空题
1.(北京市东城区2009年3月高中示范校高三质量检测理)已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则
10
429
31a a a a a a ++++的值为 .
2.(2009福州八中)已知数列1,,n n n a n n -⎧=⎨⎩为奇数
为偶数
则1100a a +=____ ,
123499100a a a a a a ++++
++=____
3.(2009宁乡一中第三次月考)11、等差数列{}n a 中,12981a a a ++
+=且
2310171a a a +++=,则公差d =
4.(2009南京一模)已知等比数列{}n a 的各项均为正数,若31=a ,前三项的和为21 ,
则=++654a a a
5.(2009上海九校联考)已知数列{}n a 的前n 项和为n S ,若21n
n S =-,则8a = .
6.(江苏省省阜中2008届高三第三次调研考试数学) 在等差数列{}n a 中,11
10
1,a a <-若它的前n 项和n S 有最大值,则使n S 取得最小正数的n = .
7.(2007—2008学年湖北省黄州西湖中学二月月考试卷)n S 为等差数列{}n a 的前n 项和,若
241
21n n a n a n -=
-,则2n n
S S = . 8.(山东省潍坊市2008年高三教学质量检测) 设等差数列{a n }的前n 项和为S n ,若
61420a a +=,则S 19=______________.
9.(江西省临川一中2008届高三模拟试题)等差数列有如下性质,若数列}{n a 是等差数列,则当}{,21n n
n b n
a a a
b 数列时+++=
也是等差数列;类比上述性质,相应地}{n c 是正项
等比数列,当数列=n d 时,数列}{n d 也是等比数列。
三、解答题
1.(2009龙岩一中)设正整数数列{}n a 满足:122,6a a ==,当2n ≥时,有
21111
||2
n n n n a a a a -+--<
.
(I ) 求3a 、4a 的值;(Ⅱ)求数列{}n a 的通项; (Ⅲ) 记222
2
123
123n n
n T a a a a =+++
+,证明,对任意*n N ∈,94n T < .
2.(2009常德期末)已知数列{}n a 的前n 项和为11,4n S a =
且111
2
n n n S S a --=++,数列{}n b 满足11194
b =-
且13n n b b n --=(2)n n N *
≥∈且.(1)求{}n a 的通项公式; (2)求证:数列{}n n b a -为等比数列; (3)求{}n b 前n 项和的最小值.
3.(山东省潍坊市2007—2008学年度高三第一学期期末考试)已知数列
的等比数列公比是首项为41
,41}{1==
q a a n ,设 *)(log 324
1N n a b n n ∈=+,数列n n n n b a c c ⋅=满足}{。
(1)求证:}{n b 是等差数列; (2)求数列}{n c 的前n 项和S n ;
(3)若对14
12
-+≤m m c n 一切正整数n 恒成立,求实数m 的取值范围。
4.(武汉市2008届高中毕业生二月调研测试文科数学试题)设数列{}n a 的前n 项和
2(1)(241)1n n s n n =-++-,n Ne +∈。
(1)求数列{}n a 的通项公式n a ;(2)记(1)n
n n
b a -=,求数列{}n b 前n 项和n T。