统计过程控制(SPC)统计培训
- 格式:pdf
- 大小:10.90 MB
- 文档页数:150
SPC培训资料汇编一、SPC 概述SPC 即统计过程控制(Statistical Process Control),是一种借助数理统计方法的过程控制工具。
它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
SPC 强调预防为主,通过对过程数据的收集、分析和监控,提前预测可能出现的质量问题,从而避免不合格产品的产生,降低生产成本,提高生产效率和产品质量。
二、SPC 的基本原理1、过程的波动性任何生产过程中,产品的质量特性值总是存在着一定的波动。
这种波动可分为正常波动和异常波动。
正常波动是由随机原因引起的,对产品质量影响较小,在生产过程中是允许存在的。
异常波动则是由系统原因引起的,对产品质量影响较大,在生产过程中是不允许存在的。
2、控制图原理控制图是 SPC 中最重要的工具之一。
它是对过程质量特性值进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。
控制图上有中心线(CL)、上控制限(UCL)和下控制限(LCL)。
通过观察点子在控制图中的分布情况,可以判断过程是否稳定。
当点子随机分布在控制限内,且没有明显的规律性时,说明过程处于稳定状态;当点子超出控制限,或者呈现出明显的规律性(如连续上升或下降、周期性变化等)时,说明过程出现了异常,需要采取措施进行调整。
三、SPC 常用的控制图1、均值极差控制图(XR 图)适用于计量值数据,是最常用的一种控制图。
均值控制图用于观察分布的均值变化,极差控制图用于观察分布的离散程度。
2、均值标准差控制图(XS 图)与 XR 图类似,但用标准差代替极差来反映数据的离散程度。
当样本量较大(n>10)时,使用 XS 图更为精确。
3、中位数极差控制图(XRm 图)适用于现场需要把测定数据直接记入控制图进行控制的场合,简便直观。
4、单值移动极差控制图(XMR 图)适用于单件小批生产过程,以及测量费用较高的场合。
SPC培训教程简介SPC〔统计过程控制〕是一种用于监控和控制过程质量的方法,通过对过程进行统计分析和控制,可以减少过程的变异性,提高产品质量的稳定性。
本培训教程将为你介绍SPC的根本概念、常用工具和应用方法,帮助你掌握SPC的核心原理和实践技巧。
第一章:SPC概述1.1 SPC的定义和作用SPC是一种用于监控和控制过程质量的方法,通过统计分析和控制过程变异性,提高产品质量和生产效率。
SPC可以减少过程中的变异性,并实现过程质量的稳定性。
1.2 SPC的优势 - 通过实时监控过程,即时发现异常情况,减少不良品数量和本钱 - 基于统计分析,可以定量评估和控制产品质量的稳定性- 提高生产效率,减少资源浪费1.3 SPC的应用范围 - 制造业:电子、医疗、汽车等 - 效劳业:金融、电信、物流等 - 过程控制领域第二章:SPC常用工具2.1 控制图控制图是SPC中最常用的工具,用于显示过程数据的变化趋势和规律。
常用的控制图包括:Xbar-R图、Xbar-S图、P图、C图等。
控制图可以帮助我们判断过程是否稳定,是否存在特殊因素。
2.2 测量系统分析〔MSA〕 MSA用于评估测量系统的准确性和可重复性,确保测量数据可靠可信。
常见的MSA方法有Gage R&R、线性回归分析、方差分析等。
2.3 过程能力分析过程能力分析用于评估过程是否满足产品质量要求的能力。
常用的指标有Cp、Cpk、Pp、Ppk等。
2.4 根底统计分析根底统计分析是SPC中的根底工具,包括均值、方差、标准差、偏度、峰度等统计指标的计算和分析。
第三章:SPC实施方法3.1 确定SPC应用的目标与范围在实施SPC之前,需要明确SPC的应用目标和范围,确定需要监控和控制的关键过程和指标。
3.2 数据收集与整理SPC需要大量的实时数据进行统计分析和控制,因此需要建立有效的数据收集和整理机制,确保数据的准确性和完整性。
3.3 控制限确实定控制限是用于判断过程是否稳定的界限,可以通过历史数据、样本数据或经验确定。