稀土化学6 稀土元素化合物
- 格式:ppt
- 大小:928.50 KB
- 文档页数:88
稀土元素基本知识1稀土元素稀土元素是钪(Sc)、钇(Y)和15个镧系元素的总称。
通常用RE表示,其氧化物用REO表示。
镧系元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。
所以稀土元素共有17个元素。
全部稀土元素的发现是从1794年发现钇至1947年从核反应堆裂变产物中分离出钷,历时150年。
其中钪是典型的分散元素,钷是自然界中极少见的放射性元素。
这两个元素与其它稀土元素在矿物中很少共生,因此在稀土生产中一般不包括它们。
稀土元素同属元素周期表第IIIB族,化学性质十分相似。
除钪和钷外,根据分离工艺要求或产品方案,可将它们分为两组或三组。
前者是以铽为界,镧至钆为铈组稀土,通常称作轻稀土,铽至镥和钇为钇组稀土,通常称为重稀土。
后者是依据P204萃取分为轻稀土(镧至钕)、中稀土(钐至铽)和重稀土(镝至镥和钇)。
2稀土元素的价态稀土元素易于失去电子,通常呈正三价。
所以稀土是非常活泼的金属元素,其活泼性仅次于碱土金属。
铈、镨、铽在外界氧化剂的作用下又可呈正四价,而钐、铕、镱在还原剂的作用下也可呈正二价离子。
因此各三价单一稀土氧化物的分子式可表示为M2O3(M—La、Nd…),而铈、镨、铽的氧化物的分子式分别为CeO2、Pr6O11、Tb4O7。
3镧系收缩镧系元素的原子半径、离子半径都随原子序数(从镧到镥)的增加而减小,将这一现象称为镧系收缩。
由于镧系收缩,从镧到镥的碱性随原子序数的增加而减弱;络合物的稳定性随原子序数的增加而增强。
这就是能将性质及其相似的稀土元素逐一分离的主要依据。
4稀土元素的主要化合物稀土元素的化合物很多,有无机化合物、有机化合物、金属间化合物等。
这里仅将在湿法冶金生产实际产出的几种化合物予以简单介绍。
4.1氧化物在800~10000C下灼烧稀土氢氧化物、草酸盐、碳酸盐、硫酸盐、硝酸盐都可获得稀土氧化物,其中铈、镨、铽在一定的灼烧条件下生成CeO2、Pr6O11(Pr2O3·4PrO2)、Tb4O7(Tb2O3·TbO2)。
1.稀土元素符号,氧化物和草酸盐的化学式,可能的各种价态的电子构型。
写出稀土离子的基态光谱项,三价稀土离子的颜色,何谓镧系收缩,四分组效应,双双效应?讨论稀土的二价化合物和四价化合物稳定性及如何应用该变价性质来分离稀土元素。
答案:稀土元素符号(1)镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu) 57—71 和21的钪(Sc)39的钇(Y)工业上常用的稀土元素除了钪(Sc)钷(Pm)氧化物形式是正三价铈是特殊的氧化物是:CeO2和Pr6O11 Tb4O2草酸盐化合物:草酸盐都是正三价钪钇的离子是无色的离子未成对电子数光谱项颜色光谱项未成对电子数离子La3+0(4f 0) 1S0无1S00(4f 14) Lu3+Ce3+1(4f 1) 2F5/2无2F5/21(4f 13) Yb3+Pr3+2(4f2) 3H4黄绿3H62(4f 12) Tm3+Nd3+3(4f3) 4I9/2红4I15/23(4f 11) Er3+Pm3+4(4f4) 5I4粉红/淡黄5I84(4f 10) Ho3+Sm3+5(4f5) 6H5/2淡黄6H15/25(4f 9) Dy3+Eu3+6(4f6) 7F0浅红7H66(4f 8) Tb3+Gd3+7(4f 7) 8S7/2无8S7/27(4f 7) Gd3+镧系收缩:在镧到镥15个稀土元素的离子重,电子层数都为5层,但半径随着原子序数增加减少。
这种现象叫做“镧系收缩”四分组效应:所谓四分组效应是指15个镧系元素的液液萃取体系中以分配比对原子序数作图,能用四条平滑的曲线将图上标出15个点分成四组。
第一组La,Ce,Pr,Nd.第二组Pm,Sm,Eu,Gd第三组Gd Tb Dy Ho 第四组Er Tm Yb Lu双双效应:是指镧系元素分离因素与原子序数的关系中分为La-Gd和Gd-Lu两组,各组中出两个现最大值和最小值。
稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。
镧(lan兰)、铈(shi市)、镨(pu普)、钕(nv女)、钷(po叵)、钐(shan山)、铕(you 有)、钆(ga嘎)、铽(te特)、镝(di笛)、钬(huo火)、铒(er耳)、铥(diu丢)、镱(yi 意)、镥(lu鲁),钪(kang抗),钇(yi乙)“稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。
稀土元素分为“轻稀土元素”和“重稀土元素”:“轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。
“重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。
二、稀土资源及储备状况由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。
由于稀土元素的离子半径、氧化态和所有其它元素都近似,因此在矿物中它们常与其它元素一起共生。
我国稀土资源占世界稀土资源的80%,以氧化物(REO)计达3 600万吨,远景储量实际是1亿吨。
我国稀土资源分南北两大块。
——北方:轻稀土资源,集中在包头白云鄂博特等地,以后在四川冕宁又有发现。
主要含镧、铈、镨、钕和少量钐、铕、钆等元素;——南方:中重稀土资源,分布在江西、广东、广西、福建、湖南等省,以罕见的离子态赋存与花岗岩风化壳层中,主要含钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇和镧、钕等元素。
什么是稀土?主要成分和用途是什么?一、稀土稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
稀土元素通常分为二组:1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。
2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。
铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。
它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。
它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
稀土一词是历史遗留下来的名称。
稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。
稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。
通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。
也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。
元素周期表中的稀土元素性质解析元素周期表是化学家们对元素进行分类和归纳的重要工具。
在这个表中,稀土元素是一组特殊的元素,它们的性质独特而丰富。
本文将对稀土元素的性质进行解析,探讨它们在科学研究和工业应用中的重要性。
稀土元素是指周期表中镧系和锕系两个连续的元素系列。
它们的原子序数从57到71,以及90到103。
稀土元素的共同特点是外层电子结构比较复杂,容易形成稳定的化合物。
这也是为什么稀土元素在许多领域中都有广泛的应用。
首先,稀土元素在材料科学领域中扮演着重要的角色。
由于稀土元素具有特殊的电子结构,它们可以形成多种不同的化合物,这些化合物具有特殊的物理和化学性质。
例如,稀土元素可以用于制备高温超导材料,这些材料在低温下具有极低的电阻。
此外,稀土元素还可以用于制备磁性材料,这些材料在磁场中表现出强磁性。
因此,稀土元素在电子器件和磁性材料的制备中具有重要的应用价值。
其次,稀土元素在环境科学中也发挥着重要作用。
稀土元素在地球化学循环中扮演着重要角色,它们可以作为地球化学指示物来研究地球的演化和环境变化。
此外,稀土元素还可以用于环境污染的治理。
例如,稀土元素可以用作催化剂,促进有害气体的转化和降解。
因此,稀土元素在环境保护和治理中具有重要的应用潜力。
此外,稀土元素还在生物医学领域中发挥着重要作用。
稀土元素可以用于制备生物标记物和荧光探针,用于生物分析和成像。
例如,稀土元素可以用于制备荧光染料,这些染料在细胞和组织中具有较强的荧光信号,可以用于研究生物分子的定位和功能。
此外,稀土元素还可以用于制备荧光探针,用于疾病的诊断和治疗。
因此,稀土元素在生物医学研究和临床应用中具有广阔的前景。
最后,稀土元素还在冶金工业中发挥着重要作用。
稀土元素可以用于制备高强度的合金材料,这些材料具有优异的力学性能和耐腐蚀性。
此外,稀土元素还可以用于改善金属的熔点和流动性,提高金属的冶炼和加工性能。
因此,稀土元素在冶金工业中具有重要的应用价值。
稀土元素和化合物反应研究稀土元素是指第一周期的第57号至71号元素,它们具有独特的物理和化学性质,在现代科技领域中具有广泛的应用。
稀土元素的性质与其电子结构密切相关,而稀土化合物的反应性则与其晶体结构密切相关。
本文将介绍稀土元素和化合物反应的研究现状和未来发展方向。
一、稀土元素的化学性质稀土元素由于其特殊的电子结构,具有独特的化学性质。
稀土元素中,f 电子是局域化电子,无云层的外电子,局限在原子的近似球形势场内,因而具有较强的空间性质。
由于f 电子的局域化特性,稀土元素化合物具有很多独特的性质,包括高磁化率、发光等。
稀土元素氧化物是一类非常有用的材料,通常用于制备催化剂、陶瓷、玻璃等工业产品。
稀土氧化物中,不同原子的离子大小和化学性质均不同,因此制备不同类型的氧化物对其应用有着重要的影响。
例如Sm2O3和Sm3O4的电学性质明显不同,后者是一种能够被控制氧还原反应的半导体。
因此,了解稀土化合物的反应机理和反应性质至关重要。
二、稀土化合物的反应性质稀土化合物的晶体结构可能包含各种基元,如二元、三元或四元的结构单元等。
化合物中离子间作用力的大小以及其电子能带结构与离子模型之间的相互作用对反应活性产生深刻的影响。
在此背景下,如何理解稀土化合物反应的基本机制,对研究其化学性质具有重要意义。
反应速率和剂量效应是了解稀土化合物反应机制的重要指标。
在自由基进攻和电子转移反应中,反应速率可受化合物的结构和离子半径以及离子的电子在能带上的位置的影响。
反应过程中出现的过渡态结构与反应机理密切相关。
稀土化合物中的配合物具有相对强的性质,想要改变这一性质,需要了解其反应过程,制备出新型配合物。
在合成稀土化合物时,常常需要选择一个适当的氧化还原反应体系。
不同的氧化状态对所得产物的性质具有显著的影响,这进一步限制了稀土化合物的使用范围。
此外,化合物中的水分子和有机溶剂的存在也会对反应的速率和选择性产生影响。
三、稀土元素和化合物反应的研究现状稀土元素和化合物的反应研究是当前稀土化学研究的一个重要方向。