稀土元素地球化学讲解
- 格式:ppt
- 大小:1.95 MB
- 文档页数:29
元素周期表中的稀土元素性质解析元素周期表是化学家们对元素进行分类和归纳的重要工具。
在这个表中,稀土元素是一组特殊的元素,它们的性质独特而丰富。
本文将对稀土元素的性质进行解析,探讨它们在科学研究和工业应用中的重要性。
稀土元素是指周期表中镧系和锕系两个连续的元素系列。
它们的原子序数从57到71,以及90到103。
稀土元素的共同特点是外层电子结构比较复杂,容易形成稳定的化合物。
这也是为什么稀土元素在许多领域中都有广泛的应用。
首先,稀土元素在材料科学领域中扮演着重要的角色。
由于稀土元素具有特殊的电子结构,它们可以形成多种不同的化合物,这些化合物具有特殊的物理和化学性质。
例如,稀土元素可以用于制备高温超导材料,这些材料在低温下具有极低的电阻。
此外,稀土元素还可以用于制备磁性材料,这些材料在磁场中表现出强磁性。
因此,稀土元素在电子器件和磁性材料的制备中具有重要的应用价值。
其次,稀土元素在环境科学中也发挥着重要作用。
稀土元素在地球化学循环中扮演着重要角色,它们可以作为地球化学指示物来研究地球的演化和环境变化。
此外,稀土元素还可以用于环境污染的治理。
例如,稀土元素可以用作催化剂,促进有害气体的转化和降解。
因此,稀土元素在环境保护和治理中具有重要的应用潜力。
此外,稀土元素还在生物医学领域中发挥着重要作用。
稀土元素可以用于制备生物标记物和荧光探针,用于生物分析和成像。
例如,稀土元素可以用于制备荧光染料,这些染料在细胞和组织中具有较强的荧光信号,可以用于研究生物分子的定位和功能。
此外,稀土元素还可以用于制备荧光探针,用于疾病的诊断和治疗。
因此,稀土元素在生物医学研究和临床应用中具有广阔的前景。
最后,稀土元素还在冶金工业中发挥着重要作用。
稀土元素可以用于制备高强度的合金材料,这些材料具有优异的力学性能和耐腐蚀性。
此外,稀土元素还可以用于改善金属的熔点和流动性,提高金属的冶炼和加工性能。
因此,稀土元素在冶金工业中具有重要的应用价值。
烧变岩岩石学及稀土元素地球化学特征
烧变岩是一种由高温高压作用下形成的岩石。
烧变岩的特征是晶粒细小、组成均匀、强化学反应和形态不规则。
在变质过程中,热液流体可以对烧变岩的成分进行大量的交换和注入,从而形成了一些地球化学特征。
其中最重要的特征之一是稀土元素的富集。
稀土元素在地球中是非常稀少的,但它们在烧变岩中往往会富集。
这是因为热液流体在变质过程中可以通过离子交换等方式将稀土元素集中在烧变岩中。
此外,在烧变岩中,矿物的形成也受到高温高压的影响。
例如,烧变石英和烧变云母在变质过程中会发生结晶,形成精细的晶体结构。
关于岩石学方面,烧变岩的成分通常会反映出岩石原始的特征。
例如,烧变花岗岩通常具有高硅、低铁的成分,而烧变黑云母二千年则具有高铝、低钠的组成。
总的来说,烧变岩是一种高温高压下形成的岩石,具有晶粒细小、组成均匀、强化学反应和形态不规则等特征。
其地球化学特征主要表现在稀土元素的富集和热液流体对矿物成分的影响。
在岩浆作用中,REE趋向于晚期富集。
由超基性岩、基性岩、中性岩一酸性岩或碱性岩,REE逐浙增高,并在钠质火成岩类的碱性岩中达最大富集。
从世界上各类稀土矿床的产出情况来看,REE成矿的母岩主要是碱性岩、碳酸岩和花岗岩。
和其他稀有元素一样,REE 在岩浆岩中的矿化宫集作用在很大程度上取决于REE的丰度和岩石化学条件。
Cullers和Grat(1984)用Eu/Sm表示Eu的异常,他以成粒陨石的Eu焰皿比值0.35为标准:大于此值为正Eu异常;小于此值为负Eu异常,与此值相近为无异常。
δEu值在稀土乔素地球化学参缉中占有轻重要的地位,它常常作为划分同二大类岩石的亚类和讨论成岩成矿条件的重要参数之一。
例如花岗岩类可划分为壳型与壳樱型和富碱侵入体型。
壳型花岗岩Eu为中等亏损,δEu平均值为0.46;壳幔型花岗岩Eu为弱亏损,δEu平均值为0.84;碱性花岗岩Eu则强烈亏损,δEu<0.30。
2.总的说来,REE的分馏程度较低,稀土球粒陨石标准化分布型式比较简单。
其中大陆玄武岩富集∑Ce;侵入基性岩的稀土分馏较小;从中大西洋脊和东太平洋隆起采集的深海次碱性玄.武岩看,其REE分布型式与球粒陨石相似,仅La、Ce、Pr有明显亏损,在更碱性的深海玄武岩中未见La、Ce、Pr亏损。
3.大陆玄武岩的稀土改分变化很大,但存在两个明显的趋势。
无论是∑REE或∑Ce/∑Y均大于球粒陨石。
除个别例外,玄武岩的铕异常都很不明显,其δEu值高于沉积岩和花岗岩的δEu值。
有时还见有负铈异常,如西伯利亚玄武岩的∑Ce均<l。
(2)碳酸岩和共生的碱性硅酸盐岩石虽然碳酸岩具有最高的REE含量和LREE/HREE比值,但其变化范围也很大(∑REE =72—15515ppm,(La/Lu)cn=7.1 —1240)。
碳酸岩无Eu异常,但出现负Ce异常。
无Ce异常的样品比有Ce异常的样品可能形成于更低的氧化条件下。
三、稀土参数图解这类图解很多,可用于探讨岩石的形成机理或成因分类等问题。
稀土元素的地球化学循环和应用地球化学循环是指地球物质在自然界中的不同环境下通过物理、化学作用发生转化和重新分配的过程,是地球物质演化史的基础。
稀土元素是指元素周期表中21号元素镧到71号元素镥之间的元素,共17种,它们在地球化学循环中扮演着重要的角色。
本篇文章将分别从稀土元素的地球化学循环和应用两个方面进行探讨。
稀土元素的地球化学循环稀土元素是构成地壳建盏的重要元素之一,同时也广泛分布于大气、水体和生物体内。
它们与地球化学循环的关联主要表现在以下三个方面。
1. 稀土元素的地球化学循环与地壳物质的形成有关。
地球形成过程中,由于密度差异,大量铁、镍、铂等金属向地心集中,然而稀土元素相对轻薄,散布于上地壳和地幔的表层部分,因此稀土元素含量比地球内部普通介质要高。
此外,火山作用、岩石侵入作用等也是地壳稀土元素的重要来源。
2. 稀土元素参与了海水与陆地之间的质量交换。
海水和大气中均含有稀土元素,其中海洋中稀土元素含量虽不高却非常均衡,这是海洋环境化学研究中稀土元素特殊研究的原因之一。
当陆地上的水体通过风化和流水作用进入海洋中,其中的稀土元素就被抬升到海洋表层,形成稀土海水岩以及稀土淤泥等沉积岩石。
3. 稀土元素与生物体的生长和代谢密切相关。
稀土元素在生态系统中多存在于植物和水生生物体内,它与其他元素一起参与了植物光合作用、呼吸作用、蛋白质合成等过程。
稀土元素的生物循环对生态系统稳定性和可持续发展具有重要意义。
稀土元素的应用稀土元素因其独特的物化性质和广泛的应用前景,被誉为“未来化工原材料百科全书”。
稀土元素的应用分为以下四个方面。
1. 稀土元素在冶金工业中的应用。
稀土元素在冶金行业中广泛应用,特别是在钢铁、有色金属、稀有金属材料等领域具有重要作用。
稀土元素可以改善金属材料的力学性能和化学稳定性,提高材料的高温性能和防腐蚀能力。
2. 稀土元素在电子行业中的应用。
稀土元素的光电性能和磁性能让它成为电子行业中的重要材料之一。