等可能性事件的概率
- 格式:doc
- 大小:30.01 KB
- 文档页数:30
课题:等可能性事件的概率(一)一、教学目标:(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。
(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。
通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。
(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。
了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。
二、教学重点:等可能性事件的概率的意义及其求法。
三、教学难点:等可能性事件的判断以及如何求某个事件所包含的基本事件数。
四、教学方法:启发式探索法五、教学过程:1、复习引入、创设情境问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?(生)必然事件,随机事件,不可能事件。
(师)好!问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。
是不是所有的随机事件都需要大量的重复试验来求得呢?(生)不一定。
(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。
问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?2、逐层探索,构建新知问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。
问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。
等可能条件下的概率知识点在概率论中,等可能条件下的概率问题是一个经典的概率问题。
它涉及到一组事件中每个事件发生的概率相等的情况。
在这篇文章中,我们将深入探讨等可能条件下的概率知识点,包括基本概念、公式及其应用。
一、基本概念1. 等可能事件在概率论中,等可能事件指的是在某一场景中,每个事件的发生概率相等。
例如,当掷骰子时,每个数字都有机会出现,每个数字出现的概率相等,因此掷出任何一个数字的概率都是1/6.2. 等可能性原理等可能性原理,也称为排列组合的基本原理,指的是当每个事件的发生概率相等时,我们可以使用组合公式来计算某个事件的概率。
例如,在掷骰子的情况下,如果我们想知道掷出1或2的概率,我们可以将这两个事件相加,得到1/6 + 1/6 = 1/3的概率。
3. 根据等可能性原理计算概率的公式在等可能性条件下,我们可以使用以下公式计算事件的概率:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示整个样本空间。
二、公式及其应用等可能条件下的概率问题十分广泛,因此有很多公式和应用。
以下是几个主要的例子:1. 易错问题易错问题是一个简单的等可能条件下的概率问题,经常出现在标准化考试中。
此类问题可以使用以下公式来解决:P(错) = 1 - P(对)其中,P(错)表示一个错误的概率,P(对)表示一个正确的概率。
例如,在一场50道选择题的考试中,如果我们想知道一个学生答错了20道题的概率是多少,我们可以使用以下公式:P(错) = 1 - P(对) = 1 - (1/4)^30*(3/4)^20 = 0.079因此,这名学生有7.9%的概率答错20道题。
2. 骰子问题骰子问题是这个问题中最常见的一个问题类别。
使用等可能性原理计算骰子的概率非常简单,只需要将最后一个等号中的n(A)和n(S)替换为相应的数字即可。
例如,如果我们想知道掷出6点的概率,我们可以使用以下公式:P(6) = n(6) / n(S) = 1 / 6因此,掷出6点的概率为1/6.3. 抽样问题同样,我们可以使用等可能铭感的公式来计算抽样问题的概率。
等可能性事件的概率
题:等可能性事的概率教材:人民教育出版社的全日制普通高级中学教科书(试验修订本必修)《数学》第二册(下B)第十一概率第一节(第二时)
教学目标;
(1)知识与技能目标:了解等可能性事的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事的概率。
(2)过程和方法目标:通过学习、生活中的实际问题的引入,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力;通过计算等可能性事的概率,提高综合运用排列、组合知识的能力和分析问题、解决问题的能力。
(3)情感与态度目标:营造亲切、和谐的氛围,以“趣”激学;随机事的发生既有随机性,又有规律性,使学生了解偶然性寓于必然性之中的辩证思想;引导学生树立科学的人生观和价值观,培养学生的综合素质。
教学重点:
等可能性事的概率的意义及其求法。
教学难点:
等可能性事概率计算公式的重要前提:每个结果出现的可能性必须相同。
教学方法:
启发式探索法
教学手段:
计算机辅助教学、实物展示台
教具准备:
转盘一个
教学过程:
附:前兴趣阅读:
生活中的数学
1、你做过这样的调查吗?我们班在座的同学中至少有两位同学在同一天生日的可能性多大?
2、无为一中进行演讲比赛,参赛选手的演讲顺序通过抽签决定,抽签时有先有后,你认为公平吗?
同学们,要想解决上面的问题,就让我们继续学习概率吧!
一、复习旧知:
抛掷一枚均匀硬币,
(1)出现正面向上;
(2)出现正面向上或反面向上;
(3)出现正面向上且反面向上
各是什么事?概率分别是多少?(学生回答)
(1)随机事,概率是1/2
(2)必然事,概率是1
(3)不可能事,概率是0
二、设置情境,引入新:
同学们,你们参加过商场抽奖吗?
我们美丽的无为的大商场即将在五一黄金周进行有奖销售活动(拿出转盘,一面是把转盘均匀6份,一面是不均匀的6份)
出示不均匀的一面
情境一:
无为商之都五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:
1:电冰箱一台2:可口可乐一听3:色拉油20l
4:谢谢光顾:洗衣粉一袋6:光明酸奶00l
你希望抽到什么?抽到电冰箱的可能性与抽到洗衣粉一袋相同吗?
出示均分6份一面
情境二:
无为百货大楼五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:
1:雪碧20l一听2:可口可乐一听3:洗衣粉一袋
4:光明酸奶12l :康师傅方便面一盒
6:娃哈哈矿泉水一瓶
现在你觉得抽到可口可乐一听与洗衣粉一袋的可能性相同吗?抽到1
的可能性是多少呢?你是怎么的到的呢?
求一个随机事的概率的基本方法是通过大量的重复试验;那么能否不进行大量重复试验,只通过一次试验中可能出现的结果求出其概率呢?
这就是今天我们要学习的等可能性事的概率(板书题)
三、逐层探索,构建新知:
问题1 :掷一枚均匀的硬币,可能出现的结果有几种?
它们的概率分别为多少?
正面向上反面向上
1/2 1/2
问题2:在情境2摇奖中,指针指向的数字可能有几种?它们的概率分别为多少?
1 2 3 4 6
1/6 1/6 1/6 1/6 1/6 1/6
这里是怎么得到概率的值的?
引导发现:
1、分析一次试验可能出现的结果n个
2、每个结果出现的可能性是相同的
(演示转盘的两面帮助学生理解每个结果出现的可能性是相同的这一前提)
问题3:在问题2中指针指向的数字是3的倍数的概率为多少呢?是偶数的概率是多少?(学生回答)
1/2 1/3
(强调等可能性)
引入公式:
基本事:一次试验连同其中可能出现的每一个结果称为一个基本事。
如果一次试验由n个基本事组成,而且所有的基本事出现的可能性都相等,那么每一个基本事的概率都是1/n 。
等可能性事的概率:
如果某个事A包含的结果有m个,那么事A的概率
P(A)=/n
在一次试验中,等可能出现的n个结果组成一个集合I,
包含个结果的事A对应于I的含有个元素的
ard(A)
P(A)= ——————— = /n
ard(I)
跟踪练习:1、请同学们自己设计一个有关求等可能性事的问题。
2.先后抛掷2枚均匀的硬币
(1)一共可能出现多少种不同的结果?
(2)出现“1枚正面、1枚反面”的结果有多少种。
(3)出现“1枚正面、1枚反面”的概率有多少种。
(4)出现“1枚正面、1面反面”的概率是1/3,对吗?
四、师生共做,循环上升:
例1、一个口袋内装有大小相等的1个白色和已编有
不同号码的3个黑球,从中摸出2个球。
(1)共有多少种不同的结果?
(2)摸出2个黑球有多少种不同的结果?
(3)摸出2个黑球的概率是多少?
(学生举手回答或个别提问,注意从组合知识和集合两个角度分析求解)
I
白黑1 白黑2
白黑3 黑1黑2 黑2黑3
黑1黑3
A
例题2:将骰子先后抛掷2次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的数之和是的结果有多少种?
(3)向上的数之和是的概率是多少?
解:(1)将骰子抛掷1次,它落地时向上的数有1,2,3,4,
,6这6种结果。
根据分步计数原理,先后将这种玩具抛掷2次,一共有
6×6=36
种不同的结果。
答:先后抛掷骰子2次,一共有36种不同的结果。
(2)在上面所有结果中,向上的数之和是的结果有
(1,4),(2,3),(3,2),(4,1)
4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上的数。
上面的结果可用下图表示
答:在2次抛掷中,向上的数之和为的结果有4种
(3)由于骰子是均匀的,将它抛掷2次的所有36种结果是等可
能出现的。
其中向上的数之和是的结果(记为事A)有4种,因此所求的概率
第
二
次
抛
掷
后向上的数6
8 9
10
11
12
6 7 8 9
10
11 4 6
8 9 10 3 4
6 7 8 9
2 3 4
6
8 1 2 3 4
6 7
1
2 3 4
6
第一次抛掷后向上的数
答:抛掷骰子次,向上的数之和为的概率是1/9
变式练习:
在例2中,向上的数之积为6的概率是多少?
模拟预案:
小明说,抛掷两枚骰子,向上一面数字之和最小为2,最大为12,共有11种不同的结果,则向上一面的数字之和为的概率是1/11,对吗?为什么?
五.堂小结:
通过这节的学习,同学们能不能归纳梳理本节的主要内容?(学生自主小结)
1、等可能性事的特征:
a、一次试验中有可能出现的结果是有限的;
b、每一结果出现的可能性相等。
2、求等可能性事概率的步骤:
(1)审清题意,判断本试验是否为等可能性事
(2)计算所有基本事的总结果数n
(3)计算事A所包含的结果数
(4)计算P(A)=/n
六.后作业:
1、必做题:P132 习题111 2,3
2、选做题:P132 习题111 8
结束语:同学们,上之前大家看到了概率在生活中的应用,譬如,一
年36天计算,我们班某一位同学在今天过生日的概率是多少?根据等可能性事的概率计算应该是1/36,那么某两位同学在今天生日的概率是多少?我们班至少有两位同学在今天生日的概率又是多少?等等问题,大家想不想知道,这些问题有待于我们以后进一步概率的学习。
七、说明:
为了贯彻新程理念,这次评比我选取的内容是人教版高中数学第二册(下B)第十一概率中的一节《等可能性事的概率》,概率是新程改革新增内容,与社会生活密切相关,在生产生活中应用及其广泛,符合新程理念倡导的教育观。
本节在数学教材的选取上,力求贴近生活实际,如抽奖,摸球游戏等,并且就地取材,创设学生熟悉的感兴趣的问题情境,使学生能在轻松、愉快的教学情境中学习有用的数学,同时也能运用数学知识分析问题和解决问题。
教案的设计“以人为本,以学定教”,教师始终扮演的是组织者、引导者、参与者的角色,通过问题教学法,变“教的堂”为“学的堂”,学生成为堂学习真正的主人。
通过布置分层练习,面对全体学生,使不同的人在数学上有不同的发展,让不同的学生在数学学习上都能成功;倡导合作式学习,通过学生小组合作设计问题、小组交流解决问题的方式,提高学生合作学习、主动探究的能力,而且大大促进了学生对知识的理解和灵活运用。
本节内容是随机性的思维方法,学生的辨证思维不成熟,可能存在理解不到位的现象,反思这一点,如何加以改进,这是在后续教学中需要思考的问题。