2015高中数学 1.1.2集合间的基本关系课时跟踪检测 新人教A版必修1
- 格式:doc
- 大小:117.00 KB
- 文档页数:4
1.2 集合间的基本关系一、单选题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,答案:A解析:解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 详解:由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a=,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.满足{}{}1,21,2,3,4,5A ⊆⊆的集合A 的个数为( ) A .8 B .7C .4D .16答案:A解析:根据已知条件可知集合A 中必有1,2,集合A 还可以有元素3,4,5,写出集合A 的所有情况即可求解. 详解:因为集合A 满足{}{}1,21,2,3,4,5A ⊆⊆,所以集合A 中必有1,2,集合A 还可以有元素3,4,5,满足条件的集合A 有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5共有8个,故选:A.3.设集合A =x|x =2k +1,k ∈Z},若a =5,则有( ) A .a ∈A B .-a ∉A C .a}∈A D .a}∉A答案:A解析:由题意,集合A 为奇数集,易得a ∈A ,-a ∈A ,所以选项A 正确,选项B 不正确,而选项C 、D 两个集合之间的符号使用有误,所以选项C 、D 不正确. 详解:解:对选项A :当k =2时,x =5,所以a ∈A ,故选项A 正确; 对选项B :当k =-3时,x =-5,所以-a ∈A ,故选项B 不正确;对选项C 、D :因为集合a}与集合A 之间的符号使用有误,所以选项C 、D 不正确; 故选:A.4.下列集合与集合{}1,3A =相等的是( ) A .()1,3B .(){}1,3C .{}2430x x x -+=D .(){},1,3x y x y ==答案:C解析:本题可根据集合相等的相关性质解题. 详解:A 项不是集合,B 项与D 项中的集合是由点坐标组成,C 项:2430x x -+=,即()()310x x --=,解得3x =或1x =,集合{}2430x x x -+=即集合{}1,3,因为若两个集合相等,则这两个集合中的元素相同,所以与集合{}1,3A =相等的是集合{}2430x x x -+=,故选:C.5.若集合A =-1,2},B =x|x 2+ax +b =0},且A =B ,则有( ) A .a =1,b =-2 B .a =2,b =2 C .a =-1,b =-2 D .a =-1,b =2答案:C解析:解析 由A =B 知-1与2是方程x 2+ax +b =0的两根,则有()1212a b -+=-⎧⎨-⨯=⎩,解得12.a b =-⎧⎨=-⎩故选C.6.已知集合{}1M =,{}1,2,3N =,则 A .M <N B .M N ∈ C .M N ⊆ D .N M ⊆答案:C解析:根据元素关系确定集合关系. 详解:因为1,2,N M ∈所以M N ⊆,选C. 点睛:本题考查集合包含关系,考查基本分析判断能力,属基础题.7.设集合P {m |1m 0}=-<≤,2Q {m |mx 2mx 10}=+-<对任意x R ∈恒成立,则P 与Q 的关系是()A .P QB .Q PC .P Q =D .P Q φ⋂=答案:C解析:先分别求出集合P ,Q ,由此能求出P 与Q 的关系. 详解:集合P {m |1m 0}=-<≤,2Q {m |mx 2mx 10}=+-<对任意x R ∈恒成立,当m=0时,-1<0,满足题意, 当0m ≠时,结合二次函数的性质得到210440m m m m <⎧⇒-<<⎨∆=+<⎩Q {m |1m 0}∴=-<≤. P ∴与Q 的关系是P Q =.故选C . 点睛:本题考查集合的关系的判断,考查不等式性质等基础知识,考查运算求解能力,是基础题. 8.若集合{}0A x x =<,且B A ⊆,则集合B 可能是 A .{}1x x >- B .RC .{}2,3--D .{}3,1,0,1--答案:C解析:通过集合{}0A x x =<,且B A ⊆,说明集合B 是集合A 的子集,对照选项即可求出结果. 详解:解:因为集合集合{}0A x x =<,且B A ⊆,所以集合B 是集合A 的子集, 当集合{}1B x x =>-时,1A ∉,不满足题意, 当集合B R =时,1A ∉,不满足题意, 当集合{}2,3B =--,满足题意,当集合{}3,1,0,1B -=-时,1A ∉,不满足题意, 故选:C . 点睛:本题考查集合的基本运算,集合的包含关系判断及应用,属于基础题.9.已知全集为实数集R ,集合{}22A x x =-<<,{}220B x x x =+≤ ,则()AB =R( )A .()0,2B .(]0,2C .[)0,2D .[]0,2答案:A解析:分别求出两个集合,再根据集合运算求解即可. 详解:因为()2220x x x x +=+≤,所以{}{}22020B x x x x x =+≤=-≤≤,所以{2R B x x =<-或}0x >, 又因为{}22A x x =-<<, 所以(){}()020,2R A B x x ⋂=<<= 故选:A. 点睛:本题考查集合的补集运算与交集运算,是基础题..10.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥ B .23m ≤≤ C .3m ≤ D .2m ≥答案:C解析:讨论,B B =∅≠∅两种情况,分别计算得到答案. 详解:当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 点睛:本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 二、填空题1.已知集合()(){}250A x x x =+->,{}1B x m x m =≤<+,且()R B C A ⊆,则实数m 的取值范围是_________.答案:[]2,4-解析:首先求得R C A ,然后利用集合之间的包含关系得到关于m 的不等式,求解不等式即可确定m 的取值范围. 详解:由题意可得:()(){}{}250|25R x x x x C A x =+-≤=-≤≤,据此结合题意可得:215m m ≥-⎧⎨+≤⎩,即24m m ≥-⎧⎨≤⎩,即实数m 的取值范围是[]2,4-. 点睛:本题主要考查集合的表示方法,由集合间的关系求解参数的取值范围等知识,意在考查学生的转化能力和计算求解能力.2.设m 为实数,若22250{()|30}{()|25}0x y x y x x y R x y x y mx y -+≥⎧⎪-≥∈⊆+≤⎨⎪+≥⎩,,、,,则m 的最大值是____. 答案:43解析:设()250{,|30,,}0x y M x y x x y R mx y -+≥⎧⎪=-≥∈⎨⎪+≥⎩,()22{,|25}N x y x y =+≤,将两个点集用平面区域表示,因为M N ⊆,故M 表示的平面区域在N的内部,根据这一条件得出m 的最大值. 详解:解:设()250{,|30,,}0x y M x y x x y R mx y -+≥⎧⎪=-≥∈⎨⎪+≥⎩,()22{,|25}N x y x y =+≤,显然点集N 表示以原点为圆心,5为半径的圆及圆的内部,点集M 是二元一次不等式组25030,,0x y x x y R mx y -+≥⎧⎪-≥∈⎨⎪+≥⎩表示的平面区域,如图所示,作图可知,边界250x y -+=交圆2225x y +=于点()()3,4,5,0A C -, 边界y mx =-恒过原点,要求m 的最大值,故直线y mx =-必须单调递减, 因为M N ⊆,所以当y mx =-过图中B 点时,m 取得最大, 联立方程组22325x x y =⎧⎨+=⎩,解得()3,4B -, 故4030m ---=-,即max 43m =. 点睛:本题表面上考查了集合的运算问题,实质是考查了二元一次不等组表示的平面区域和二元二次不等式对应平面区域的画法,还考查了动态分析问题的能力,属于中等偏难题. 3.若{|2132}A x a x a =+≤<-,2{|11100}B x x x =-+<,且A B ⊆,则实数a 的取值范围是_________.答案:(,4]-∞解析:先求出集合B 中不等式的解集,再由A B ⊆列不等式组求解即可. 详解:解:由已知{|110}B x x =<<,A B ⊆,当A =∅时,2132a a +≥-,解得3a ≤当A ≠∅时,21132102132a a a a +>⎧⎪-≤⎨⎪+<-⎩,解得34a <≤,综合得4a ≤. 故答案为:(,4]-∞点睛:本题考查集合的包含关系,考查分类讨论的思想,是基础题.4.已知集合{},,2A a b =,{}22,,2=B b a 且A B =,则a =_______________.答案:0或14解析:根据集合相等可得出关于实数a 、b 的方程组,利用集合元素满足互异性可求得实数a 的值. 详解:集合{},,2A a b =,{}22,,2=B b a 且A B =,分以下两种情况讨论:①当22a a b b =⎧⎨=⎩时,解得00a b =⎧⎨=⎩或01a b =⎧⎨=⎩. 当0a b 时,集合A 、B 中的元素均不满足互异性; 当0a =,1b =时,{}0,1,2A B ==,合乎题意;②当22a b b a ⎧=⎨=⎩时,解得00a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩.当0a b 时,集合A 、B 中的元素均不满足互异性;当14a =,12b =时,11,,242A B ⎧⎫==⎨⎬⎩⎭,合乎题意.综上所述,0a =或14a =. 故答案为:0或14. 点睛:本题考查利用集合相等求参数值,考查分类讨论思想的应用,解题时要注意集合中的元素要满足互异性,考查计算能力,属于中等题.5.已知集合{}1,,A a b a =+,集合0,,b B b a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b -=_______.答案:2-解析:由题意可得,0,1a b b +==,从而可求出,a b 的值,进而可得答案 详解:解:因为集合{}1,,A a b a =+,集合0,,b B b a ⎧⎫=⎨⎬⎩⎭,且A B =, 所以1,0B A ∈∈,且0a ≠,所以0,1a b b +==,得1,1a b =-=, 所以2a b -=-, 故答案为:2- 三、解答题 1.已知集合.(1)求;(2)若,求实数的取值范围.答案:(1),或;(2). 解析:(1)由补集的定义和集合,即可求出和;(2)由,可知集合是的子集,分两种情况:和,分别讨论即可.详解: (1)因为,所以,或 ;(2)因为,,所以,因为,所以时,,得;时,, 综上的取值范围是.故答案为:.点睛:本题考查了集合的并集和补集,考查了集合间的包含关系,考查了不等式的解法,属于基础题.2.集合2{|320}A x x x =-+<,11{|28}2x B x -=<<,()(){|20}C x x x m =+-<,其中m ∈R .(Ⅰ)求A B ⋂;(Ⅱ)若()A B C ⋃⊆,求实数m 的取值范围.答案:(1)()1,2A B ⋂=; (2)[) 4,m ∞∈+. 解析:试题分析:(1)简化集合得:()1,2A =;()0,4B =;所以()1,2A B ⋂=;(2)()0,4A B ⋃=,即()0,4?C ⊆,对m 分类讨论确定C 的集合,利用子集关系求实数m 的取值范围. 试题解析:(Ⅰ)()2{|320}1,2A x x x =-+<=;()11{|28}0,42x B x -=<<=;所以()1,2A B ⋂=; (Ⅱ)()0,4A B ⋃=,若m 2>-,则()2,C m =-,若()0,4A B C ⋃=⊆,则4m ≥; 若m 2=-,则C =∅,不满足()0,4A B C ⋃=⊆,舍; 若2m <-,则(),2C m =-,不满足()0,4A B C ⋃=⊆,舍; 综上[)4,m ∞∈+.3.已知集合{}{}2320,10A x x x B x mx =-+==-=,且A B B =,求实数m 的值.答案:m =0,1,12}解析:先求出集合A ,将条件A B B =,转化为B A ⊆,利用集合关系确定m 的取值即可. 详解:解:2{|320}{|2A x x x x x =-+===或{}1}1,2x ==,{|10}{|1}B x mx x mx =-===,AB B =,B A ∴⊆,若B =∅,即0m =,此时满足条件.若B ≠∅,即0m ≠.此时11|B x x m m ⎧⎫⎧⎫===⎨⎬⎨⎬⎩⎭⎩⎭, 要使B A ⊆成立,则12m =或11m =,解得1m =或12m = 综上:0m =或12m =或1m =, 即m 的取值集合为10,1,2⎧⎫⎨⎬⎩⎭.点睛:本题主要考查集合关系的应用,将条件A B B =,转化为B A ⊆是解决本题的关系,注意要对集合B 进行分类讨论. 4.记关于x 的不等式01x ax -≤+的解集为P ,不等式|1|1x -≤的解集为Q . (1)若3a =,求P ;(2)若Q P ⊆,求a 的取值范围.答案:(1){}13P x x =-<≤;(2)[2,)+∞. 解析:(1)结合分式不等式的求解求出P ,(2)结合绝对值不等式的求解求出Q ,然后结合集合之间的包含关系即可求解. 详解:解:(1)当3a =时,原不等式可转化为(3)(1)010x x x -+⎧⎨+≠⎩,解得13x -<≤,{}13P x x ∴=-<≤.(2)由11x -≤可得02x ≤≤,即解集为{}02Q x x =≤≤, 当1a =-时,P =∅,不满足题意;当1a >-时,{}1P x x a =-<≤,Q P ⊆,2a ∴≥; 当1a <-时,{}1P x a x =≤<-,此时不满足题意, 综上,a 的范围[2,)+∞. 点睛:本题考查分式不等式和含绝对值不等式的求解,考查根据集合的包含关系求参数,属于基础题.5.已知集合{|26}A x x =-≤≤,{|21}B x m x m =≤≤-,若B A ⊆,求实数m 的取值范围.答案:(﹣∞,72]解析:分B=∅和B≠∅两种情况分类讨论,即可求出实数m 的范围. 详解:(i )当B=∅时,由题意:m >2m ﹣1,解得:m<1,此时B⊆A成立;(ii)当B≠∅时,由题意:m≤2m﹣1,解得:m≥1,若使B⊆A成立,应有:m≥﹣2,且2m﹣1≤6,解得:﹣2≤m≤72,此时1≤m≤72,综上,实数m的范围为(﹣∞,72 ].点睛:在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。
1.2 集合间的基本关系一、单选题1.下列符号表述正确的是( ) A .*0N ∈ B .1.732Q ∉ C .{}0∅∈ D .{}2x x ∅⊆≤答案:D解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题.2.已知集合{}2,1,0,1,2A =--,{}1,B y y x x A ==-∈,则下列关系正确的是( ) A .A B = B .A B ⊆ C .B A ⊆ D .A B =∅ 答案:C解析:求出B 后可判断,A B 的关系. 详解:由集合{}2,1,0,1,2A =--,{}1,B y y x x A ==-∈, 得{}1,0,1B =-.又因为集合{}2,1,0,1,2A =--,所以B A ⊆.故选C . 点睛:判断两个集合是否具有包含关系,只需根据子集的定义检验即可,此类问题为容易题. 3.下列关系中正确的个数为( )(1){}00∈;(2){}0∅⊆;(3){}(){}0,10,1⊆; (4)(){}(){},,a b b a =;(5){}{},,a b b a =. A .1B .2C .3D .4答案:C解析:利用元素与集合的关系符号表示、集合与集合之间的关系符号表示即可判断. 详解:对于(1),0是集合{}0中的元素,即{}00∈,故正确; 对于(2),空集是任何集合的子集,故{}0∅⊆,故正确;对于(3),集合{}0,1中的元素为0,1,集合(){}0,1中的元素为()0,1,故错误; 对于(4),集合(){},a b 中的元素为(),a b ,集合(){},b a 中的元素为(),b a ,故错误. 对于(5),{},a b 中的元素为,a b ,{},b a 中的元素为,a b ,故正确. 故选:C4.下列四个集合中,是空集的是( ) A .{|33}x x B .2{|0}x x ≤C .2{|10,}x x x x R -+=∈D .22{(,)|,,}x y y x x y R =-∈答案:C解析:利用空集的定义直接判断选项是否是空集,即可. 详解: 解:33x +=,0x ∴=,所以{|33}{0}x x +==,A不是空集.20x ,0x ∴=,所以2}{|0}{0x x ≤=,B 不是空集.210x x -+=,x ∈R ,()2141130∆=--⨯⨯=-<,2{|10,}x x x x R ∴-+=∈=∅;即C 是空集.22y x =-,x ,y R ∈,即220y x +=0x y =⎧∴⎨=⎩,所以{}22){(,)|,,(0,0}x y y x x y R ==-∈;D 不是空集. 故选:C .5.已知集合{}2320A x x x =-+=,{}06B x x =∈<<N ,则满足条件A C B ⊆的集合C 的个数为( ) A .7 B .8C .15D .16答案:A解析:先求出集A ,B ,再由件A C B ⊆,确定集合C 即可 详解:解:由题意得{}{}1,2,1,2,3,4,5A B ==, 因为A C B ⊆所以{}1,2 {}1,2,3,4,5C ⊆,所以集合C 的个数为集合{}3,4,5的非空子集的个数为3217-=, 故选:A.6.已知集合{}21,2,2A a =+,{}1,3B a =,若B A ⊆,则a =( )A .1或2B .2C .3D .1或2或23答案:D解析:利用子集的定义讨论即可. 详解:因为B A ⊆,集合{}21,2,2A a =+,{}1,3B a =,若32a =,则23a =,符合;若223+=a a ,则1a =或2,经检验均符合. 故选:D. 7.若1,2,3} A ⊆1,2,3,4,5},则集合A 的个数为 A .2 B .3C .4D .5答案:B 详解:集合1,2,3}是集合A 的真子集,同时集合A 又是集合1,2,3,4,5}的子集,所以集合A 只能取集合1,2,3,4},1,2,3,5}和1,2,3,4,5}. 考点:集合间的基本关系.8.已知集合{}1,2A =,()(){}|10,B x x x a a R =--=∈.若A B =,则a 的值为( ) A .2 B .1 C .-1 D .-2答案:A解析:首先化简集合B ,再根据两个集合相等,里面的元素相等即可求出a 的值. 详解:由题意得()(){}{}|10,1,B x x x a a R a =--=∈=,因为A B =,所以2a =. 故选:A 点睛:本题主要考查了集合的相等,属于基础题.9.设集合A={x|1<x<2},B={x|x<a }满足A ⊆B ,则实数a 的取值范围是( ) A .[2,+∞) B .(-∞,1]C .(2,+∞)D .(-∞,2]答案:A解析:根据子集的定义、以及A 、B 两个集合的范围,建立实数a 的不等式,求解即可得到a 的取值范围. 详解:由于 集合A =x|1<x <2},B =x|x <a},且满足A ⊆B , ∴a≥2, 故选:A . 点睛:本题主要考查集合间的关系,子集的定义,属于基础题.10.已知P 2{|1,x x n n ==+∈}N ,Q 2{|41,y y m m m ==-+∈}N ,则P 与Q 关系是( ) A .P Q = B .P QC .P QD .以上都不对答案:D解析:根据2P ∈,但2Q ∉,以及2Q -∈但2P -∉可得. 详解:当1n =时,2x =,所以2P ∈,令2412m m -+=,即2410m m --=,解得2m =N ∉, 所以2Q ∉,当1m =时,1412y =-+=-Q ∈,所以2Q -∈,而2P -∉, 故选D . 点睛:本题考查了集合之间的基本关系,属于基础题. 二、填空题1.设集合{1,2,3,4,5,6},{4,5,6,7,8}A B ==,则满足S A ⊆且S B φ⋂≠的集合S 的个数是__________个答案:56解析:正难则反,S B φ⋂≠,从这个条件出发,可先求S B φ⋂=的个数,再用全部子集的个数减去S B φ⋂=的个数即可 详解:集合A 的子集有:{1},{2},{3},{4},{5},{6} ,{1,2},{1,3},{1,4},{1,5},{1,2,3,4,5,6},∅,共64个; 又,{4,5,6,7,8}S B B ⋂≠∅=,所以S 不能为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∅共8个,则满足S A ⊆且S B ⋂≠∅的集合S 的个数是64856-=. 点睛:集合中元素个数若为n 个,则子集个数为2n 个2.设集合P 满足{}{}1,20,1,2,3,4P ≠⊆⊂,满足条件的P 的个数为 ______________ .答案:7个解析:由{}1,2P ⊆可知P 中必含有1,2;由{}0,1,2,3,4P ≠⊂,可知0,3,4不全为P 中元素,以此可得P 集合,进而得到结果.详解:{}1,2P ⊆ P ∴中必含有元素1,2,又{}0,1,2,3,4P ≠⊂ {}1,2P ∴=,{}0,1,2,{}1,2,3,{}1,2,4,{}1,2,0,3,{}1,2,0,4,{}1,2,3,4 ∴满足条件的P 共有7个故答案为:7个 点睛:本题考查根据集合的包含关系确定集合个数的问题,关键是能够根据包含关系确定所求集合中所包含的元素情况.3.设集合{}1A =-,{}1B x ax ==,若B A ⊆,则a =___________.答案:0或1-解析:方程1ax =的根为1-或无实解. 详解:0a =时,1ax =无解,满足题意,0a ≠时,由1ax =得11x a==-,1a =-. 综上a 的值为0或1-. 故答案为:0或1-. 点睛:本题考查集合的包含关系,解题时要注意空集是任何集合的子集. 4.已知集合,集合,若,则实数=_________.答案:1解析:试题分析:由条件B A ⊆可知集合B 是集合A 的子集,所以有221m m =-或21m =-(舍),解得:1m =. 考点:集合间的关系.5.已知数列{}n a 是公差为()0d d ≠的等差数列,数列{}n b 是公比为()1q q ≠的等比数列,记集合{},n n M n a b n N *==∈,则集合M 的子集最多有________个.答案:4解析:分类讨论1q ≠-和1q =-两种情况,推导出集合(){},n A n a n N *=∈与集合(){},n B n b n N*=∈中的点不可能有三个公共点,得出集合M 至多只有两个元素,再利用集合子集个数公式可得出所求结果. 详解:1q ≠,当1q ≠-时,集合(){},nB n b n N *=∈中的点不可能出现三点共线,而集合(){},nA n a n N *=∈所有的点都在同一条直线上,此时,集合M 至多只有两个元素;当1q =-时,假设集合(){},nA n a n N *=∈与集合(){},nB n b n N *=∈有三个公共点(),k k b 、(),ss b 、()(),,,,t t b k s t k s t N *<<∈,则k b 、s b 、t b 中至少有两个相等,则ka 、s a 、t a 中至少有两个相等,这与0d ≠矛盾,此时,集合M 至多只有两个元素. 因此,集合M 的子集个数最多是224=个. 故答案为4. 三、解答题1.已知集合{|12},{|||1}A x ax B x x =<<=<,是否存在实数a ,使得A B ⊆.若存在,求出实数a 的取值范围;若不存在,请说明理由.答案:存在;0a =或2a ≥或2a ≤-.解析:先确定集合B 中的元素,然后求集合A ,根据a 分类:0,0,0a a a =><分类解不等式求得集合A ,然后再由包含关系得关于a 的不等关系,从而得出结论. 详解:∵{}|11B x x =-<<,而集合A 与a 的取值范围有关. ①当0a =时,A =∅,显然A B ⊆. ②当0a >时,12A xx aa ⎧⎫=<<⎨⎬⎩⎭,∵A B ⊆,如图1所示,∴11,21,aa⎧-⎪⎪⎨⎪⎪⎩∴2a ≥.③当0a <时,21A xx aa ⎧⎫=<<⎨⎬⎩⎭,∵A B ⊆,如图2所示,∴11,21,aa⎧⎪⎪⎨⎪-⎪⎩∴2a -.综上可知,所求实数a 的取值范围为0a =或2a ≥或2a ≤-. 点睛:本题考查集合的包含关系,掌握子集的定义是解题关键.解不等式时要注意对未知数的系数分类讨论.2.已知集合A =x|1-a<x≤1+a},集合B =122xx ⎧⎫-<≤⎨⎬⎩⎭∣. (1)若A ⊆B ,求实数a 的取值范围; (2)若B ⊆A ,求实数a 的取值范围;(3)是否存在实数a 使A ,B 相等?若存在,求出a ;若不存在,请说明理由.答案:(1)a≤1;(2)a≥32;(3)不存在,答案见解析. 解析:(1)根据集合的包含关系,即可列出不等式组,求解即可; (2)根据集合的包含关系,即可列出不等式组,求解即可; (3)根据(1)(2)所求,即可判断. 详解:(1)∵A ⊆B ,∴a≤0或112120a a a ⎧-≥-⎪⎪+≤⎨⎪>⎪⎩解得a≤1.(2)∵B ⊆A ,∴11212a a ⎧-≤-⎪⎨⎪+≥⎩解得a≥32. (3)不存在.理由:若A B =,需满足A ⊆B ,且B ⊆A ,即a≤1且a≥32,显然不存在这样的a.故不存在a使得A B.点睛:本题考查根据集合的包含关系,以及集合相等求参数范围,属综合基础题.3.已知二次函数满足条件,(为已知实数).(1)求函数的解析式;(2)设,,当时,求实数的取值范围.答案:(1);(2).解析:(1)先由题意,设二次函数,根据,得到,即可求出结果;(2)先化简集合,解方程,分别讨论,,三种情况,即可得出结果.详解:(1)因为二次函数满足条件,设二次函数,又,所以,因此,所以,所以;(2)因为,解方程得或,当时,满足;当时,,由得,解得,所以;当时,,由得,解得,所以, 综上,实数的取值范围是.点睛:本题主要考查求二次函数的解析式,以及由集合的包含关系求参数的问题,熟记待定系数法求函数解析,熟记集合间的基本关系即可,属于常考题型. 4.已知集合U =R ,集合()(){}230A x x x =--<,函数()22lg x a y a x-+=-的定义域为集合B .(1)若12a =,求集合()UA B ;(2)若A B ⊆,求实数a 的取值范围.答案:(1)934xx ⎧⎫≤<⎨⎬⎩⎭;(2)(][]1]1,2-∞-⋃,. 解析:(1)根据不等式求出集合A ,求出函数的定义域B ,即可求解补集和交集; (2)根据集合的包含关系比较端点的大小列不等式求解即可. 详解:(1)集合{}|23A x x =<<,因为12a =.所以函数()2924lglg12x x a y a xx --+==--,由94012x x->-,可得集合1924B x x ⎧⎫=<<⎨⎬⎩⎭.{1|2UB x x =≤或94x ⎫≥⎬⎭,故()934U A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭. (2)因为A B ⊆,由{}23A x x =<<,而集合B 应满足()220x a a x-+>-,因为22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,故{}22B x a x a =<<+,依题意:2223a a ≤⎧⎨+≥⎩,即1a ≤-或12a ≤≤, 所以实数a 的取值范围是(][]1]1,2-∞-⋃,. 点睛:此题考查集合的基本运算,根据集合的包含关系求解参数的取值范围,在第二问需要考虑解集端点的大小关系.5.下列集合间是否有包含关系? (1){}1,2,3A =,{}1,2,3,4B =,{}2,3,4C = (2)N ,Z ,Q ,R(3){}13A x x =<≤,{}|14B x x =≤≤答案:(1)A B ⊆,C B ⊆,A 与C 无包含关系(2)N Z Q R ⊆⊆⊆(3)A B ⊆解析:(1)由题意可知,集合A 中的元素都属于集合B ,集合C 中的元素都属于集合B ,1C ∉,4A ∉,根据包含关系的定义,求解即可.(2)由题意可知,N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,根据包含关系的定义,求解即可.(3)由题意可知,集合A 中的元素都属于集合B .根据包含关系的定义,求解即可. 详解:(1)因为集合A 中的元素都属于集合B ,集合C 中的元素都属于集合B ,1C ∉,4A ∉,所以A B ⊆,C B ⊆,A 与C 无包含关系.(2)因为N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,所以N Z Q R ⊆⊆⊆. (3)因为A={}|13x x <≤,B={}|14x x ≤≤,所以集合A 中的元素都属于集合B ,则A B ⊆. 点睛:本题考查集合之间的关系,属于较易题.。
1.2 集合间的基本关系一、单选题1.已知集合2{|40}A x x =-=,则下列关系式表示正确的是( )A .A ∅∈B .{2}A -=C .2A ∈D .{2,2}- ≠⊂A 2.下列命题为真命题的是( )A .若AB =∅,则,A B 至少有一个为空集B .若集合{(,)|1}A x y y x ==-+,2{(,)|1}B x y y x ==--,则{}2,1A B ⋂=-C .任何集合必有一个真子集D .若2{|}P y y x ==,2{|}Q x y x ==,则P Q ⊆3.下列关系式,其中错误的是( )A .{}0∅⊆B .{}∅⊆∅C .{}∅∈∅D .{}0∈∅4.设{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则实数a 的取值范围是A .{}|2a a ≥B .{}|2a a >C .{}|1a a ≥D .{}|1a a ≤ 5.能正确表示集合{|02}M x R x =∈≤≤和集合2{|0}N x R x x =∈+=的关系的韦恩图的是( )A .B .C .D . 6.已知集合{}2560A xx x =-+=∣,{}06,B x x x N =<<∈∣,则满足A C B ⊆⊆的集合C 的个数为( )A .4B .8C .7D .167.已知集合{}0,2,3A =,{},,B x x a b a b A ==⋅∈,则B 的子集的个数是( )A .10B .12C .14D .168.设集合{}210A xx =-=∣,则( ) A .A ∅∈B .1A ∈C .{1}A -∈D .{1,1}A -∈ 9.集合{|04}A x N x =∈<<的真子集个数为( ) A .3B .4C .7D .8 10.满足1}⊆X1,2,3,4}的集合X 有( )A .4个B .5个C .6个D .7个 二、填空题 1.设{}12A x x =<<,{}B x x a =<,若A B ,则实数a 的取值范围是__________.2.若集合{}{}0,1,1,A B a ==,则A B =时,a =___________.3.设{}1,2,3,4A =,{}1,2B =,请写出一个满足B C A 的集合C =________.4.满足{}1234,,,A a a a a ∅⊂⊆的集合A 有__________个.5.若集合{}3,4,7,8,10,12,21A =,{}1,3,8,12,20,29B =,则A B 子集的个数为_____.三、解答题1.设,,,,求实数.2.(1)已知集合M 满足1,2}⊆M ⊆1,2,3,4,5},写出集合M 所有可能情况.(2)已知非空集合M ⊆1,2,3,4,5},且当a∈M 时,有6-a∈M,试求M 所有可能的结果.3.已知集合{}265A x y x x =+-,{}(2)()0B x x m x m =-+≤. (1)若2m =,求A B ;(2)若0m >,A B ⊆,求m 的取值范围.4.函数()2f x x=-的定义域为A ,关于x 的不等式22(23)30x a x a a -+++≤的解集为B . (Ⅰ)求集合A ;(Ⅱ)若A B A =,试求实数a 的取值范围.5.已知p :28200x x --≤,q :()()()1100x m x m m ⎡⎤⎡⎤---+≤>⎣⎦⎣⎦,若非p 是非q 的必要不充分条件,求实数m 的取值范围.参考答案一、单选题1.C解析:利用元素与集合、集合与集合间的关系,即可得出答案.详解:2{|40}{2,2}A x x =-==-,故选:C点睛:本题考查元素与集合、集合与集合间的关系,属于基础题.2.D解析:通过反例可排除A ;根据点集和数集的区别可排除B ;由∅没有真子集可排除C ;分别求解出集合,P Q ,可得到两集合的包含关系,知D 正确.详解:A 中,若集合{}0A x x =<,{}1B x x =>,则A B =∅,可知A 错误;B 中,集合,A B 均为点集,则交集结果应为点集,不应是数集,B 错误;C 中,∅没有真子集,C 错误;D 中,集合[)0,P =+∞,Q R =,则P Q ⊆,D 正确.故选:D点睛:本题考查集合相关命题的辨析,涉及到交集的定义、点集和数集的区别、集合间的包含和真包含关系的判断等知识.3.D解析:根据元素与集合,集合与集合的关系判断.详解:解:∅是任何集合的子集,故A ,B 正确;集合{}∅是含有一个元素∅的集合,故{}∅∈∅,即C 正确;{}0∉∅故D 错误.故选:D点睛:本题考查元素与集合、集合与集合的关系,属于基础题.4.A解析:根据集合的包含关系,列不等关系,解不等式即可.详解:由题:(,)B a =-∞,A B ⊆,则2a ≥.故选:A点睛:此题考查通过集合的包含关系求参数范围,可以结合数轴分析点的位置关系,列出不等式,注意子集的关系讨论端点是否可取.5.A解析:求出集合N 的元素,即可得到两集合的关系,再用韦恩图表示出来.详解: 解:集合{}2{|0}0,1N x R x x =∈+==-,集合{|02}M x R x =∈≤≤,{}0M N ∴=且互不包含,故选:A .点睛:本题主要考查了韦恩图表达集合的关系,是基础题.6.B解析:先分别用列举法表示出,A B ,然后根据A C B ⊆⊆确定出C 中一定有的元素和可能有的元素,从而求解出满足的C 的个数.详解:因为2560x x -+=的解为2x =或3x =,所以{}2,3A =;又因为{}1,2,3,4,5B =,且A C B ⊆⊆,所以C 中一定含有元素2,3,可能含有元素1,4,5, 所以C 的个数即为集合{}1,4,5的子集个数:328=,故选:B.点睛:本题考查根据集合的子集关系求解符合条件的集合个数,解答问题的关键是确定出集合中一定包含的元素和可能包含的元素,难度一般.7.D解析:写出集合B ,确定集合B 中元素个数,利用子集个数公式可求得结果.详解:已知集合{}0,2,3A =,{}{},,0,4,6,9B x x a b a b A ==⋅∈=,因此,B 的子集的个数4216=.故选:D.点睛:本题考查集合子集个数的求解,解题的关键就是确定集合元素的个数,考查计算能力,属于基础题.8.B解析:根据属于的定义,结合子集的定义,进行判断即可详解:集合{1,1}A =-,则A ∅⊆,选项A 错误,1A ∈,选项B 正确;{1}A -⊆,{1,1}A -=,选项C ,D 错误.故选:B9.C解析:{}1,2,3A =,集合有3个元素,所以集合的真子集个数为3217-=,故填:C.10.D解析:根据子集和真子集的概念可知,集合X 中必含有元素1,且最多含有3个元素,对集合X 中元素个数分类,即可列举出满足题意的集合X ,从而求出个数.详解:由题意可以确定集合X 中必含有元素1,且最多含有3个元素,因此集合X 可以是1},1,2},1,3},1,4},1,2,3},1,2,4},1,3,4},共7个.故选:D .点睛:本题主要考查集合子集和真子集的概念理解,属于基础题.二、填空题1.[)2,+∞解析:根据真子集的概念,得到a 与2的相对关系,即可求解.详解: 因为{}12A x x =<<,{}B x x a =<,且A B ,所以2a ≥,故a 的取值范围是[)2,+∞.点睛:本题主要考查了集合真子集的概念,属于容易题.2.0解析:由集合相等的定义得出结论.详解:因为A B =,所以0a =.故答案为:0.3.{}1,2,3或者{}1,2,4.解析:B C A ⊂⊂,即集合C 是集合A 的真子集,同时集合B 是集合C 的真子集,所以集合C 包含集合B 中的所有元素,写出即可.详解:解:{}1,2,3,4A =,{}1,2B =,B C A ,所以集合C 是集合A 的真子集,且必须包含元素1,2,所以集合C 可以为{}1,2,3或{}1,2,4.故答案为:{}1,2,3或者{}1,2,4.点睛:方法点睛:(1)集合C 中包含集合B 中的所有元素;(2)集合A 中找包含集合B 的所有子集,最后剔除掉集合A 即可.4.15解析:由题意可知集合A 是集合{}1234,,,a a a a 的非空子集,从而可求得集合A 的个数 详解:解:因为{}1234,,,A a a a a ∅⊂⊆,所以集合A 是集合{}1234,,,a a a a 的非空子集,所以集合A 的个数为42115-=,故答案为:155.8解析:{}3,8,12A B =,所以A B 子集的个数为328=个。
高中数学 1.1.2集合间的基本关系同步测试(含解析,含尖子生题库)新人教A版必修1(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的有()A.0个B.1个C.2个D.3个解析:①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.答案: B2.已知集合A={2,-1},集合B={m2-m,-1},且A=B,则实数m等于() A.2 B.-1C.2或-1 D.4解析:∵A=B,∴m2-m=2,∴m=2或m=-1.答案: C3.已知全集U=R,则正确表示集合U,M={-1,0,1},N={x|x2+x=0}之间关系的Venn图是()解析:由N={x|x2+x=0},得N={-1,0},则N M U.答案: B4.下列集合中,结果是空集的为()A.{x∈R|x2-4=0} B.{x|x>9或x<3}C.{(x,y)|x2+y2=0} D.{x|x>9且x<3}解析:{x∈R|x2-4=0}={2,-2},{(x,y)|x2+y2=0}={(0,0)},显然{x|x>9或x<3}不是空集,{x|x>9且x<3}是空集,选D.答案: D二、填空题(每小题5分,共10分)5.设集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围为________.解析:在数轴上表示出两个集合(图略),因为A B,所以a≥2.答案:a≥26.已知∅{x|x2-x+a=0},则实数a的取值范围是________.解析:∵∅{x|x2-x+a=0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14. 答案: a ≤14三、解答题(每小题10分,共20分)7.已知{1}A ⊆{1,2,3},求满足条件的所有的集合A .解析: 当A 中含有两个元素时,A ={1,2}或A ={1,3};当A 中含有三个元素时,A ={1,2,3}.所以满足已知条件的集合A 是{1,2},{1,3},{1,2,3}.8.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析: 假设存在实数x ,使B ⊆A , 则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1.(2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2.①当x =-1时,A ={1,3,1},与元素互异性矛盾,故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A .综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A .尖子生题库☆☆☆9.(10分)设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}.(1)若A B ,求实数a 的取值范围;(2)是否存在实数a 使B ⊆A?解析: (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3或⎩⎪⎨⎪⎧ a -2≥-2,a +2<3.解得:0≤a ≤1. (2)同理可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3, 得a 无解,所以不存在实数a 使B ⊆A .。
1.2 集合间的基本关系一、单选题1.若集合1|,3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭,|,3n B x x n Z ⎧⎫==∈⎨⎬⎩⎭,则A ,B 的关系是( ) A .A B B .B A C .B A ⊆ D .A B =答案:A解析:弄清楚集合A ,B 的研究对象,由此得到集合A ,B 之间的包含关系. 详解: 由13133n x n +=+=,n Z ∈, 所以集合A 表示由31n +除以3的数组成的集合. 集合B 表示整数n 除以3的数组成的结合. 所以A B 故选:A 点睛:本题考查集合的基本运算,考查判断两个集合间的关系,属于中档题.2.已知集合{}2135A x a x a =+≤≤-,{}322B x x =≤≤,则能使()A A B ⊆成立的a 的取值集合为( ) A .[]6,9 B .(],9-∞C .(),9-∞D .()6,9答案:B解析:根据()A A B ⊆,得到A B ⊆,然后分A =∅和A ≠∅两种情况讨论求解. 详解:()A A B ⊆,A B ∴⊆,又{}2135A x a x a =+≤≤-, 当A =∅时,2135a a +>-,6a ∴<,当A ≠∅,21352133522a a a a +≤-⎧⎪∴+≥⎨⎪-≤⎩,69a ∴≤≤,a ∴的取值集合为{}9x x ≤,故选:B.3.已知集合M=x|x 2-3x+2=0},N=0,1,2},则下列关系正确的是( ) A .M=N B .M ∈N C .N ⊆MD .N ⊇M答案:D解析:化简集合M ,结合选项逐一排除可得答案. 详解:集合M=x|x 2-3x+2=0}{}1,2=,N=0,1,2},则N ⊇M 故选:D 点睛:本题考查集合间的关系,考查学生计算能力,属于基础题.4.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是 A .11 B .12 C .15 D .16答案:A解析:可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 详解:由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 点睛:本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.5.已知集合111|,|,(,)|A x y B y x C x y y x y x ⎧⎫⎧⎫⎧⎫======⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,则下列结论正确的是( )A .AB = B .AC = C .B C =D .A B C ==答案:A解析:分别求得集合{}{}|0,|0A x x B y y ≠=≠及集合C 表示点集,即可求解. 详解:由题意,集合11{|}{|0},{|}{|0}A x y x x B y x y y x y ===≠===≠,集合1(,)|C x y y x ⎧⎫==⎨⎬⎩⎭表示曲线1y x =的点作为元素构成的一个点集, 所以A B =. 故选:A.6.集合{1A x x =<-或}1x ≥,{}20B x ax =+≤,若B A ⊆,则实数a 的取值范围是( )A .[]22-,B .[)2,2-C .()[),22,-∞-+∞D .[)()2,00,2-答案:B解析:分B =∅与B ≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可; 详解: 解:∵B A ⊆,∴①当B =∅时,即20ax +≤无解,此时0a =,满足题意. ②当B ≠∅时,即20ax +≤有解,当0a >时,可得2x a≤-,要使B A ⊆,则需要021a a>⎧⎪⎨-<-⎪⎩,解得02a <<.当0a <时,可得2x a ≥-,要使B A ⊆,则需要021a a<⎧⎪⎨-≥⎪⎩,解得20a -≤<,综上,实数a 的取值范围是[)2,2-. 故选:B.7.已知集合A ⊆0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为 A .6 B .5C .4D .3答案:A 详解:试题分析:根据已知中集合A 满足A ⊆0,1,2},且集合A 中至少含有一个偶数,逐一列举出满足条件的集合A ,可得答案.解:∵集合A ⊆0,1,2},且集合A 中至少含有一个偶数, ∴满足条件的集合A 可以为:0},2},0,1},1,2},0,2},0,1,2},共6个, 故选A .考点:子集与真子集.8.集合x,y}的子集个数是A .1B .2C .3D .4答案:D解析:根据集合子集的定义,即可得到子集个数. 详解:集合{},x y 的子集有{}{}{},x y x y ,,,∅,共有4个 故选D 点睛:本题主要考查了集合的子集个数问题,当集合内有n 个元素时子集个数为2n 个 9.A .B .C .D .答案:A 详解: 略10.适合条件{}{}11,2,3,4,5A ≠⊆⊂的集合A 的个数是 A .15 B .16 C .31 D .32答案:A解析:{2,3,4,5}的所有真子集加入元素1即为集合A . 详解:由题意集合A 就是集合{2,3,4,5}的所有真子集加入元素1,因此其个数为42115-=. 故选A . 点睛:本题考查集合的包含关系,考查子集的个数.属于基础题. 二、填空题1.若集合{}2|320A x ax x =-+=的子集只有两个,则实数a =___________.答案:0或98解析:用描述法表示的集合元素个数问题,用到一元方程解的个数,用判别式与零的关系,当方程有一个解时,判别式等于零. 详解:因为集合{}2|320A x ax x =-+=的子集只有两个,所以A 中只含有一个元素.当0a =时,2{}3A =;当0a ≠时,若集合A 只有一个元素,由一元二次方程判别式980a ∆=-=得98a =. 综上,当0a =或98a =时,集合A 只有一个元素.故答案为0或98. 点睛:解题时容易漏掉0a ≠的情况,当方程,不等式,函数最高次项系数带有参数时,要根据情况进行讨论.2.集合{},,A a b c =的子集的个数是________个 答案:8. 详解:试题分析:根据集合子集个数的计算公式得:集合A 的子集个数为328=个. 故答案为8.考点:集合子集个数的计算公式.3.集合,,1b M a a ⎧⎫=⎨⎬⎩⎭,集合{}2,,0N a a b =+,且M=N ,则20192020a b +=_______答案:1-解析:由2{,,1}{,,0}b a a a b a =+,即可得出201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,再根据集合元素的互异性即可得出1a =-,0b =,从而求出答案.详解:2{,,1}{,,0}ba a ab a=+,201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩, 当1a =时,不满足集合元素的互异性,1a ∴=-,0b =,2019202020192020(1)01a b ∴+=-+=-.故答案为:1-.4.已知集合{}2,3A =,{}|60B x mx =-=,若B A ⊆,则实数m 的值为______.答案:0,2或3解析:按B =∅,B ≠∅分类。
1.1.2 集合间的基本关系A级:基础巩固练一、选择题1.下列关系式不正确的是( )A.{1}⊆{1,2} B.{0}⊆{1,2}C.{2}⊆{1,2} D.1∈{1,2}答案 B解析∵0∉{1,2},∴{0}⊆{1,2}不正确;根据子集的概念可知A,C正确;D显然正确.2.下列四个集合中,是空集的是( )A.{0} B.{x|x>8且x<5}C.{x∈N|x2-1=0} D.{x|x>4}答案 B解析选项A,C,D都含有元素,而选项B中无元素,故选B.3.设集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围为( )A.{a|a≥2} B.{a|a≤1}C.{a|a≥1} D.{a|a≤2}答案 A解析在数轴上表示出两个集合(图略),因为A B,所以a≥2.4.若集合A满足A⊆B,A⊆C,B={0,1,2,3},C={0,2,4,8},则满足上述条件的集合A的个数为( )A.0 B.1 C.2 D.4答案 D解析∵A⊆B,A⊆C,∴A中最多能含有0,2两个元素,∴A=∅,{0},{2},{0,2}共4个.5.若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =m +16,m ∈Z,N ={x |x =n 2-13,n ∈Z },P =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫p 2+16,p ∈Z ,则M ,N ,P 的关系是( )A .M =N PB .M N =PC .M N PD .N PM答案 B解析 M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =6m +16,m ∈Z .N ={x |x =3n -26,n ∈Z }=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =3q +16,q ∈Z (n∈Z ,q =n -1∈Z ),P ={x |x =3p +16,p ∈Z }.∴M N =P .二、填空题6.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A ,则满足上述要求的集合A 的个数为_______.答案 3解析 由题意知,满足题中要求的集合A 可以是{1,4},{2,3},{1,2,3,4},共3个. 7.已知集合:①{0};②{∅};③{x |3m <x <m };④{x |a +2<x <a };⑤{x |x 2+1=0,x ∈R }.其中,表示空集的是________(只填序号).答案 ④⑤解析 ①和②是常见的空集的错误表示法;对于③,当m <0时,显然3m <m 成立,故不是空集;对于④,不论a 为何实数,总有a +2>a ,故是空集;对于⑤,在实数范围内找不到一个数的平方等于-1,故为空集.因此,应填④⑤.8.定义集合A *B ={x |x ∈A 且x ∉B },若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集个数是______.答案 4解析 在A *B 中,x ∈A , ∴x 可能取1,2,3,4,5. 又x ∉B ,∴x 又不能取2,4,5. 因此x 可能取值只有1和3, ∴A *B ={1,3},其子集个数为4. 三、解答题9.已知集合M ={x |x 2+2x -a =0}. (1)若∅M ,求实数a 的取值范围;(2)若N ={x |x 2+x =0}且M ⊆N ,求实数a 的取值范围.解 (1)由题意得,方程x 2+2x -a =0有实数解, ∴Δ=22-4×(-a )≥0,得a ≥-1. (2)∵N ={x |x 2+x =0}={0,-1}, 又M ⊆N ,当M =∅时,即Δ=22-4(-a )<0得a <-1, 当M ≠∅时,当Δ=0时,即a =-1时, 此时M ={-1},满足M ⊆N ,符合题意. 当Δ>0时,即a >-1时,M 中有两个元素,若M ⊆N 则M =N ,从而⎩⎪⎨⎪⎧-1+0=-2,-1×0=a 无解.综上,a 的取值范围为{a |a ≤-1}.B 级:能力提升练10.已知三个集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +(a -1)=0},C ={x |x 2-bx +2=0},同时满足B A ,C ⊆A 的实数a ,b 是否存在?若存在,求出a ,b 的所有值;若不存在,请说明理由.解 A ={x |x 2-3x +2=0}={1,2},∵x 2-ax +(a -1)=0,Δ=a 2-4(a -1)=(a -2)2≥0,∴B ≠∅.∵B ={x |x 2-ax +(a -1)=0}={x |(x -1)[x -(a -1)]=0}, ∴1∈B .又B A ,∴a -1=1,即a =2. ∵C ={x |x 2-bx +2=0},且C ⊆A , ∴C =∅或{1}或{2}或{1,2}. 当C ={1,2}时,b =3;当C ={1}或{2}时,Δ=b 2-8=0,即b =±22,此时x =±2(舍去); 当C =∅时,Δ=b 2-8<0,即-22<b <2 2.综上可知,存在a =2,b =3或-22<b <22满足要求.。
1.2 集合间的基本关系一、单选题1.若{}{}41,,21,A x x k k Z B x x k k Z ==+∈==-∈,则( ) A .A B ⊆ B .B A ⊆ C .A B = D .A B φ⋂=答案:A解析:分析集合B 元素特征,即可求出结果 详解:{}{}21,4143,B x x k k Z x x k x k k Z ==-∈==+=+∈或,A B ∴⊆.故选:A 点睛:本题考查集合间的关系,属于基础题.2.已知集合A=1,a ,b},B=a 2,a ,ab},若A=B ,则a 2021+b 2020=( ) A .-1 B .0 C .1 D .2答案:A解析:根据A=B ,可得两集合元素全部相等,分别求得21a =和ab=1两种情况下,a ,b 的取值,分析讨论,即可得答案. 详解: 因为A=B ,若21a =,解得1a =±,当1a =时,不满足互异性,舍去,当1a =-时,A=1,-1,b},B=1,-1,-b},因为A=B , 所以b b =-,解得0b =, 所以202120201a b +=-; 若ab=1,则1b a=, 所以21{1,,},{,,1}A a B a a a==,若2a a =,解得0a =或1,都不满足题意,舍去,若21a a=,解得1a =,不满足互异性,舍去, 故选:A 点睛:本题考查两集合相等的概念,在集合相等问题中由一个条件求出参数后需进行代入检验,检验是否满足互异性、题设条件等,属基础题.3.已知集合{{},1,,A B m B A ==⊆,则m =( ) A .0或3 B .0或1 C .1 D .3答案:A解析:由题意可得3m =或m =3m =时,代入两集合检验是否满足B A ⊆,再由m =求出m 的值,代入两集合检验是否满足B A ⊆,还要注意集中元素的互异性 详解:因为B A ⊆,所以3m =或m =①若3m =,则{{},1,3A B ==,满足B A ⊆;②若m =,则0m =或1m =.当0m =时,{}{}1,3,0,1,0A B ==,满足B A ⊆;当1m =1,集合,A B 不满足元素的互异性,舍去. 综上,0m =或3m =, 故选:A .4.已知a ,b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .1-B .0C .1D .1-或0答案:A解析:根据集合相等则元素相同,再结合互异性,计算即可得解. 详解:由0,,1b a a ⎧⎫∈⎨⎬⎩⎭ 且0a ≠,则0b a=, ∴0b =,于是21a =,解得1a =或1a =-. 根据集合中元素的互异性可知1a =应舍去, 因此1a =-, 故()2021202120212021101a b +=-+=-.故选:A.5.设集合{}1,1M =-,{}240N x x =-<,则下列结论正确的是A .N M ⊆B .N M =∅C .M N ⊆D .M N =R答案:C 详解:集合{}1,1M =-,{}240{|22}N x x x x =-<=-<<,1,1N -∈,所以M N ⊆.故选C.6.若集合{}|1A x x =≤,则满足A B A ⋃=的集合B 可以是( ) A .{}|0x x ≤ B .{}2|x x ≤ C .{}|0x x ≥ D .{}|2x x ≥答案:A解析:由已知可得B A ⊆,即可得出结论. 详解:若A B A ⋃=,则B A ⊆,又{}0|x x ≤⊆{}|1x x A ≤=. 故选:A. 点睛:本题考查集合间的关系,属于基础题.7.设集合{21,},{2,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,则( ) A .M N B .M N ⊆ C .N M ⊆ D .M N ⋂=∅答案:B解析:先判断出M 为奇数集,N 为整数集,从而可判断两者之间的关系. 详解:∵集合{21,}M xx k k Z ==+∈∣,故M 为奇数集. 而{2,}N xx k k Z ==+∈∣,故N 为整数集, ∴M N ⊆. 故选:B. 点睛:本题考查集合的包含关系,一般根据集合元素的特征确定出两个集合的包含关系,本题属于基础题.8.下列写法中正确的是( )A .0φ∈B .{}0φφ=C .0φ⊆D .{}0φ⊆答案:D解析:根据空集的定义及集合间关系,即可判断选项. 详解:空集是不含任何元素的集合,所以A 选项错误;并集、包含符号用于集合与集合之间,所以B 和C 选项错误. 由集合的包含关系可知,D 为正确选项. 故选:D 点睛:本题考查了空集概念的辨析,元素与集合、集合与集合关系的判断,属于基础题. 9.若集合P 是集合Q 的子集,则下列结论中正确的是 A .Q P ⊆ B .P Q =∅ C .P Q P = D .P Q P =答案:D解析:根据集合与集合间的关系逐项运算. 详解:解:若集合P 是集合Q 的子集, 则P Q ⊆,A 选项错误;P Q P =, B 选项错误; P Q Q ⋃=,C 选项错误;故选D . 点睛:本题考查了集合与集合的关系,以及集合间的交并运算,是基础题.10.设集合{}10,},{1,0,1A x R mx m R B =∈-=∈=-,若A 是B 的真子集,则实数m 的取值集合为. A .{1,0,1}- B .{1,1}-C .{}1-D .{1}答案:A解析:由A 是B 的真子集,分为A =∅和A ≠∅两种情况进行分类讨论,进一步确定m 取值 详解:A 是B 的真子集,可分为A =∅和A ≠∅两种情况 若0m =时,A =∅,符合题意;若0m ≠时,A ≠∅,若{}1A =,则满足10m -=,1m =;若{}1A =-,则满足10m --=,1m =- 综上所述,实数m 的取值集合为{1,0,1}-故选A 点睛:本题考查由包含关系求解参数问题,易错点为忽略集合A =∅的情况,属于基础题 二、填空题1.已知{|2},{|},A x x B x x m =<-=<若B 是A 的子集,则实数m 的取值范围为___.答案:(],2-∞-解析:根据子集的定义来确定实数m 的取值范围 详解:根据题意,B 是A 的子集,且{|2},{|}A x x B x x m =<-=< 则有:2m ≤-则实数m 的取值范围为(],2-∞- 点睛:本题主要考查了子集,只有掌握子集的定义即可求出结果,较为简单。
1.2 集合间的基本关系一、单选题1.设集合{}4A x x =≤,a = )A .a A ∉B .a A ⊆C .{}a A ⊆D .{}a A ∈答案:C4,依次判断选项即可.详解:对选项A 4<,所以a A ∈,故A 错误.对选项B ,⊆用于集合与集合之间,故B 错误.对选项C4<,所以{}a A ⊆,故C 正确.对选项D ,∈用于元素与集合之间,故D 错误.故选:C点睛:本题主要考查集合间的包含关系,同时考查了元素与集合的关系,属于简单题.2.设集合{|,}24k M x x k ππ==+∈Z ,{|,}42k N x x k ππ==+∈Z ,则( ) A .M N B .M N ⊆ C .M N ⊇ D .M N ⋂=∅答案:C解析:从元素满足的公共属性的结构入手,对集合M 中的k 分奇数和偶数讨论,从而可得两集合的关系.详解:对于集合M ,当2()k m m =∈Z 时,,4222k m x m Z ππππ=+=+∈ 当21()k m m Z =-∈时,,4224k m x m Z ππππ=+=+∈ ∴{|,}{|,}2224m m M x x m Z x x m Z ππππ==+∈⋃=+∈ {|24k N x x ππ==+,}k Z ∈,M N ∴⊇,故选:C .点睛:本题的考点是集合的包含关系判断及应用,解题的关键是对集合M 中的k 分奇数和偶数讨论,属于基础题.3.集合{}2,3,5,7A =的子集个数为( )A .16B .15C .14D .8答案:A解析:根据集合中若有n 个元素,则其子集个数为2n 求解.详解:集合{}2,3,5,7A =的子集个数为:4216=.故选:A点睛:本题主要考查集合的子集,属于基础题.4.下列各式:①{}10,1,2∈;②{}0,1,2∅⊆;③{}{}10,1,2∈;④{}{}0,1,22,0,1=,其中错误的个数是( )A .1个B .2个C .3个D .4个答案:A解析:根据集合与集合的关系,元素与集合的关系即可求解.详解:由元素与集合的关系可知{}10,1,2∈正确,{}{}10,1,2∈不正确,由集合之间的关系知{}0,1,2∅⊆正确,由集合中元素的无序性知{}{}0,1,22,0,1=正确,故错误的个数为1,故选:A点睛:本题主要考查了元素与集合的关系,集合的子集,集合的相等,属于容易题.5.若{}{}41,,21,A x x k k Z B x x k k Z ==+∈==-∈,则( )A .AB ⊆B .B A ⊆C .A B =D .A B φ⋂=答案:A解析:分析集合B 元素特征,即可求出结果详解:{}{}21,4143,B x x k k Z x x k x k k Z ==-∈==+=+∈或,A B ∴⊆.故选:A点睛:本题考查集合间的关系,属于基础题.6.已知{}12019A x x =<<,{}B x x a =≤,若A B ,则实数a 的取值范围为( )A .2019a ≥B .2019a >C .1a ≥D .1a >答案:A解析:根据A B 可得出实数a 的取值范围.详解:{}12019A x x =<<,{}B x x a =≤,且A B ,所以,2019a ∴≥. 故选:A.点睛:本题考查利用集合包含关系求参数,考查计算能力,属于基础题.7.集合{}210A x x =-=的子集个数是( )A .1B .2C .3D .4答案:D 解析:先求得集合A ,根据元素的个数,即可求得子集的个数,即可得答案.详解:由21x =,解得1x =±,所以集合{1,1}A =-,含有2个元素所以集合A 的子集个数为224=.故选:D8.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( ) A .-3B .-2C .3D .-2或3答案:C 解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件.详解:因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去;若26a a +=,则3a =或-2,因为2a ≠-,所以3a =.故选C.点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.9.设集合11{|,},{|,}3663k k M x x k Z N x x k Z ==+∈==+∈,则M 、N 的关系为A .B .C .D .答案:A详解:因为集合M 中216k x +=,集合N 中26k x +=,因为k 属于整数,那么可分母中的结合的关系,因此可知M N ⊆,选A .10.在下列选项中,能正确表示集合{2,0,2}M =-和2{|20}N x x x =+=的关系的是( )A .MN B .N M C .M N ⊆ D .M N ⋂=∅答案:B解析:解一元二次方程220x x +=,可得N ,进而可得,M N 的关系.详解:解:由220x x +=得0x =或2x =-,所以{2,0}N =-,又{2,0,2}M =-,所以N M .故选B .点睛:本题考查了集合包含关系的判断及应用,属基础题.二、填空题1.用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -⎧*=⎨-<⎩若{}()(){}221,2,20A B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =_______.答案:3解析:由新定义1A B *=得集合B 可以是单元素集合,也可以是三元素集合,把问题转化为讨论方程2220x ax x ax 根的个数,即等价于研究两个方程20x ax 、220x ax ++=根的个数.详解:2220x ax x ax 等价于20x ax ①或220x ax ++=②.由{}1,2A =,且*1A B =,得集合B 可以是单元素集合,也可以是三元素集合.若集合B 是单元素集合,则方程①有两相等实根,②无实数根,可得0a =;若集合B 是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即2080a a ≠⎧⎨∆=-=⎩,解得a =±综上所述,0a =或a =±3C S.点睛: 本题以A B *这一新定义为背景,考查集合B 中元素个数问题,考查分类讨论思想的运用,对逻辑思维能力要求较高.2.已知集合|||2{}A x x ==,1{}|B x mx =-=,若B ⊆A ,则m 值的集合为___________.答案:-12,0,12}解析:先求出集合A ,再由B ⊆A ,分B =∅和B ≠∅两种情况进行讨论即可得出结果. 详解:由{}||{}2,2|2A x x ==-=, 又B ⊆A ,1{}|B x mx =-=,①当B =∅时,0m =,②当B ≠∅时,{}2B =-或{}2B =,当{}2B =-时,12m =;当{}2B =时,12m =-;所以m 值的集合为-12,0,12}.故答案为:-12,0,12}.点睛:本题主要考查了利用集合间的包含关系求参数的问题.属于较易题.3.已知集合{1,21,3}A x =-,{}23,B x =若B A ⊆,则求实数x 的值________.答案:1-解析:利用集合的包含关系使221x x =-或1,解方程求出x 即可.详解:由集合{1,21,3}A x =-,{}23,B x =,B A ⊆, 则221x x =-或1,当221x x =-时,解得1x =,此时集合A 出现重复元素1,不满足元素的互异性,故1x =(舍去);当21x =时,1x =±,1x =(舍去),即1x =-,满足题意;故1x =-.故答案为:1-点睛:本题主要考查由集合的包含关系求参数值,属于基础题.4.已知集合若,则实数的取值范围是,其中____.答案:4详解: 试题分析:因,要使,只需,故 考点:集合运算5.用符号“”把数集Q 、R 、*N 、N 、Z 的关系表示出来:______.答案:*Z NN Q R 解析:本题需要分清每个字母表示的集合,然后把每个集合之间的关系排列出来即可. 详解:*N (正整数集)N (非负整数集)Z (整数集)Q (有理数集)R (实数集) 故答案为:*Z NN Q R点睛: 本题考查字母表示的数集,以及数集之间的关系.三、解答题1.已知集合A =x|x 2-5x -6=0},B =x|mx +1=0},若B ⊆A ,求实数m 组成的集合.答案:16-,0,1}.解析:由B 是A 的子集,得B =∅或B =-1}或B =6},依次求解即可.详解:∵A=x|x 2-5x -6}=-1,6},B =x|mx +1=0},又B ⊆A ,∴B=∅或B =-1}或B =6}.当B =∅时,m =0;当B =-1}时,m =1;当B =6}时,m =-16 .∴实数m 组成的集合为16-,0,1}.点睛:本题主要考查根据集合的包含关系求参,忽视了空集是本题的易错点,属于基础题.2.设集合{}12,A x a x a a =-<<∈R ,不等式 2280x x --<的解集为B .(1)当0a =时,求集合A ,B .(2)当A B ⊆时,求实数a 的取值范围.答案:(1){}10A x x =-<<,{}24B x x =-<<;(2)}{2a a ≤.解析:(1)0a =代入即可求得A ,解一元二次不等式2280x x --<得B ;(2)注意讨论A =∅与A ≠∅的两种情况,最后求解并集即可.详解:(1)解:当0a =时,{}10A x x =-<<,解不等式2280x x --<得:24x -<<,即{}24B x x =-<<.(2)解:若A B ⊆,则有:①A =∅,即21a a ≤-,即1a ≤-,符合题意,②A ≠∅,有211224a a a a >-⎧⎪-≥-⎨⎪≤⎩,解得:12a -<≤. 综合①②得:}{2a a ≤.3.已知集合{}220A x x x a =+-=.(1)若∅是A 的真子集,求a 的范围;(2)若{}20B x x x =+=,且A 是B 的子集,求实数a 的取值范围.答案:(1)1a ≥-;(2)1a ≤-.解析:(1)根据∅是A 的真子集可得0∆≥得解;(2)由A 是B 的子集对集合A 进行讨论可求解.详解:(1)∵若∅是A 的真子集 ∴{}220A x x x a =+-=≠∅,∴440a ,∴1a ≥-;(2){}{}200,1B x x x =+==-,∵A B ⊆,∴A =∅,{}0,{}1-,{}0,1-,A =∅,则440a ∆=+<,∴1a <-;A 是单元素集合,440a ∆=+=,∴1a =-此时{}1A =-,符合题意;{}0,1A =-,0112-=-≠-不符合.综上,1a ≤-.点睛:本题考查了集合的基本运算,分类讨论集合的包含关系求参数,属于基础题.4.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q ∧为真,求a 的取值范围.答案:(1)0m ≥;(2)∅.解析:(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围.详解:解:由题意得,集合[]1,2A =,{}|1B x x m =≥-,(1)∵A B ⊆,∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真,命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数,则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅. 所以a 的取值范围为∅.点睛:本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.5.已知集合203x A x x ⎧⎫-=≥⎨⎬+⎩⎭,{}2|230B x x x =--<,{}2|(21)(1)0C x x a x a a =-+++<. (1)求集合A ,B 及A B .(2)若()C A B ⊆⋂,求实数a 的取值范围.答案:(1)见解析;(2)[1,1]-.解析:(1)解不等式得到集合A ,B 及A B ⋃.(2)先求{}|12A B x x ⋂=-<≤,再根据()C A B ⊆⋂得到112a a ≥-⎧⎨+≤⎩,即得实数a 的取值范围. 详解:(1)∵203x x-≥+, ∴()()230x x -+≥且3x ≠-,解得:32x -<≤,故集合{}|32A x x =-<≤,∵2230x x --<,∴()()130x x +-<,解得13x -<<,故集合{}|13B x x =-<<,∴{}|33A B x x ⋃=-<<.(2)由(1)可得集合{}|32A x x =-<≤,集合{}|13B x x =-<<,{}|12A B x x ⋂=-<≤,∵()()22110x a x a a -+++<,∴()()10x a x a ⎡⎤--+<⎣⎦,解得1a x a <<+,∴集合{}|1C x a x a =<<+,∵()C A B ⊆⋂,∴112a a ≥-⎧⎨+≤⎩,解得11a -≤≤, 故实数a 的取值范围是[]1,1-.点睛:(1)本题主要考查集合的化简和运算,考查集合的关系和二次方程的根的分布,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答的关键是根据()C A B ⊆⋂得112a a ≥-⎧⎨+≤⎩.。
1.2 集合间的基本关系一、单选题1.已知集合(){}22,1,,A x y x y x Z y Z =+≤∈∈,则A 的子集个数为( )A .32B .31C .16D .5答案:A解析:利用列举法表示集合A ,可得出集合A 中的元素个数,然后利用子集个数公式可得出集合A 的子集个数. 详解:(){}()()()()(){}22,1,,0,0,1,0,0,1,1,0,0,1A x y xy x Z y Z =+≤∈∈=--,则集合A 中有5个元素,因此,集合A 的子集个数为5232=. 故选:A. 点睛:本题考查有限集子集个数的计算,解题的关键就是确定出集合的元素个数,考查计算能力,属于基础题.2.若集合{}{}1,1,0,2A B =-=,则集合{|},,C z z x y x A y B ==+∈∈的真子集的个数为( ) A .6 B .8C .3D .7答案:D解析:根据集合的元素关系确定集合的子集个数即可得选项. 详解:集合{}{},1,10,2A B ==-,则集合1,1{|},}3{C z z x y x A y B ==+∈∈=-,,集合{}113-,,中有3个元素,则其真子集有3217-=个, 故选:D. 点睛:本题主要考查集合元素个数的确定,集合的子集个数,属于基础题.3.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( )A .{}1B .C .{}1,1-D .答案:C解析:根据题意可得21m =或22m =-,解方程即可求解.详解:因为B A ⊆,所以21m =或22m =- 因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-. 故选:C.4.集合{1,2}的子集有 A .2个 B .3个C .4个D .5个答案:C 详解:集合{1,2}的子集有{}{}{},1,2,1,2φ,共4个,故选C.5.设集合,则下列关系中正确的是 ( )A .B .C .D .答案:D 详解:此题考查集合与元素间的关系 解:由于,所以.是元素不是集合用错,故A,B错;表示集合,集合和集合之间用,错;故C 错..6.给出下列四个关系式:3R ;(2)Z Q ∈;(3)0∈∅;(4){}0∅⊆,其中正确的个数是( ) A .1 B .2C .3D .4答案:B解析:对给出的四个选项分别进行分析、判断后可得结论. 详解:(1)R 3(2)Z 、Q 分别为两个集合,集合间不能用属于符号,所以错误; (3)空集中没有任何元素,所以错误; (4)空集为任何集合的子集,所以正确. 综上可得正确的个数为2. 故选B . 点睛:本题考查集合的基本概念和元素与集合、集合与集合间的关系,考查对基础知识的理解和掌握,属于基础题,解题时根据相关知识逐一判断即可. 7.下列结论正确的是( ) A .A ⊂∅≠ B .{}0∅∈C .{1,2}Z ≠⊂ D .{}{}00,1∈答案:C解析:根据集合与集合的关系,真子集的概念,对四个选项注意分析,由此得出正确结论. 详解:对于A 选项,空集是任何非空集合的真子集,但集合A 无法确定是不是空集,故A 选项错误.对于B 选项,集合与集合之间是包含关系,故B 选项错误.对于C 选项,根据真子集的概念可知,C 选项正确.对于D 选项,集合与集合之间是包含关系,故D 选项错误.综上所述,本小题选C. 点睛:本小题主要考查集合与集合的关系,考查真子集的概念,属于基础题.8.已知集合{}20log 16A x N x =∈<<,集合{}220xB x =->,则集合A B 子集个数是( )A .2B .4C .8D .16答案:B解析:先求出集合A ,集合B ,由此求出A B ,从而能求出集合A B 子集个数. 详解:∵集合{}{}20log 16{|04}1,2,3A x N x x N x =∈<<=∈<<=,集合{}{}2201xB x x x =->=,{2,3}A B ∴=.∴集合A B 子集个数是22=4. 故选:B. 点睛:本题考查交集的子集个数的求法,考查集合的交集定义等基础知识,考查运算求解能力,是基础题.9.已知集合{}220M x x x =-≥,{}2,1,0,1N =--,则M N ⋂的子集个数是( )A .1个B .3个C .4个D .8个答案:C解析:求出集合{|02}M x x =≤≤,则可得求出M N ⋂,进而可得子集个数.解:由已知{}2|20{|02}M x x x x x =≥=-≤≤,又{}2,1,0,1N =--,{0,1}M N ∴=,则M N ⋂的子集个数是224=. 故选:C. 点睛:本题考查集合交集的运算及集合子集个数的计算,是基础题.10.集合M=16x x m m ⎧⎫=+∈⎨⎬⎩⎭Z ,,N=}1-23n x x n -⎧=∈⎨⎩Z ,,P=126p x x p ⎧⎫=+∈⎨⎬⎩⎭Z ,,则M ,N ,P 之间的关系是( ) A .M=N ⫋P B .M ⫋N=P C .M ⫋N ⫋P D .N ⫋P=M 答案:B解析:通分化简,再利用集合之间的包含关系即可求解. 详解:M=616m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,,N=3-23(-1)166n n x x n Z ⎧+⎫==∈⎨⎬⎭⎩,, P=316p x x p Z ⎧⎫+=∈⎨⎬⎩⎭,. 由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数, 所以M ⫋N=P . 故选:B 点睛:本题考查了集合的包含关系,考查了基本知识掌握情况,属于基础题. 二、填空题1.设全集{1,2,3,4,5}U =,集合{1,5}A =,满足B C U A ⊆的集合B 的个数是________. 答案:8解析:求解出U C A ,根据已知可知B 为U C A 的子集,根据n 个元素的集合,子集有2n 个,可直接求解出结果.由题意知:{}2,3,4U C A =,共有3个元素U B C A ⊆,即B 为U C A 的子集,则共有328=个本题正确结果:8 点睛:本题考查集合的包含关系、补集运算,关键是明确集合子集个数的结论,直接得到结果;也可以采用列举的方式求解.2.已知集合(){}22A=,|3,,x y x y x Z y Z +≤∈∈,则集合A 真子集个数为_____(填数字)答案:511解析:列举法列出集合A 中的元素,再利用真子集个数计算公式即得解 详解: 由题意,(){}22A=,|3,,{(0,0),(0,1),(1,0),(1,1),(0,1),(1,0),(1,1),(1,1),(1,1)}x y x y x Z y Z +≤∈∈=------有9个元素,故集合A 真子集的个数为:921511-= 故答案为:511 点睛:本题考查了集合的真子集个数,考查了学生综合分析,数学运算能力,属于基础题 3.方程2280x x --=的解集为A ,方程20ax -=的解集为B ,若B A ⊆,则实数a 的取值构成的集合为________.答案:11,0,2⎧⎫-⎨⎬⎩⎭解析:由题意求出集合{2,4}A =-,0a =时,B =∅,0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,然后利用B A ⊆求出实数a 值,进而求出实数a 构成的集合. 详解:由方程2280x x --=得2x =-或4x =,所以{2,4}A =-,当0a =时,B =∅,则有B A ⊆,故0a =符合题意;当0a ≠时,由20ax -=得2x a=即得2B a ⎧⎫=⎨⎬⎩⎭,由B A ⊆可得22a =-或24a =,解得1a =-或12a =.综上可得实数a 可能的取值有0,-1,12,则由实数a 构成的集合为11,0,2⎧⎫-⎨⎬⎩⎭.故答案为:11,0,2⎧⎫-⎨⎬⎩⎭. 点睛:本题考查了集合的确定,考查了分类讨论的思想,考查了由集合的关系求参数的问题,属于一般难度的题. 4.设集合A=},B=x},且AB ,则实数k 的取值范围是_____________. 答案:}详解:试题分析:由题意,因为,所以,解得,故答案为.考点:集合的包含关系判断及应用.5.设()221x f x x =+,()()sin 5202x g x a a a π=+->,若对于任意[]10,1x ∈,总存在[]00,1x ∈,使得()()01g x f x =成立,则a 的取值范围为 .答案:5,42⎡⎤⎢⎥⎣⎦解析:利用导数求出函数()y f x =的值域以及函数()y g x =的值域,由题意得知函数()y f x =的值域是函数()y g x =值域的子集,由集合的包含关系得出不等式组,可得出实数a 的取值范围. 详解: 当[]0,1x ∈时,()221x f x x =+,()()2201x x f x x +'∴=>+在[]0,1x ∈上恒成立, 所以,函数()y f x =在区间[]0,1上单调递增, 则()()min 00f x f ==,()()max 11f x f ==, 所以,函数()y f x =在区间[]0,1上的值域为[]0,1. 当01x ≤≤时,022xππ≤≤,则0sin12xπ≤≤,()525a g x a ∴-≤≤-,则函数()y g x =在区间[]0,1上的值域为[]52,5a a --.由题意可知,函数()y f x =在[]0,1上的值域是函数()y g x =在[]0,1上值域的子集, 所以52051a a -≤⎧⎨-≥⎩,解得542a ≤≤,因此,实数a 的取值范围是5,42⎡⎤⎢⎥⎣⎦,故答案为5,42⎡⎤⎢⎥⎣⎦. 点睛:本题主要考查函数恒成立问题以及函数值域的求法,解题的关键在于从题中得出两个函数值域的包含关系,考查分析问题和解决问题的能力,属于中等题.三、解答题1.设整数,集合,是的两个非空子集,,记为所有满足的集合对的个数.(1)求;(2)求.答案:(1);(2).解析:正难则反,通过求出的情况下对应的集合对的个数,再用总的非空真子集个数减去即可;借鉴第一问的求解方法,结合排列组合公式进行求解详解:(1)集合对共个,先考虑的情况:时,,,,,时,,,,,时,,,,时,,,时,,时,.所以的集合对的个数为37,即.(2)集合对共个,先考虑的情况:当中有个元素时,共有种选法,则中不能包括这个元素中任何一个,只能从包含剩余个元素的集合中选取非空子集,共有种选法,故此时有种,所以,,所以,.点睛:对于集合类新题型,解题方法还是基于常规知识,考生应对集合的子集、真子集、非空真子集的求法牢牢掌握,对于延伸类问题,可借鉴前问解题方法,我们的考题中,有很多题型在设问方式上衔接性非常密切2.已知,,且,则实数的取值范围.答案:解析:由可得:当时,;当时,,求解得出实数的取值范围.详解:①当时,即,解得,符合题意.②当时,因为,所以解得所以,综上可得:实数的取值范围为。
1.2 集合间的基本关系一、单选题1.下列式子表示正确的是( )A .∅{}0⊆B .{}{}22,3∈C .∅{}1,2∈D .{}00,2,3⊆答案:A解析:根据空集的性质,集合与集合的关系,元素与集合的关系逐一判断可得答案. 详解:解:根据空集的性质,空集是任何集合的子集,{}0∅⊆,故A 正确;根据集合与集合关系的表示法,{}2{}2,3,故B 错误; ∅是任意非空集合的真子集,有∅{}1,2,但{}1,2∅∈表示方法不对,故C 错误;根据元素与集合关系的表示法,{}00,2,3∈,不是{}00,2,3⊆,故D 错误;故选:A.点睛:本题考查的知识点是集合的包含关系判断及其应用,元素与集合关系的判断,集合的表示法.2.已知集合{}{}201,1,0,23A a B a ==+,,,若A B =,则a 等于( ) A .-1或3B .0或1C .3D .-1答案:C 解析:由A B =则集合的元素完全相同,则223a a =+,求出a 的值,再检验可得答案. 详解:由A B =有223a a =+,则1a =-,3a =.当1a =-时,{}011A =,,与集合元素的互异性矛盾,所以舍去. 当3a =时, {}019=A B =,,满足条件. 故选:C.点睛:本题考查两集合相等,集合元素的特性,属于基础题.3.已知集合{}2*1,P x x n n N ==+∈,{}2*45,M x x m m m N ==-+∈,则集合P 与M 的关系是( )A .P M ⊂B .P MC .M P ⊆D .M P ⊂答案:A解析:把2*45,x m m m N =-+∈配方,求其值域,然后即可判断两集合关系.详解:解:因为{}{}2*222|1,11,21,31,P x x n n N ==+∈=+++,{}(){}{}22**222|45,|21,1,11,21,31,M x x m m m N x x m m N ==-+∈==-+∈=+++ 即集合M 比集合P 多一个元素1,因此P M ⊂.故选:A.点睛:考查求函数的值域以及判断集合的关系,基础题.4.已知集合2{|}A x x x ==,{1,,2}B m =,若A B ⊆,则实数m 的值为( )A .2B .0C .0或2D .1答案:B解析:先化简集合A ,再根据A B ⊆求解.详解:已知集合{}2{|}0,1A x x x ===,{1,,2}B m =, 因为A B ⊆,所以m=0,故选:B点睛:本题主要考查集合基本关系的应用,属于基础题.5.已知2{|1}A x x ==,集合{|1}B x mx ==,若B A ⊆,则m 的取值个数为( )A .0B .1C .2D .3答案:D解析:由题意知,集合{}11A =-,,由B A ⊆,注意到1mx =的解要分0m =和0m ≠两种情况就可以得出正确结果.详解:解:由题意知,集合{}11A =-,, 由于1mx =,∴当0m =时,B =∅,满足B A ⊆;当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,由于B A ⊆,所以11m=或11m =-,1m ∴=或1m =-,0m ∴=或1或1-.即m 的取值个数为3,故选:D .6.已知a ,b 为实数,集合,,1bA a a ⎧⎫=⎨⎬⎩⎭,集合{}2,1,0B a =-,若A B =,则实数20212020a b +的值是( )A .2020-B .0C .1-D .1答案:C解析:根据集合相等得到方程组,求出,a b 的值,即可得解;详解: 解:因为集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,集合{}2,1,0B a =-,且A B =, 所以2011b a a a ⎧=⎪⎪=-⎨⎪=⎪⎩,所以0b =,1a =-, 所以()2021202120202020101a b +=-=-+.故选:C. 7.已知集合A ={0,a},B ={x|−1<x <2},且A ⊆B ,则a 可以是A .−1B .0C .1D .2答案:C解析:因为A ⊆B ,所以得到−1<a <2且a ≠0,根据选项可以确定a 的值.详解:解:因为A ⊆B ,且集合A ={0,a},B ={x|−1<x <2},所以−1<a <2且a ≠0,根据选项情况,由此可以判定只能选择C.点睛:本题考查了集合间的关系、集合中元素的性质,解题时要注意集合元素的互异性这一隐含的条件.8.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤ ⎥⎝⎦C .(,1)[0,)-∞-+∞D .1[,0)(0,1)3-⋃答案:A 解析:先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围.详解: 因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥, 所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足,当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a ,所以01a <<,当0a <时,因为10ax +≤,所以1x a ≥-,又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭. 故选:A.点睛:本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集.9.设集合{}lg 0A x x =<,1222x B x⎧⎫=<<⎨⎬⎩⎭,则( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅答案:B解析:解对数不等式和指数不等式确定集合,A B ,再判断集合的关系.详解:由已知{|01}A x x =<<,{|11}B x x =-<<,所以A B ⊆.故选:B .点睛:本题考查集合的包含关系,确定集合中的元素是解题关键.10.已知集合M ={(x,y)|y =x},N ={(x,y)|{2x −y =1x +4y =5} ,则下列结论中正确的是( )A .M ⊆NB .N MC .M ND .M =N答案:B解析:求出集合N 中的元素,进而可得集合M 与N 的关系详解:N ={(x,y)|{2x −y =1x +4y =5}={(1,1)} ,而M ={(x,y)|y =x},集合N 中的元素在集合M 中,但M 中的元素不都在N 中,所以N M .故选B .点睛:本题考查了集合包含关系的判断及应用,属基础题.二、填空题1.若{}2|560A x x x =-+=,{|60}B x ax =-=,且B A ⊆,则实数a 的值为________.答案:0或2或3解析:先求得{}2,3A =,由于B A ⊆,所以先从空集考虑,当B =∅时,B A ⊆,此时0a =.B 为非空集合时,由于一元一次方程只有一个根,所以分成{}2B =和{}3B =两种情况讨论a 的取值. 详解:{}{}2|5602,3A x x x =-+==①当B =∅时,B A ⊆,此时0a =,②当{}2B =时,B A ⊆,此时260a ⨯-=,即3a =③当{}3B =时,B A ⊆,此时360a ⨯-=,即2a =综上:a 的值为0或2或3故答案为:0或2或3点睛:本题主要考查集合子集的概念,考查空集是任何集合的子集的概念.判断两集合的关系常用两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常运用数轴、Venn 图帮助分析.2.若集合(){}210,x k x x k x R ++-=∈有且仅有两个子集,则实数k =________.答案:-1或12- 解析:根据集合(){}210,x k x x k x R ++-=∈有且仅有两个子集,由方程()210k x x k ++-=只有一个根求解.详解: 因为集合(){}210,x k x x k x R ++-=∈有且仅有两个子集,所以集合中仅有1个元素,即()210k x x k ++-=只有一个根,当10k +=,即 1k =-时, 1x =-成立,当10k +≠,即 1k ≠-时, ()1410k k ∆=++=,即 24410k k ++=,解得 12k =-,故答案为:-1或12-3.若集合A=1,2,3},B=1,3,4},则A∩B 的子集个数为____________.答案:4解析:试题分析:找出A 与B 的公共元素求出交集,找出交集的子集个数即可. 解:∵A=1,2,3},B=1,3,4},∴A∩B=1,3},则A∩B 的子集个数为22=4.故选C考点:交集及其运算.4.集合A ={2,0,1,6},B ={x|x +a >0,x ∈R },A ⊆B ,则实数a 的取值范围是______. 答案:a >0详解:B ={x|x +a >0,x ∈R }=(−a,+∞),∵A ⊆B ,∴−a <0,∴a >0.5.已知集合{2,1},{0,1,1A B x =-=+},且A B ⊆,则实数x 的值为__________.答案:-3解析:由A B ⊆,可得123x x +=-⇒=-,从而可得结果.详解:因为集合{2,1},{0,1,1A B x =-=+},且A B ⊆,所以123x x +=-⇒=-即实数x 的值为-3.故答案为-3.本题主要考查利用包含关系求参数,属于简单题.三、解答题1.设全集为实数集R ,{}14A x x =-≤<,{}52B x x =-<<,{}122C x a x a =-<<.(1)若C =∅,求实数a 的取值范围;(2)若C ≠∅,且C A B ⊆,求实数a 的取值范围.答案:(1)14a ≤;(2)114a <≤解析:(1)根据空集的概念与不等式的解集的概念求解;(2)求出A B ,再由子集概念列式求解.详解:解:(1)由122a a -≥得,14a ≤(2)由已知得{}12A B x x ⋂=-≤<,由(1)可知()C A B ⊆⋂则12122a a -≥-⎧⎨≤⎩ 解得1a ≤,由(1)可得C ≠∅时,14a >,从而得114a <≤点睛:本题考查空集的概念,集合的交集运算,以及集合的包含关系,属于基础题.2.(1)已知集合(){}222,133A a a a a =++++,,当1A ∈,求2020a 的值;(2)已知集合{}2202020190A x x x =-+<,{}B x x a =<,若A B ⊆,求实数a 的取值范围.答案:(1)1;(2)[)2019,+∞.解析:(1)分21a +=,()211a +=,2331a a ++=三种情况,分别求得a 的值,再代入验证集合中的元素是否满足互异性可得答案;(2)先求得集合A ,借助数轴可得a 的取值范围.详解:(1)若21a +=,则1a =-,{}1,0,1A =,不合题意;若()211a +=,则0a =或-2,当0a =时,{}2,1,3A =,当2a =-时,{}0,1,1A =,不合题意; 若2331a a ++=,则1a =-或-2,都不合题意;因此0a =,所以020201=.(2){}12019A x x =<<,A B ⊆,∴借助数轴可得2019a ≥,a ∴的取值范围为[)2019,+∞.点睛:易错点点睛:由已知集合间的关系,元素与集合间的关系求参数的值时,注意将求得的参数的值代入集合中验证:集合中的元素是否满足互异性.3.判断下列表达式是否正确:(1)2(,10]≠⊂-∞;(2)2(,10]∈-∞; (3){2}(,10]≠⊂-∞;(4)(,10]∅∈-∞; (5)(,10]∅⊆-∞;(6)(,10]∅-∞.答案:(1)×(2)√(3)√(4)×(5)√(6)√解析:由元素与集合的关系和集合与集合的关系作答.详解:(1)元素与集合之间是属于或不属于关系,2(,10]≠⊂-∞错; (2)2是集合(,10]-∞中元素,2(,10]∈-∞,正确;(3)由(2)知{2}(,10]≠⊂-∞,正确; (4)空集是任何集合的子集,是非空集合的真子集,与集合(,10]-∞不能用“∈”的关系,(,10]∅∈-∞,错误;(5)由(4)分析,(,10]∅⊆-∞,正确;(6)由(4)分析,(,10]∅-∞,正确.点睛:本题考查元素与集合,集合与集合之间的关系,元素与集合之间是“属于”“不属于”的关系,集合与集合之间是“包含”“不包含”的关系,不能弄错.4.设{}2|40A x x x =+=,{}22|2(1)10B x x a x a =+++-=,且B ≠⊂A ,求实数a 的取值范围.答案:(,1]-∞-详解:{}2|40{4,0}A x x x =+==- 若B =∅,即224(1)4(1)0,1a a a ∆=+--<<-时,满足题意若B ≠∅,即{0},{4},{0,4}B =--时,{0}B =时22(1)0,101a a a -+=-=∴=-{4}B =-时22(1)8,116a a a -+=--=∴∈∅{0,4}B =-时22(1)4,10a a a -+=--=∴∈∅综上实数a 的取值范围为(,1]-∞-5.已知2{|440}A x x x =++=,22{|2(1)10}B x x a x a =+++-=,其中a R ∈.如果A B B =,求实数a 的取值范围.答案:(,1)-∞-解析:先解一元二次方程得集合A,再将条件A B B ⋂=化为集合包含关系,最后根据数轴确定实数a 的取值范围.详解:2440x x ++=,解得2x =-,∴{}2A =-.∵A B B ⋂=,∴B =∅或{}2-.∴()()2241410a a ∆=+--≤,解得1a ≤-. 但是:1a =-时,{}0B =,舍去.∴实数a 的取值范围是(),1-∞-.点睛:将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.。
课时跟踪检测(三) 集合间的基本关系
一、选择题
1.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是( )
A.A⊆B B.A⊇B
C.A B D.A B
2.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}
B.Q={-1,0,1,2}
C.R={y|-π<y<-1,y∈Z}
D.S={x||x|≤3,x∈N}
3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( )
A.1 B.-1
C.1或-1 D.0,1或-1
4.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( )
A.6 B.5
C.4 D.3
5.已知集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么( )
A.P M B.M P
C.M=P D.M P
二、填空题
6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.
7.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:
A为________;B为________;
C为________;D为________.
8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.
三、解答题
9.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.
10.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.
(1)当x∈Z时,求A的非空真子集的个数;
(2)若A⊇B,求m的取值范围.
答案
课时跟踪检测(三)
1.选D 显然B是A的真子集,因为A中元素是3的整数倍,而B的元素是3的偶数倍.
2.选D 先用列举法表示集合,再观察元素与集合的关系.集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P中的元素-3∉M,集合Q中的元素2∉
M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .故选D.
3.选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.
4.选A 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.
5.选C ∵⎩⎪⎨⎪⎧
x +y <0,xy >0,∴⎩⎪⎨⎪⎧ x <0,y <0. ∴M =P . 6.解析:∵y =(x -1)2-2≥-2,
∴M ={y |y ≥-2}.∴N M .
答案:N M
7.解析:由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.
答案:小说 文学作品 叙事散文 散文
8.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2
+2x +a =0(a ∈R )仅有一个根.
当a =0时,方程化为2x =0,
∴x =0,此时A ={0},符合题意.
当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1.
此时A ={-1},或A ={1},符合题意.
∴a =0或a =±1.
答案:{0,1,-1}
9.解:由x 2-3x +2=0,得x =1,或x =2.
∴A ={1,2}.
∵B ⊆A ,∴对B 分类讨论如下:
(1)若B =∅,即方程ax -2=0无解,此时a =0.
(2)若B ≠∅,
则B ={1}或B ={2}.
当B ={1}时,有a -2=0,即a =2;
当B ={2}时,有2a -2=0,即a =1.
综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.
10.解:化简集合A 得A ={x |-2≤x ≤5}.
(1)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},
即A 中含有8个元素,
∴A 的非空真子集数为28-2=254(个).
(2)①当m ≤-2时,B =∅⊆A ;
②当m >-2时,B ={x |m -1<x <2m +1},
因此,要B ⊆A ,
则只要⎩⎪⎨⎪⎧ m -1≥-22m +1≤5
⇒-1≤m ≤2. 综上所述,知m 的取值范围是:{m |-1≤m ≤2或m ≤-2}.。