聚乳酸简介
- 格式:doc
- 大小:53.50 KB
- 文档页数:7
pla 材料PLA 材料,又称聚乳酸(Polylactic Acid),是一种可生物降解的塑料材料。
它是由可再生资源,如玉米淀粉、木薯淀粉等经过发酵制得的聚乳酸单体聚合而成。
PLA 作为一种绿色环保材料,具有很多优点。
在本文中,我将介绍 PLA 材料的特点、应用领域以及未来发展方向。
首先,PLA 材料具有良好的可降解性,不会对环境造成污染。
它可以在自然环境中迅速降解为二氧化碳和水,不会对土壤和水源造成长期污染。
与传统的石油基塑料相比,PLA 材料能够减少对地球资源的依赖,降低碳排放量,对环境更加友好。
其次,PLA 材料具有较好的物理性能。
它具有良好的机械性能和透明度,可以制成透明的包装材料和容器。
同时,PLA材料还具有良好的耐热性和抗水性,使其能够应用于各种高温和潮湿的环境中。
另外,PLA 材料还具有良好的加工性能,可以通过注塑、吹塑等工艺制作成各种形状的制品。
PLA 材料在许多领域都有广泛的应用。
首先,它可以用于食品包装材料。
由于PLA 材料是可食用的,因此可以用于制作餐具、包装膜等食品接触材料。
其次,PLA 材料还可以用于医疗器械领域。
由于其良好的耐热性和生物相容性,可以用于制作生物降解的一次性医疗器械,减少对化石能源的依赖。
此外,PLA 材料还可以用于纺织品领域,制作环保的纺织品和纺织品用品。
未来,PLA 材料还有很大的发展空间。
目前,虽然PLA 材料已经有了广泛的应用,但是其制造成本相对较高,生产技术还有待改进。
未来,可以通过提高生产工艺和降低原材料成本来降低PLA 材料的制造成本,使其更加普及。
另外,PLA 材料的性能也可以进一步改进,以满足更多领域的需求。
例如,可以通过改变PLA 材料的结构或添加其他添加剂,提高其耐热性和抗水性等功能。
综上所述,PLA 材料作为一种绿色环保的塑料材料,具有良好的可降解性和物理性能,在食品包装、医疗器械、纺织品等领域有广泛的应用。
未来,PLA 材料有望进一步发展,降低制造成本,改进性能,实现更广泛的应用。
单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。
关爱地球,你我有责。
世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。
(2)机械性能及物理性能良好。
聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。
(3)相容性与可降解性良好。
生物降解性材料聚乳酸乳酸是一种优良的可生物降解聚合物,属于最容易生物降解的热塑性材料---脂肪族聚酯类化合物中的一种,也是国内外近年来开发研究最活跃的降解材料之一,是世界公认的环保、可持续发展材料。
聚乳酸通过改性,其相应的性能会得到很大的改善,其应用领域会更加广阔。
对聚乳酸的改性研究进展进行了介绍,其改性方法有物理改性、化学改性和复合改性等。
物理改性又分为共混改性和增塑改性等;化学改性可分为共聚改性和交联改性等;复合改性包括与各种纤维复合改性和与无机纳米材料复合改性等。
聚乳酸是以淀粉,糖蜜,等为原料,发酵制的乳酸,在通过化学方法合成的高分子材料,是生物降解性材料中最有发展前途的品种。
聚乳酸生产的工艺:原料(玉米高粱等)--生产淀粉—液化—糖化作用生产葡萄糖—酵母培养—发酵—分离—纯化(净化)--乳酸聚合—树脂—纤维聚乳酸也称为聚丙交酯,其分子结构式为:聚乳酸属于聚酯家族,是乳酸(α-羟基内酯)的缩聚物,一般无毒性,人体内可降解,有较好的生物相容性。
制作方法:间接法间接法是指丙交酯的开环聚合,一般采用此法。
首先将2个乳酸分子经脱水缩聚生成环状丙交酯,然后以丙交酯作为原料,在常压下加入催化剂开环聚合。
开环聚合可采用本体或溶液聚合,一般多采用丙交酯的本体开环聚合。
该法不仅能得到较高分子量的聚乳酸产品,而且还应用于共聚物,目前共聚物的合成主要采用丙交酯的开环聚合,所以工业上生产也主要采用2步法。
其中开环聚合法是目前聚乳酸工业生产的主要工艺,和直接法相比较容易获得高分子量的聚乳酸。
面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。
生物降解材料是指在一定的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料。
在众多的可生物降解聚合物中,刚进入工业化的聚乳酸(polylactic acid,简称PLA)受到了人们的广泛关注。
PLA 来源于可再生农作物,具有良好的生物降解性,且在许多性能上与聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等通用塑料相似,具有广阔的市场前景,被全球公认为新世纪最有前途的生物医用材料和新型包装材料,有望成为通用塑料的替代产品,是世界公认的环保、可持续发展材料。
聚乳酸的简称(PLA)PLA是生物降解塑料聚乳酸的英文简写,全写为:polylactice acid聚乳酸也称为聚丙交酯(polylactide),属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生,主要以玉米、木薯等为原料。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
PLA最大的制造商是美国NatureWorks公司,其次是中国的海正生物,他们目前的产量分别是7万吨和5千吨。
PLA有很多的应用,可以在挤出、注塑、拉膜、纺丝等多领域应用。
聚乳酸的制备1.1.合成方法总的来说,聚乳酸(PLA)的制备是以乳酸为原材料进行合成的。
目前合成方法有很多种,较为成熟的是乳酸直接缩聚法,另一种是先由乳酸合成丙交酯,再在催化剂的作用下开环聚合。
另外还有一种固相聚合法。
1)乳酸直接聚合法直接聚合法早在20世界30~40年代就已经开始研究,但是由于涉及反应中的水脱除等关键技术还不能得到很好的解决,所以其产物的分子量较低(均在4000以下),强度极低,易分解,没有实用性。
日本昭和高分子公司采用将乳酸在惰性气体中慢慢加热升温并缓慢减压,使乳酸直接脱水缩合,并使反应物在220~260℃,133Pa 下进一步缩聚,得到相对分子质量在4000以上的聚乳酸。
但是该方法反应时间长,产物在后期的高温下会老化分解,变色,且不均匀。
日本三井压化学公司采用溶液聚合法使乳酸直接聚合得到聚乳酸。
直接法的主要特点是合成的聚乳酸不含催化剂,因此缩聚反应进行到一定程度时体系会出现平衡态,需要升温加压打破反应平衡,反应条件相对苛刻。
PLA-聚乳酸简介聚乳酸,英文名称Polylactic acid 或者Polylactide,简称PLA,由生物发酵生产的乳酸经人工化学合成而得的热塑性聚合物,但仍保持着良好的生物相容性和生物可降解性。
不象其他的树脂必须来源于石油,聚乳酸来源于可再生的象玉米、小麦、甘蔗等天然农作物,是一种完全绿色材料,近年来越来越受到全世界的关注。
聚乳酸是由生物发酵生产的乳酸经人工化学合成而得的聚合物,但仍保持着良好的生物相容性和生物可降解性。
具有与聚酯相似的防渗透性,同时具有与聚苯乙烯相似的光泽度、清晰度和加工性。
并提供了比聚烯烃更低温度的可热合性,可采用熔融加工技术,包括纺纱技术进行加工。
因此聚乳酸可以被加工成各种包装用材料,像农业、建筑业用的塑料型材、薄膜,以及化工、纺织业用的无纺布、聚酯纤维等。
而PLA的生产耗能只相当于传统石油化工产品的20%—50%,产生的二氧化碳气体则只为相应的50%。
聚乳酸有良好的机械性能及物理性能,适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地面垫等等,市场前景十分看好。
聚乳酸有良好的相溶性和可降解性,在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子量聚乳酸作药物缓释包装剂等。
聚乳酸是一种全新形态的塑料,它来源于自然循环再生的概念,一个和现今传统塑料正好相反的概念,它不是由有限的石化资源(石油)所制成,而是使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料可经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
90年代由葡萄糖转成乳酸的制造技术已有重大的突破,聚乳酸生产技术的改进降低了聚乳酸的生产成本。
PLA的合成和分子结构式:聚乳酸的分解:聚乳酸的分解有两个阶段:经水解反应分解之后再靠微生物分解。
聚乳酸结构简式
(原创版)
目录
1.聚乳酸的概述
2.聚乳酸的结构特点
3.聚乳酸的应用领域
4.聚乳酸的发展前景
正文
1.聚乳酸的概述
聚乳酸(Polylactic acid,简称 PLA)是一种生物降解塑料,由乳酸单体经过聚合而成。
乳酸是一种有机酸,可通过玉米、木薯等生物质资源发酵制得。
聚乳酸具有良好的生物相容性和生物降解性,被广泛应用于医疗、环保、包装等领域。
2.聚乳酸的结构特点
聚乳酸的结构简式为 [-OCOCH(CH3)COOCH2CH3-]n,其中 n 表示聚合度。
聚乳酸分子链上的酯键使得它具有较好的柔韧性和延展性。
另外,聚乳酸分子中含有大量的亲水性基团,这使得它在水中容易吸水膨胀,从而具有较好的生物降解性。
3.聚乳酸的应用领域
(1)医疗领域:聚乳酸具有良好的生物相容性和生物降解性,被广泛应用于医疗领域,如制作生物医用材料、药物缓释系统等。
(2)环保领域:聚乳酸在环境中容易降解,可用于制作一次性用品,如餐具、杯子等,以减少“白色污染”。
(3)包装领域:聚乳酸可用于制作食品包装材料,具有良好的保鲜
性能,同时可降解,避免环境污染。
(4)其他领域:聚乳酸还可应用于纺织、汽车、电子等产业,如制作生物降解纤维、汽车内饰材料等。
4.聚乳酸的发展前景
随着人们对环境保护意识的不断提高,生物降解材料聚乳酸受到了越来越多的关注。
未来,聚乳酸在医疗、环保、包装等领域的应用将得到更广泛的推广。
同时,随着科学技术的进步,聚乳酸的生产成本有望进一步降低,这将有利于聚乳酸在各个领域的应用。
单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
简介聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
一、聚乳酸的优点聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。
关爱地球,你我有责。
世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。
(2)机械性能及物理性能良好。
聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。
单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
简介聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
一、聚乳酸的优点聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。
关爱地球,你我有责。
世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。
(2)机械性能及物理性能良好。
聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。
可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。
进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。
(3)相容性与可降解性良好。
聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。
(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。
传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。
(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。
聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。
(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。
如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。
(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。
病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。
(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。
人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。
二、聚乳酸的制备方法聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。
由乳酸制聚乳酸生产工艺有:(1)直接缩聚法在真空下使用溶剂使脱水缩聚。
日本在这方面做了大量的研究,但最终没有成功实现产业化。
(2)二步法使乳酸生成环状二聚体丙交酯,在开环缩聚成聚乳酸。
这一技术较为成熟,美国NatureWorks公司生产聚乳酸工艺的工艺即为该工艺。
中国的海正与中科院共同研制的聚乳酸生产技术也与此相似,主要过程是原料经微生物发酵制得乳酸后,再经过精制、脱水低聚、高温裂解,最后聚合成聚乳酸。
(3)反应挤出制备高分子量聚乳酸用间歇式搅拌反应器和双螺杆挤出机组合,进行连续的熔融聚合实验,可获得由乳酸通过连续熔融缩聚制得的分子量达150000的聚乳酸。
利用双螺杆挤出机将低摩尔质量的乳酸预聚物在挤出机上进一步缩聚,制备出较高摩尔质量的聚乳酸。
在反应温度为150℃、催化剂用量为0.5%、螺杆转速为75 r/min时可通过双螺杆反应挤出缩聚法快速有效地提高聚乳酸的摩尔质量,而且反应挤出产物分散系数减小,均匀性变好。
通过DSC曲线的比较发现,通过反应挤出缩聚法制得的聚乳酸的结晶度有所降低,这对改善聚乳酸材料在使用过程中表现出较大的脆性是有益的。
三、聚乳酸制备的最新专利公开BRUSSELS BIOTECH (BE)2004年2月13日公开的世界专利WO2004014889,报道了聚乳酸的制备,其独立权项包括如下内容:(1)按以下方法制备乳酸:(a)蒸发乳酸或乳酸衍生物溶液制备分子量为400-2000、总乳酸等价酸度119-124.5%、光学纯度相当于90-100%L-聚乳酸的低聚体;(b)将低聚体和解聚催化剂加入到解聚反应器,制备得到一富含乳酸的气相和富含低聚体的液相;(c)冷凝气相得到液态粗乳酸;(d)将粗乳酸抽取结晶;(e)分离和排出晶体得到一富含乳酸晶体的湿饼;(f)干燥湿饼,得到预纯化乳酸;和(g)结晶预纯化乳酸得到残留酸度低于10meq/kg、水含量低于200ppm 和meso-乳酸含量低于1%的纯化乳酸;(2)聚合以上得到的乳酸制得聚乳酸。
BOTELHO T 等2004年公开的专利WO2004057008-A1,报道了一种可用于糖果包装材料的聚乳酸的制备方法,主要是通过发酵法得到,其实施例报道的具体方法为:将培养液(451)(包括乳清,牛奶蛋白和其它营养成分如无机盐和半光胺酸)加热到70℃并保持45分钟,再冷却到45℃。
加入乳酸菌helveticus (9克)和Flavourzyme(RTM)(A) (26.5克)。
批式发酵9小时,补加含乳清、乳糖和Flavourzyme (RTM)的新鲜肉汤。
用氨气调节pH为5.75,生物密度控制于7-8%,发酵过程中连续通气,通气量为1升/分钟。
在34天的发酵期内稀释率为0.15-0.3/小时。
流出液中的乳酸盐为4%,稀释速度为0.3/小时下产率为12克/升.小时。
乳酸流出液采用离子交换树脂和螯合剂分离,再经过两次连续电渗析,回收率为85-90%。
HANZSCH BERND等2003年8月21日公开的美国专利US2003158360,报道了一种聚乳酸的制备方法,步骤如下:发酵淀粉类农产品得到乳酸,通过超滤,纳米滤和/或电渗析超纯化乳酸,浓缩乳酸,制备预聚物,环化解聚为双乳酸,纯化双乳酸,开环双乳酸聚合物和脱单体化聚乳酸得到。
SHIMADZU CORP 2002年10月15日公开的JP2002300898,报道了一种生产乳酸和聚乳酸的方法。
具体方法为:(1)利用乳酸铵合成乳酸酯;(2)在除丁基锡外的催化剂存在下,缩聚乳酸酯,合成平均分子量小于15000mol.wt聚乳酸(乳酸预聚体);(3)解聚聚乳酸得到乳酸;该方法进一步包括开环乳酸聚合物制备聚乳酸。
SHIMADZU CORP、OHARA H、TOYOTA JIDOSHA KK、ITO M和SAWA S 2002年8月8日公开的专利WO200260891-A ,报道了用于生产生物可降解塑料的乳酸和聚乳酸的制备方法,该专利的实施例之一报道的方法如下:发酵得到的L-乳酸铵在90-100℃下与乙醇反应,分离、收集乙醇;120℃下脱去反应中的水;通过蒸馏提纯得到的乳酸乙酯,在辛基锡存在下于160℃缩聚乳酸乙酯,并脱去乙醇。
将得到的反应液于200℃下蒸馏得到乳酸,产率为99.2%。
在辛基锡存在下聚合乳酸制得乳酸。
NATL INST OF ADVANCED INDUSTRIAL SCIENCE TECHNOLOGY METI、KONAN KAKO KK和TOKIWA YUTAKA2001年8月21日公开的日本专利JP2001224392,报道了采用水解酶代替有机金属催化剂制备聚乳酸。
四、聚乳酸的市场应用PLA最大的制造商是美国NatureWorks公司,其次是中国的海正,他们目前的产量分别是7万吨和5千吨。
PLA有很多的应用,可以在挤出、注塑、拉膜、纺丝等多领域应用,具体如下:(1)挤出级树脂的市场应用挤出级树脂是PLA的主要用途,主要用于大型超市里新鲜蔬果包装,该类包装已成为欧洲市场链中的重要一员;其次用于一些宣扬安全、节能、环保的电子产品包装上。
在这些用途中PLA高透明度、高光泽度、高钢性等优点体现得淋漓尽致,目前已经是PLA应用的主导方向。
另外,挤出级树脂在园艺上的应用也开始获得重视,目前在斜坡绿化、沙尘暴治理等领域已有所应用。
然而,PLA的挤出加工却并非易事,仅适合在一些先进的PET挤出成型机上进行加工,且挤出片材的厚度一般只在0.2-1.0mm范围。
加工过程对水份含量及加工温度尤其敏感,挤出加工时,一般要求其水份含量要小于50PPM,这对设备的干燥系统和温控系统又提出了新的要求。
加工过程中,如果没有适宜的结晶设备,边料的回收也是一大难题,这也正是市场上有大量PLA边角料在流通的原因。
(2)注塑级树脂的市场应用在PLA的注塑应用中,较为广泛的是改性后的树脂。
尽管纯PLA有着高透明度、高光泽度等优点,但是其硬而脆、加工难度大且不耐热等缺点影响了它在注塑方面的应用。
当然,化学、塑料工业界都一直致力解决这些问题。
例如,利用BPM-500这种添加剂可以提高PLA的冲击强度;加入少量一种名为Biomax Strong的乙烯基共聚物可以改进PLA的韧性;与另一种生物降解树脂PHA共混可以改善PLA的一些性能;另外,日本的科学家们则开发出了一种添加纸浆的耐热PLA树脂。
通过以上一些方式改性后的聚乳酸制品牺牲了透明性,但是却改进了聚乳酸在耐热性、柔韧性、抗冲性等方面的缺陷,提高了其加工难易程度,因此应用范围也得到了拓展。
在海正的注塑级树脂销售中大约有70%为改性聚乳酸。
而整体上,相对高昂的成本是阻碍PLA在注塑市场上广泛应用的最大原因。
虽然纯树脂通过填充改性可以降低一些成本,但是在保证其性能的前提下,这一措施的作用也有限,如果需要在全生物降解这一前提之下改善PLA性能上的缺陷,比如耐热性能,成本则更高。
(3)其他牌号树脂的市场应用双向拉伸膜是目前为止应用最成功的PLA膜,经过双向拉伸并热定型的PLA膜耐热温度可提高到90℃,正好弥补了PLA不耐高温这一缺陷。