化工自动化及仪表电子教案过程参数的检测与仪表
- 格式:doc
- 大小:150.50 KB
- 文档页数:11
化工仪表及自动化教案一、教学目标:1. 让学生了解化工仪表的分类和基本原理。
2. 使学生掌握化工自动化的基本概念和系统组成。
3. 培养学生运用化工仪表和自动化技术解决实际问题的能力。
二、教学内容:1. 化工仪表的分类和基本原理2. 压力、流量、温度、液位等基本参数的测量方法3. 化工自动化的基本概念和系统组成4. 常用自动控制仪表及其应用5. 自动化控制系统的设计和实施三、教学方法:1. 讲授:讲解化工仪表和自动化技术的基本原理、概念和应用。
2. 演示:通过实物或动画演示化工仪表的工作原理和自动化系统的运行过程。
3. 案例分析:分析实际工程案例,让学生了解化工仪表和自动化技术在实际中的应用。
4. 小组讨论:分组讨论自动化控制系统的设计和实施,培养学生的团队协作能力。
四、教学准备:1. 教材、教案、课件等教学资源。
2. 化工仪表模型、图片、视频等教学素材。
3. 计算机、投影仪等教学设备。
1. 导入:通过提问或情景创设,引发学生对化工仪表和自动化技术的兴趣。
2. 讲解:详细讲解化工仪表的分类、基本原理和应用,以及自动化系统的组成和设计。
3. 演示:展示化工仪表模型或动画,让学生直观地了解其工作原理。
4. 案例分析:分析实际工程案例,让学生了解化工仪表和自动化技术在实际中的应用。
5. 小组讨论:分组讨论自动化控制系统的设计和实施,培养学生解决实际问题的能力。
6. 总结:对本节课的主要内容和知识点进行归纳总结。
7. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对化工仪表和自动化基础知识的理解程度。
2. 小组讨论:评估学生在小组讨论中的参与程度和问题解决能力。
3. 作业批改:检查学生对课堂所学知识的掌握情况,以及对实际问题的分析能力。
4. 期中考试:设置期中考试,全面评估学生对课程内容的掌握情况。
七、教学拓展:1. 邀请相关领域的专家或企业代表进行讲座,分享实际工作经验和行业动态。
第 1 次课教案1学时本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用第8 次课教案2学时本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用第9 次课教案2学时本课程的地位:专业必修本课程学习方法:理论联系实际、着重实际应用习题一1.压力检测仪表分为几大类?各自的工作原理是什么?2.一弹簧管压力表的量程范围为0~16MP a,精度等级为1.5级。
试计算该压力表的最大绝对误差是多少?3.某氨贮罐的压力为15 MP a,工艺要求测量误差不超过±0.5MP a,要求使用弹簧管压力表就地指示。
试确定压力表的类型、测量范围、精度等级和型号。
4.用差压变送器检测液位时,为什么要考虑零点迁移的问题?5.差压式流量计安装时,为什么要使用三阀组件?6.差压式流量检测中的标准节流装置有哪些?安装时应注意些什么?7.常用的流量检测仪表有哪些?有什么特点?8.热电偶测温时,为什么要使用补偿导线?使用时应注意什么?9.热电偶的冷端温度补偿有什么作用?有哪些补偿方法?10.用一支铂铑10-铂热电偶测温时,测得热电势为8678μV,若冷端温度为25℃,求被测温度是多少?11.使用动圈式温度显示仪表与热电偶或热电阻配用时,是否都要考虑冷端温度补偿的问题?为什么?接线时,XCZ-101型和XCZ-102型动圈表的调整电阻R p各取多少?12.变送器有什么作用?差压变送器可用于哪些工艺变量的检测?- 11 -。
化工仪表及自动化教案•课程介绍与教学目标•化工仪表基础知识•自动化控制系统概述•化工仪表在自动化控制中的应用目录•自动化控制系统的设计与实施•化工仪表及自动化的发展趋势与挑战01课程介绍与教学目标03化工仪表及自动化的应用领域列举化工仪表及自动化在石油、化工、制药、冶金等领域的应用实例。
01化工仪表及自动化的基本概念介绍化工仪表的定义、分类及其在化工生产中的应用,阐述自动化的含义和重要性。
02化工仪表及自动化的发展历程回顾化工仪表和自动化技术的发展历史,展望未来的发展趋势。
化工仪表及自动化课程概述掌握化工仪表的基本原理、结构、性能和使用方法,了解自动化系统的组成、功能和应用。
知识目标能力目标素质目标能够正确选型和使用化工仪表,具备基本的自动化系统设计、安装、调试和维护能力。
培养学生的工程实践能力和创新意识,提高学生的综合素质和职业素养。
030201教学目标与要求课程安排与考核方式课程安排本课程共分为理论教学和实验教学两部分,理论教学包括课堂讲授、讨论课和案例分析,实验教学包括实验操作和课程设计。
考核方式采用平时成绩、期末考试成绩和实验成绩相结合的考核方式,其中平时成绩占30%,期末考试成绩占50%,实验成绩占20%。
平时成绩包括课堂表现、作业和小组讨论等,期末考试成绩采用闭卷考试形式,实验成绩根据实验操作和课程设计完成情况评定。
02化工仪表基础知识仪表的分类与功能用于测量温度、压力、流量、物位等工艺参数。
用于对生产过程进行自动控制,包括调节阀、执行器等。
用于显示测量结果,如指针式、数字式显示仪表等。
包括信号转换器、隔离器、安全栅等,用于保证仪表系统的安全稳定运行。
检测仪表控制仪表显示仪表辅助仪表仪表的工作原理与结构工作原理化工仪表通过测量不同的物理量(如温度、压力等),将这些物理量转换为可识别的信号(如电信号),并进行传输、处理、显示和控制。
结构组成化工仪表主要由传感器、变送器、显示器等部分组成。
第一章 自§1 化工自动化的主要内容一、自动检测系统测量、指示或记录工艺参数,如压力、液位、流量、温度四大参数。
二、自动保护超出正常范围,发出报警或启动联锁系统。
三、自动操纵按预先规定步骤操作设备、投运、停止生产过程。
四、自动控制利用自动控制装置来控制工艺参数,使其维持在规定范围内。
§2 自动控制系统的组成控制对象测量元件与变送器 将被控参数→统一信号。
如电或气信号。
控制器 求偏差(给定-测量),并对其进行数学运算后,输出统自动装置 一信号。
执行器 根据控制器的输出控制阀门的开度。
§3 控制流程图P6图§4 方框图§5 分类P 温度按控制规律 PI 按被控变量 压力PD 流量定值控制系统给定值恒定按给定值变化情况随动(自动跟踪)给定值随机变化程序(顺序)给定值按预先设定随时间变化。
§6 自动控制系统的过渡过程和品质指标一、静态、动态、干扰作用静态:被控参数不随时间变化的平衡状态。
动态:被控参数随时间变化的不平衡状态。
干扰:改变被控参数的因素,没有固定的规律,一般指阶跃干扰。
二、过渡过程在干扰作用下,被控参数随时间变化的过程。
即:系统由一个平衡状态过渡到另一个平衡状态的过程。
基本形式:①非周期衰减②衰减振荡过程③等幅振荡④发散振荡Y三、品质指标1、最大偏差或超调量最大偏差:被控参数偏离给定值的最大数值A超调量:表征被控参数偏离给定值的程度B。
B=A-C t 2、衰减比表征振荡的激烈程度,判断系统能否建立新的平衡的快慢程度。
B:B’=n:1 n=4~10n↓→衰减↓,n≈1 接近等幅振荡,不易稳定,n↑→∞接近非周期衰减过程缓慢,不希望。
3、余差(静差)被控参数稳定值与给定值的差C。
尽量小,具体分析。
4、过渡时间从干扰作用发生起到系统建立新的平衡状态时止过渡过程所经历的时间t s。
t s↓→迅速→质量↑5、振荡周期四、影响过渡过程的主要因素①对象的性质:负荷大小、结构尺寸、材质等。
《化工仪表及自动化》绪论内容提要:1.化工自动化的含义2.化工生产过程自动化的目的3.化工自动化的发展情况4.化工仪表及自动化系统的分类5.本学科的作用★2学时★1.化工自动化的含义是化工、炼油、食品、轻工等化工类型生产过程自动化的简称。
在化工设备上,配备上一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,这种用自动化装置来管理化工生产过程的办法,称为化工自动化。
2.化工生产过程自动化的目的加快生产速度,降低生产成本,提高产品产量和质量。
减轻劳动强度,改善劳动条件。
能够保证生产安全,防止事故发生或扩大,达到延长设备使用寿命,提高设备利用能力的目的。
生产过程自动化的实现,能根本改变劳动方式,提高工人文化技术水平,为逐步地消灭体力劳动和脑力劳动之间的差别创造条件。
3.化工自动化的发展情况20世纪40年代以前绝大多数化工生产处于手工操作状况,操作工人根据反映主要参数的仪表指示情况,用人工来改变操作条件,生产过程单凭经验进行。
低效率,花费庞大,见图。
20世纪50年代到60年代人们对化工生产各种单元操作进行了大量的开发工作,使得化工生产过程朝着大规模、高效率、连续生产、综合利用方向迅速发展。
20世纪70年代以来,化工自动化技术又有了新的发展已发展为综合自动化,应用的领域和规模越来越大;显示了知识密集化、高技术集成化的特点;智能化程度日益增加 。
20世纪末,计算机、信息技术的飞速发展,引发了自动化系统结构的变革。
4. 化工仪表及自动化系统的分类需要测量和控制的参数是多种多样的,主要有热工量(压力、流量、液位、温度)和成分(或物性)量。
化工自动化仪表按其功能分为:检测、显示、控制仪表和执行器。
由上述各类仪表,可以构成自动检测、自动操纵、自动保护和自动控制四种自动化系统。
5.本学科的作用化工生产过程自动化是一门综合性的技术学科。
它应用自动控制学科、仪器仪表学科及计算机学科的理论与技术服务于化学工程学科。
目录•课程介绍与教学目标•化工仪表基础知识•自动化控制系统原理•化工过程参数检测仪表•化工过程控制技术应用•自动化系统集成与优化设计•实验教学与案例分析•课程总结与展望课程背景及意义化工行业发展趋势随着化工行业的快速发展,自动化技术在生产过程中的应用越来越广泛,对化工仪表及自动化的需求也日益增长。
人才培养需求培养具备化工仪表及自动化技术应用能力的高素质技术技能人才,满足化工行业对人才的需求。
课程定位本课程是化工类专业的一门重要专业基础课,旨在培养学生掌握化工仪表及自动化技术的基本理论和基本技能。
知识目标能力目标素质目标030201教学目标与要求课程内容及安排化工自动化技术常见化工仪表及应用流量仪表、物位仪表等常见化工仪表的结构、工作原理和使用方化工仪表基础知识化工生产过程自动化控制结合实例讲解化工生产过程的自动化控制方案设计与实施。
实验与实训分析仪表包括对物质成分进行分析。
包括液位计、料位计等,用于测量容器中液体或固体物料的高度。
流量测量仪表包括流量计、流量开关等,用于测量管道中流体流量。
温度测量仪表包括热电偶、热电阻等,用于压力测量仪表仪表分类及功能测量误差与精度测量误差来源精度等级误差处理仪表选型与安装安装要求选型原则确保安装位置合适,避免干扰和振动,保证测量准确性。
维护保养自动控制系统组成接收设定值和测量值,根据控制算法输出控制信号。
被控制的工艺设备或过程,其输出量受到控制信号的影响。
将被控对象的输出量转换为标准信号,传递给控制器。
接收控制器的输出信号,驱动被控对象实现控制目标。
控制器被控对象测量变送器执行器控制原理与方法反馈控制原理通过比较设定值与测量值的偏差,控制器输出控制信号以减小偏差。
前馈控制原理根据已知干扰量或预测值,提前调整控制信号以抵消干扰。
控制方法包括PID控制、模糊控制、神经网络控制等,根据被控对象特性和控制要求选择合适的方法。
控制器设计与参数整定控制器设计01参数整定02整定方法03热电偶温度计热电阻温度计红外测温仪弹性式压力表电气式压力计液压式压力计差压式流量计转子流量计涡街流量计浮子式液位计静压式物位计雷达物位计1 2 3液体输送设备流量检测与调节压力检测与控制液体输送过程控制精馏塔过程控制精馏塔结构温度检测与控制压力检测与控制化学反应过程控制反应器类型温度检测与控制压力检测与控制蒸发过程控制蒸发设备01温度检测与控制02压力检测与控制03DCS(分布式控制系统)PLC(可编程逻辑控制器)SCADA(监视控制与数据采集系统)DCS/PLC/SCADA系统介绍系统集成方法与技术系统集成方法包括硬件集成、软件集成和网络集成等,其中硬件集成涉及传感器、执行器、控制器等设备的选型和配置;软件集成涉及操作系统、数据库、编程语言等的选择和开发;网络集成涉及通信协议、数据传输、网络安全等方面的设计和实施。
第三章过程控制仪表与装置教学要求:掌握基本控制规律的数学表示形式掌握基本控制规律对过渡过程的影响掌握气动、电动执行器的组成和特点了解 DDZ-Ⅲ控制器的组成及特性掌握工作流量特性和理想流量特性掌握执行器的选型、气开气闭方式的选择了解可编程控制器的编程方法了解可编程控制器的组成、工作过程重点:基本控制规律对过渡过程的影响理想流量特性执行器气开、气闭方式的选择难点:基本控制规律对过渡过程的影响直线流量特性分析执行器气开、气闭方式的正确选择§3.1 概述一、过程控制仪表与装置的分类和特点控制仪表------控制器、执行器、运算器以及可编程控制器等。
按所用能源分类:气动、电动、液动等。
电动仪表和气动仪表应用的最多。
按信号类型分类:模拟式和数字式两种。
气动控制仪表的特点。
电动控制仪表的特点。
模拟式传输信号通常为连续变化的模拟量,其线路简单,操作方便,价格较低模拟式仪表:基地式单元组合式组件组装式仪表数字式传输信号为断续变化的数字量。
现场级数字仪表可编程调节器可编程控制器二、信号制及供电方式气动控制仪表:~的模拟气压信号,作为仪表间的标准联络信号。
电动控制仪表:0~10mA(DC)电流信号作为电动Ⅱ型仪表的统一标准联络信号, 4~20mA(DC)电流信号和1~5V(DC)电压信号确定为过程控制系统中电动Ⅲ型仪表统一标准的模拟信号。
电动仪表信号之间的传输方式是:进出控制室的传输信号采用电流信号,控制室内部各仪表间联络信号采用电压信号,电动仪表的供电方式有交流供电和直流集中供电两种形式。
§基本控制规律及其对控制过程的影响一、基本控制规律概述1. 控制规律概述控制规律是指控制器的输出信号与输入偏差信号随时间变化的规律。
正作用控制器:输入e 与输出Δy 的变化方向相同; 反作用控制器:输入e 与输出Δy 变化方向相反。
本节中以正作用的控制器为例进行研究。
工程实际中应用最广泛的控制规律为比例(P )、积分(I )、微分(D )控制规律,简称PID 控制规律,各种控制器的运算规律均由这些基本控制规律组合而成。
化工仪表及自动化教案第一章:化工仪表概述1.1 仪表的定义和分类1.2 仪表的作用和重要性1.3 仪表的性能指标1.4 仪表的选用和安装第二章:压力仪表2.1 压力仪表的分类和原理2.2 压力仪表的选用和安装2.3 压力仪表的校验和维护2.4 压力仪表在化工中的应用案例第三章:流量仪表3.1 流量仪表的分类和原理3.2 流量仪表的选用和安装3.3 流量仪表的校验和维护3.4 流量仪表在化工中的应用案例第四章:温度仪表4.1 温度仪表的分类和原理4.2 温度仪表的选用和安装4.3 温度仪表的校验和维护4.4 温度仪表在化工中的应用案例第五章:液位仪表5.1 液位仪表的分类和原理5.2 液位仪表的选用和安装5.3 液位仪表的校验和维护5.4 液位仪表在化工中的应用案例第六章:自动化控制系统基础6.1 自动化控制系统的概念6.2 自动化控制系统的基本组成部分6.3 控制器的分类和原理6.4 控制系统的性能指标和评价第七章:模拟式控制器7.1 模拟式控制器的原理和结构7.2 模拟式控制器的参数设置和调整7.3 模拟式控制器在化工中的应用案例7.4 模拟式控制器的故障诊断和维修第八章:数字式控制器8.1 数字式控制器的原理和结构8.2 数字式控制器的编程和操作8.3 数字式控制器在化工中的应用案例8.4 数字式控制器的故障诊断和维修第九章:执行器9.1 执行器的分类和原理9.2 执行器的选用和安装9.3 执行器在化工中的应用案例9.4 执行器的故障诊断和维修第十章:自动化仪表系统的安全性和可靠性10.1 自动化仪表系统的安全防护措施10.2 自动化仪表系统的可靠性设计10.3 故障检测与诊断技术10.4 系统维护和保养的注意事项第十一章:DCS(分布式控制系统)11.1 DCS的基本概念和组成11.2 DCS的架构和工作原理11.3 DCS在化工企业中的应用案例11.4 DCS的维护与管理第十二章:现场总线与工业以太网12.1 现场总线的概念与分类12.2 工业以太网的技术特点与应用12.3 现场总线与工业以太网在化工仪表中的应用12.4 现场总线与工业以太网的故障诊断与维护第十三章:过程控制仪表与系统13.1 过程控制仪表的分类与原理13.2 过程控制系统的组成与作用13.3 常见过程控制系统在化工中的应用案例13.4 过程控制仪表与系统的故障诊断与维修第十四章:化工过程优化与先进控制14.1 化工过程优化的基本方法14.2 先进控制策略及其在化工中的应用14.3 化工过程模拟与仿真14.4 化工过程优化与先进控制在实际生产中的应用案例第十五章:仪表与自动化在化工安全生产中的应用15.1 仪表与自动化在危险化学品生产中的应用15.2 仪表与自动化在化工环境保护中的应用15.3 仪表与自动化在化工安全生产中的重要作用15.4 安全生产中仪表与自动化的案例分析与总结重点和难点解析本文教案主要涵盖了化工仪表及自动化的基础知识、各类仪表的工作原理和应用、自动化控制系统的组成和性能、执行器的选用和安装、以及仪表系统的安全性和可靠性等内容。
化工仪表及自动化教案第一篇:化工仪表及自动化教案绪论一、目的要求1.使学生对本课程的研究内容有比较全面地了解。
2.使学生掌握本课程的正确学习方法。
3.使学生了解本课程学习的重要性,以为以后的专业课学习打下良好的基础。
二、主要讲解内容及时间安排2学时1.主要讲解内容(1)所用教材及主要参考书;(2)课程内容介绍;(3)本课程的学习方法及学习要求。
2.时间安排:按教学日历安排进行。
三、讲授重点本课程的研究对象及主要内容;本课程的重点及学习方法和要求。
四、教学法以课堂讲授为主,学生课后阅读相关的参考资料为辅。
五、参考书(1)杜效荣主编.化工仪表及自动化(第二版).北京:化学工业出版社,1994(2)厉玉鸣主编.化工仪表及自动化(例题习题集).北京:化学工业出版社,1999(3)汪基寿主编.化工自动化及仪表.北京:中央广播电视大学出版社,1993(4)曹克民主编.自动控制概论.西安:西安建筑科技大学出版社,1995第三章检测仪表及传感器一、目的要求1.使学生了解仪表的性能指标。
2.使学生掌握仪表精度的意义及与测量误差的关系。
3.使学生初步掌握各种压力检测仪表的基本原理及压力表的选用方法。
4.了解各种流量计的测量原理。
重点是差压式流量计及转子流量计。
5.了解各种液位测量方法。
初步掌握液位测量中零点迁移的意义及计算方法。
6.掌握热电偶温度计及热电阻温度计的测温原理。
熟悉热电偶温度测量中的冷端温度补偿的作用及方法。
二、主要讲解内容及时间安排 15学时1.主要讲解内容:(1)检测仪表及传感器的概念,工业检测仪表的性能指标;(2)压力检测及仪表;(3)流量检测及仪表;(4)物位检测及仪表;(5)温度检测及仪表。
2.时间安排:按教学日历安排进行。
三、讲授重点1仪表等级的确定及鉴定和选择;2转子流量计的指示值修正,转子流量计与差压式流量计的工作原理的异同;3差压式液位变送器的工作原理及零点迁移问题;4热电偶温度计的冷端温度补偿。
化工自动化及仪表教学设计简介化工自动化及仪表教学是化工工程领域的重要课程之一,主要涵盖了化工自动化控制系统的设计、调试、运行及仪表的选型、使用等内容。
该课程的目标是培养学生掌握化工生产现代化与信息化的前沿技术,从而提高化工工程实践的能力。
教学目标1.理解化工自动控制系统的概念和结构,并了解其在化工生产中的应用;2.掌握化工自动化控制系统的设计原则和方法,能够进行自动化控制系统的方案设计;3.掌握常见的仪表类型和使用方法,具备进行仪表选型和调试的能力;4.培养学生实验设计和实验操作的能力,提高他们的实验研究能力。
教学内容本课程的教学内容包括两个方面:化工自动控制系统和仪表的原理及应用。
化工自动控制系统化工自动控制系统是化工工程中重要的组成部分,它的基本结构包括传感器、执行器、控制器、通信网络等四个部分。
该模块的教学重点包括:1.化工自动化控制系统的概念和结构;2.化工自动控制系统中传感器、执行器、控制器的原理和应用;3.常用的化工自动化控制系统模型;4.化工生产中自动化控制系统的实际应用。
仪表原理及应用仪表是化工自动化控制系统中重要的组成部分,其作用是用不同的物理量来反映化工过程的各种参数,并通过控制器进行处理,从而实现化工生产的自动化控制。
该模块的教学重点包括:1.常见的仪表类型和应用场合;2.仪表的电气特性和仪器指标;3.仪表选型和调试;4.仪表在化工自动化中的应用。
实验教学本课程设置了多个实验,旨在帮助学生巩固理论知识,并提高实验操作和实验设计能力。
实验包括:1.传感器的线性化及测量误差分析;2.实验室模拟化工自动控制系统的调试;3.自动化流程控制系统的设计及调试;4.仪表的调试与使用。
教学方法本课程采用理论授课与实验教学相结合的方式,强调理论与实践相结合,注重培养学生的实验探究能力。
主要教学方法包括:1.理论授课:通过课堂讲义、PPT、视频等多种形式进行;2.实验教学:在实验室中进行,涉及到化工自动化控制系统的设计、调试以及仪表的选型、调试等;3.问题解答:鼓励学生参与课堂讨论和提出问题,在教师的指导下进行解答。
第二章过程参数的检测与仪表教学要求:掌握检测仪表的基本性能指标(精度等级、变差、灵敏度等)掌握压力的检测方法(液柱测压法、弹性变形法、电测压法)学会正确选用压力计掌握应用静压原理测量液位和差压变送器测量液位时的零点迁移差压式流量计测量原理,常用节流元件,转子流量计结构、测量原理掌握容积式流量计(腰轮流量计)结构、工作原理、使用场合掌握应用热电效应测温原理掌握补偿导线的选用掌握冷端温度补偿的四种方法;了解热电偶结构,分类重点:弹性变形法、电测压法压力计选用应用差压变送器测量液位的零点迁移问题补偿导线的选用和冷端温度补偿难点:确定精度等级,压电式测量原理应用差压变送器测量液位的零点迁移问题第三导体定理电桥补偿法§2.1 概述一、检测过程及误差1.检测过程检测过程的实质在于被测参数都要经过能量形式的一次或多次转换,最后得到便于测量的信号形式,然后与相应的测量单位进行比较,由指针位移或数字形式显示出来。
检测误差误差-------测量值和真实值之间的差值误差产生的原因:选用的仪表精确度有限,实验手段不够完善、环境中存在各种干扰因素,以及检测技术水平的限制等原因,根据误差的性质及产生的原因,误差分为三类。
(1)系统误差------------在同一测量条件下,对同一被测参数进行多次重复测量时,误差的大小和符号保持不变或按一定规律变化特点:有一定规律的,一般可通过实验或分析的方法找出其规律和影响因素,引入相应的校正补偿措施,便可以消除或大大减小。
误差产生的原因:系统误差主要是由于检测仪表本身的不完善、检测中使用仪表的方法不正确以及测量者固有的不良习惯等引起的。
(2)疏忽误差------------明显地歪曲测量结果的误差,又称粗差,特点:无任何规律可循。
误差产生的原因:引起的原因主要是由于操作者的粗心(如读错、算错数据等)、不正确操作、实验条件的突变或实验状况尚未达到预想的要求而匆忙测试等原因所造成的。
(3)随机误差----------在相同条件下多次重复测量同一量时,误差的大小、符号均为无规律变化,又称偶然误差。
特点:变化难以预测,无法修正误差产生的原因:随机误差主要是由于测量过程中某种尚未认识的或无法控制的各种随机因素(如空气扰动、噪声扰动、电磁场等)所引起的综合结果。
随机误差在多次测量的总体上服从一定统计规律,可利用概率论和数理统计的方法来估计其影响。
二、检测仪表的基本技术性能指标1.精度检测仪表的精度反映测量值接近真实值的准确程度,一般用一系列误差来衡量。
(1)绝对误差绝对误差指仪表指示值与被测参数真值之间的差值,即t x x x -=∆实际上通常采用多次测量结果的算术平均值或用精度较高的标准表的指示值作为约定真值。
则绝对误差可用下式表示:0x x x -=∆(2)引用误差把绝对误差折合成标尺范围的百分数表示,即 %100%1000⨯M∆=⨯--=x x x 标尺下限值标尺上限值δ (3)精度等级按仪表工业规定,去掉最大引用误差的“±”号和“%”号,称为仪表的精度等级,目前已系列化。
只能从下列数系中选取最接近的合适数值作为精度等级,即0.005,0.02,0.05,0.1,0.2,0.4,0.5,1.0,1.5,2.5,4.0等。
例1 有两台测温仪表,它们的测温范围分别为0~100℃和100~300℃,校验表时得到它们的最大绝对误差均为2℃,试确定这两台仪表的精度等级。
解 这两台仪表的最大引用误差分别为%1%1001003002%2%1000100221=⨯-==⨯-=δδ 去掉最大引用误差的“%”号,其数值分别为2和1,由于国家规定的精度等级中没有2级仪表,同时该仪表的误差超过了1级仪表所允许的最大误差,所以这台仪表的精度等级为2.5级,而另一台仪表的精度等级正好为1级。
由此可见,两台测量范围不同的仪表,即使它们的绝对误差相等,它们的精度等级也不相同,测量范围大的仪表精度等级比测量范围小的高。
例2 某台测温仪表的工作范围为0~500℃,工艺要求测温时测量误差不超过±4℃,试问如何选择仪表的精度等级才能满足要求?解 根据工艺要求,仪表的最大引用误差为%8.0%10005004m ax ±=⨯-±=δ 去掉最大引用误差的“±”号和“%”号,其数值为0.8,介于0.5~1.0之间,若选择精度等级为1.0级的仪表,其最大绝对误差为±5℃,超过了工艺上允许的数值,故应选择0.5级的仪表才能满足要求。
小结:在确定一个仪表的精度等级时,要求仪表的允许误差应该大于或等于仪表校验时所得到的最大引用误差;而根据工艺要求来选择仪表的精度等级时,仪表的允许误差应该小于或等于工艺上所允许的最大引用误差。
这一点在实际工作中要特别注意。
2. 灵敏度与灵敏限(1)灵敏度灵敏度表示仪表对被测参数变化反应的能力,是指仪表达到稳态后输出增量与输入增量之比,即xy S ∆∆= 灵敏限灵敏限是指引起仪表指针发生可见变化的被测参数的最小变化量。
一般,仪表的灵敏限数值不大于仪表允许误差绝对值的一半。
3.回差在外界条件不变的情况下,当被测参数从小到大(正行程)和从大到小(反行程)时,同一输入的两个相应输出值常常不相等。
两者绝对值之差的最大值 和仪表量程Μ之比的百分数称为回差,也称变差即%100m ax ''⨯M∆=b δ 回差产生原因:由于传动机构的间隙、运动件的摩擦、弹性元件的弹性滞后等。
回差越小,仪表的重复性和稳定性越好。
应当注意,仪表的回差不能超过仪表引用误差,否则应当检修。
§2.2 压力检测方法及仪表一、压力检测的基本知识1.压力的概念及单位2. 压力的表示方法3.二、压力检测方法根据工业对象的特点,通常有三种检测压力的方法,即液柱测压法,弹性变形法和电测压力法。
1. 液柱测压法测压原理:是以流体静力学为基础,一般用液柱产生或传递的压力来平衡被测压力的方法进行测量的。
2. 弹性变形法"m ax ∆测压原理:当被测压力作用于弹性元件,弹性元件便产生相应的变形。
根据变形的大小,便可测知被测压力的数值。
3.电测压力法测压原理:是利用转换元件(如某些机械和电气元件)直接把被测压力变换为电信号来进行测量的。
弹性元件附加一些变换装置,使弹性元件自由端的位移量转换成相应的电信号,如电阻式、电感式、电容式、霍尔片式、应变式、振弦式等电测压力法可分为两类非弹性元件组成的快速测压元件,主要利用某些物体的某一物理性质与压力有关,如压电式、压阻式、压磁式等。
(1)电容式测压原理测压原理:是采用变电容原理,利用弹性元件受压变形来改变可变电容器的电容量,然后通过测量电容量C便可以知道被测压力的大小,从而实现压力-电容转换的。
(2)压电式测压原理测压原理:是根据“压电效应”把被测压力变换为电信号的。
(3)压电效应:当某些晶体受压发生机械变形时(压缩或伸长),在两个相对的面上产生异性电荷,这种没有外电场存在,而由于变形而引起的电现象称为“压电效应”。
(4)应变片式测压原理测压原理:是通过应变片将被测压力P引起的弹性元件应变量的变化转换为电阻值R 的变化,从而完成压力-电阻的转换,并远传至桥式电路获得相应的毫伏级电量输出信号,在显示或记录装置上显示出被测压力值。
三、压力检测仪表根据不同的原理及工艺生产过程的不同要求,可以制成不同形式的压力表。
弹性式压力表(弹簧管压力表)由于结构简单,价格便宜,使用和维修方便,并且测压范围较宽,因此,在工业过程中得到了十分广泛地应用。
电测法压力表测量脉动压力和高真空、超高压等场合时比较合适本节主要介绍在工业生产过程中常见的弹簧管压力表和霍尔式压力表。
四、差压(压力)变送器变送器是自动测控系统中的一个重要组成部分。
作用:将各种物理量转换成统一的标准信号,如气动单元组合仪表(简称为QDZ仪表)为20~100 KPa;电动单元组合仪表(简称为DDZ仪表)中,DDZ-Ⅱ型仪表为0~10mADC;DDZ-Ⅲ型仪表为4~20mADC。
按工作能源不同,压力变送器和差压变送器都分为气动和电动变送器两大类;按工作原理的不同,又可分为力平衡式变送器和微位移平衡式变送器,如以电容、电感、电阻和弦振频率为传感元件的变送器都属于微位移式变送器。
80年代以后,国际上相继推出了各具特色的智能变送器。
目前世界上尚未形成统一的现场总线(Field bus)(现场总线是用于过程自动化和制造自动化最底层的现场设备或现场仪表互连的通信网络)标准,因而各个厂家的智能变送器大多按各自的通讯标准开发,所以相互无操作性,无可互换性。
1.力平衡式压力变送器就变送器的杠杆系统来说,力平衡式变送器有单杠杆、双杠杆和矢量机构三种。
结构DDZ-Ⅲ型力平衡式电动变送器的结构如P34图2.10所示,主要由四部分组成:测量机构组成:由高、低压室、膜盒、轴封膜片等部分,作用:是把被测差压转换成作用于主杠杆上的力。
杠杆系统杠杆系统是差压变送器中的机械传动和力矩平衡部分组成:主、副杠杆、调零和零点迁移机构、平衡锤、静压调整及矢量机构等。
作用:是把测量机构对主杠杆的输入力所产生的力矩转换成检测片的微小位移。
位移检测放大器组成:差动变送器、低频振荡器、整流滤波及功率放大器等部分组成。
作用:是将副杠杆上检测片的微小位移转换成直流信号输出。
电磁反馈机构组成:由反馈线圈、永久磁钢等。
作用:将变送器输出电流转换成相应的电磁反馈力,作用于副杠杆上,产生反馈力矩,以便和测量部分产生的输入力矩相平衡。
(1)工作原理2.微位移式变送器微位移式变送器因其传感器元件位移和变形极小而得名。
典型的产品有:美国罗斯蒙特(Rosemount)公司研制的1151系列电容式变送器,美国霍尼韦尔(Honeywell)公司的DST型扩散硅式变送器,日本富士电机公司的FC系列浮动膜盒电容式变送器等。
(1)测量部分测量部分包括电容膜盒、高低压室及法兰组件等,作用:将差压、压力等参数转换成与电容有关的参数。
(2)转换部分转换部分由测量电路和电气壳体组成,其作用是将测量部分所得到的电容比的变化量转换成4~20mADC标准的电流输出信号,并附有调零、调量程、调迁移量等各种装置。
3.智能差压(压力)变送器智能差压(压力)变送器是一种带微处理器的变送器,对应于被测量差压和压力输出4~20mADC的模拟信号或数字标准信号。
依靠SFC(智能通信器),用户在现场或控制室就可对变送器发送或接受信息来设定各种参数。
智能差压(压力)变送器具有远程通讯的功能,不需要把变送器从塔顶或危险的安装地拆下来,减少了维修成本和时间。
五、压力检测仪表的选择压力表的选择应根据工艺过程对压力测量的要求,被测介质的性质,现场环境条件等来确定仪表的种类、型号、量程和精度,并确定是否需要带有远传、报警等附加装置。