作业5 电介质与电容、静电场能量
- 格式:pptx
- 大小:408.05 KB
- 文档页数:14
第十七讲 §5.6静电场的能量—习题课 一、电容和电容器1、电容:UqC =是描述孤立导体带电而引起自身电势变化的物理量。
即孤立导体的电容。
2、电容器:BA U U qC -=是描述两个导体组成电容器的电容,二者是相互关联的,即将一个导体放在无限远处就为孤立导体的电容。
二、电容器的储能(电容器的能量):静电场是一个物理场。
此物是否是物质的?其中的一个重要特性就是是否具有能量的特性,即在静电场中移动电荷是需要静电场力做功,这说明静电场是具有能量的。
下面通过对静电场形成能量的过程来说明静电场是具有能量的。
1、带电体的能量:外力做功就等于带电体的能量(电势能)P E W = ①把dq 从∞转移到带电体上,需外力做的微功:()Udq dqU dW U U dq dW A U B B A B ==−−−→−-==∞→0, q Q②把Q 从∞源源不断的转移到带电体上,需外力做的总功:⎰⎰==QUdq dW W 02、电容器的能量:通过电容器储能的过程来推导电容器能量的公式。
①把dq 从A B →上,需外力做的微功:Udq dW = −−→−=UqC dq CqdW =②把Q 从A B →上,需外力做的总功:QU CU C Q dq C q dW W Q21212220=====⎰⎰③电容器的能量:外力所做的总功就等于电容器的能量。
QU CU C Q dq C q dW W Qe 21212220=====⎰⎰可见,外力克服静电力所做的功,就是电容器的带电过程,即非静电能转化为静电能的过程,满足能量守恒定律。
上述三个表达式都非常有用,希望能熟记。
3、静电场的能量 能量密度①电场的能量密度(能量的体密度):单位体积内电场的能量。
()2020221V 2121E Ed d SV CU V W w e e εε==== Sd V = 可见,电能存在于电场之中,电场是电能的携带者,电场的能量是电场物质性的一个重要标志!静电场是物质的,是不以人们的意志为转移,是非精神的。
作业5 静电场五2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。
已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。
.A0σε' .B 02σε' .C 0r σεε' .D rσε' 答案:【A 】解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。
在产生静电场方面,它们的性质是一样的。
在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。
或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。
正负极化电荷产生的电场强度的大小都是0/εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/εσ。
3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。
.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立答案:【B 】解:静电场的高斯定理,是静电场的基本规律。
无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。
但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。
否则,只能计算出穿过高斯面的电通量。
图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。
4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。
设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。