(完整word)行列式的计算技巧与方法总结,推荐文档
- 格式:doc
- 大小:457.51 KB
- 文档页数:11
存档编号赣南师学院学士学位论文行列式的若干计算技巧与方法目录摘要 (1)关键字 (1)Abstract (1)Key words (1)引言 (2)1.行列式的概念及性质 (2)1.1 n阶行列式的定义 (2)1.2 行列式的性质 (3)2.行列式计算的几种常见技巧和方法 (5)2.1 定义法 (5)2.2 利用行列式的性质 (6)2.3 降阶法 (9)2.4 升阶法(加边法) (11)2.5 数学归纳法 (12)2.6 递推法 (14)3. 行列式计算的几种特殊技巧和方法 (16)3.1 拆行(列)法 (16)3.2 构造法 (17)3.3 特征值法 (19)4. 几类特殊行列式的计算技巧和方法 (19)4.1 三角形行列式 (19)4.2 “爪”字型行列式 (20)4.3 “么”字型行列式 (21)4.4 “两线”型行列式 (23)4.5 “三对角”型行列式 (24)4.6 德蒙德行列式 (25)5.行列式的计算方法的综合运用 (27)5.1 降阶法和递推法 (28)5.2 逐行相加减和套用德蒙德行列式 (28)5.3 构造法和套用德蒙德行列式 (29)小结 (30)参考文献 (31)行列式的若干计算技巧与方法摘要:行列式是高等代数的一个基本概念,求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法.本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式的求值方法.如:化三角形法、降阶法和数学归纳法等多种计算方法以及Vandermonde行列式、“两线型”行列式和“爪”字型行列式等多种特殊行列式.并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征.关键词:行列式行列式的计算方法 Vandermonde行列式The Calculation of Determinant Abstract: The determinant is a basic concept of higher mathematics. The solution of determinant is the basic question, and each kind of complex higher order determinant has its special solution method. This paper mainly introduces the methods for calculation of determinant. For example, the triangle method, order reduction method,mathematical induction method and Vandermonde determinant, two linear determinant,claw type determinant and so on. The paper also analyzes the corresponding examples, and summarizes the characteristic of determinants corresponding to each method.Key words: Determinant The calculation of determinant Vandermonde determinant引言:行列式的计算是高等代数的重要容之一,也是学习过程的一个难点.对于低阶行列式,我们可以利用行列式的定义和性质计算.但对于高阶行列式,如果直接利用定义和性质计算,则计算量大,很难得到结果.因此,研究行列式的计算方法和技巧就显得十分必要.本文主要介绍了几种计算方法和技巧,还有一些特殊行列式的计算方法.1.行列式的概念及性质1.1 n 阶行列式的定义我们知道,二、三阶行列式的定义如下:22211211a a a a =21122211a a a a -,=333231232221131211a a a a a a a a a .312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a ---++从二、三阶行列式的在规律引出n 阶行列式的定义. 设有2n 个数,排成n 行n 列的数表nnn n nn a a a a a a a a a212222111211,即n 阶行列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积n 21nj j 2j 1a a a ⑴的代数和,这里n 21j j j 是n 21,,, 的一个排列,每一项⑴都按下列规则带有符号:当n 21j j j 是偶排列时, ⑴带正号;当n 21j j j 是奇排列时, ⑴带负号. 即nnn n nn a a a a a a a a a212222111211=()()n21n21n 21nj j 2j 1j j j j j j 1a a a τ∑-,这里∑n21j j j 表示对所有n 级排列求和.1.2 行列式的性质性质1 行列互换,行列式不变.即nna a a a a a a a a a a a a a a a a a n2n1n22212n12111nnn2n12n 22211n 1211= .性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即=nnn2n1in i2i1n 11211k k k a a a a a a a a ak nna a a a a a a a an2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即11121111211112111221212121212.n n n n n n n n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+ 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即k a a a ka ka ka a a a a a a nn n n in i i in i i n=21212111211nnn n in i i in i i na a a a a a a a a a a a 21212111211=0. 性质5 把一行的倍数加到另一行,行列式不变.即=+++nn n n kn k k kn in k i k i na a a a a a ca a ca a ca a a a a2121221111211nnn n kn k k in i i n a a a a a a a a a a a a 21212111211. 性质6 对换行列式中两行的位置,行列式反号.即nn n n kn k k ini i n a a a a a a a a a a a a 21212111211=-nnn n in i i kn k k n a a a a a a a a a a a a21212111211.性质7 行列式一行(或列)元素全为零,则行列式为零.即00000nn1-n n,n2n1n 11-n ,11211=a a a a a a a a.2、行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:1321000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nnnn nnB A BC A •=0, nn nn nnnnnn B A B C A •=0. 例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D .当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-1100010000001100001010001D 133221.110100001100010000110001000001100011000113322113322nn n nn n a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nnna c a c a cb b b a2211210,nnn c a c a c a a b b b2211012,nnn b b b a a c a c a c 211122,121122a b b b c a c a c a nn n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解.4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D . 再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ. 5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .小结本文主要介绍了行列式计算的一些技巧和方法,还有一些特殊行列式的计算技巧,通过归纳和总结这些技巧和方法,让读者在计算行列式时游刃有余.然而在这么多方法面前,我们需要多观察、多思考,这样便于我们更加轻松地解决有关行列式的问题,也让我们更加灵活的运用这些方法和技巧来解决实际问题.参考文献:[1]北大数学系代数小组. 高等代数(第三版)[M].:高等教育,2003:50~104.[2]钱. 高等代数题解精粹[M].:中央民族大学,2002:24~58[3]家保,中华,陆一南.若干类型行列式计算方法.科学技术学院学报(自然科学版),2012年3月,30(2).[4]鹏辉.行列式的计算技巧.学院报,2011年4月,33(4).[5]丁冰.三线型行列式的计算.科技通报,2012年2月,28(2).[6]龚德仁.高阶行列式计算的若干技巧.课外阅读(中下).2012年03期.[7]新功.行列式的计算方法探讨.师大学学报(自然科学版),2011年7月,28(4).[8]王爱霞.关于n阶行列式的计算方法与技巧的探讨.教育学院学报.2012年第1期.[9] 樊正华,徐新萍.浅谈行列式的计算方法.教育学院学报(自然科学),2011年2月,27(1).[10]卢潮辉.三对角行列式的计算. 职业技术学院学报,2010年3月,9(2).[11] 林.求n阶行列式的几种方法和技巧. 科技信息报,2007年第8期.[12]“爪”字型和“么”字型行列式的计算.理科教学研究(短文集锦),2006年第4期.。
行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A ∙=0, nn nn nnnn nn B A B C A ∙=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ--∙-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ∙-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--∙+∙=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--∙-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式.4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的范德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D =n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用范德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用范德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。
行列式的计算方法总结行列式是数学中一类特殊的数值,它可以用于解决各种数学问题,如线性方程组的解、二次行列式的特征根以及三角形的面积等。
它的计算方法也颇为多样,各种行列式的计算方法可以归纳总结如下:第一种是规则式子求行列式的方法,即规则式子求行列式的值。
这种方法包括常见的拆分积式法,它可以用来计算简单行列式,其解算步骤如下:把行列式的第一行和其他所有行有序的放在一起,按列乘以每列的分量,然后把乘积相加,即可求出行列式的值。
另一种常用的计算行列式的方法是运用行列式的转置法则,这也是一种简单的计算行列式的方法,它的解算步骤如下:先把行列式的行和列都交换一下,然后把交换后的新行列式进行上面第一种规则式子求行列式的求值,便可求出行列式的值。
此外,还有多元函数求行列式的方法,以及行列式求导、求偏导数的方法。
多元函数求行列式的方法就是将行列式用多元函数的形式表示出来,然后用函数定义求和解决之。
行列式求导、求偏导数的方法就是将行列式的变量替换为一个新的变量,然后进行积分,并求出偏导数,最终得到行列式的值。
最后一种常用的计算行列式的方法是拆解行列式的方法,这是一种比较复杂的行列式计算方法。
它的解算步骤如下:先把行列式拆解成几个子行列式,然后逐步把子行列式拆解为更小的子行列式,最终得到一个最小子行列式,将其值替换到初始行列式中计算,即可求出该行列式的值。
以上是行列式的计算方法总结,由于行列式的类型众多,其计算方法也多如牛毛,仅有上述几种计算方法是不够的,若想解决复杂的行列式计算,还需要运用其他更加复杂的计算方法,如克莱姆法、罗宾逊法、孟加拉法等。
此外,计算行列式还需要掌握矩阵运算的基础知识,运用高等数学知识,才能解决复杂的行列式计算问题。
总之,行列式的计算是一件非常有技巧性的事情,找到合适的计算方法,解决行列式计算的难题,有助于提高数学的解题能力。
行列式的计算技巧与方法总结讲解行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n n n i i --?-=∑=2221111mm x x m x nn i i --??? ??-=∑= 0000121()??? ??--=∑=-m x m n2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A ?=0, nn nn nnnn nn B A B C A ?=0.例7 解行列式γβββββγββββγλbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:00100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ?-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立.即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠?,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=?,则特征方程有重根21x x =,则()11-+=n n x nB AD .在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--?+?=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j ix x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零.证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠?≠?≠?λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b n nn,n n n a c a c a c b b b a 2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()??+--?-=∑=+ni i nn n b 121111()()+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式.。
行列式的计算技巧窍门情况总结行列式是线性代数中重要的概念之一,它在解决线性方程组、矩阵的逆等问题中起着关键作用。
本文将总结行列式的计算技巧和窍门,帮助读者更好地掌握行列式的计算方法。
1.定义行列式是一个方阵所对应的一个标量值。
对于一个n阶方阵A,它的行列式记作det(A),A,或者D(A)。
对于2阶和3阶方阵,行列式的计算较为简单,可以直接应用定义进行计算。
例如对于2阶方阵A:abcd对于3阶方阵A:abcdefghidet(A) = aei + bfg + cdh - ceg - bdi - afh。
2.初等变换法初等变换法是一种常用的计算行列式的方法。
初等变换指的是对行列式的行(或列)进行以下操作:①互换两行(列);②其中一行(列)与其它行(列)相加(或相减,可取加减系数为1和-1);③其中一行(列)乘以一个非零常数。
这些操作不改变行列式的值。
通过使用初等变换,可以将行列式转化为更简单的形式,从而更容易计算。
例如,在计算3阶行列式时,我们可以使用初等变换将行列式化为上三角形式,这样计算起来会更加简便。
3.拆分法则行列式有一个重要的性质,即它是线性的。
也就是说,如果将一个方阵的其中一行(列)按一定的方式进行拆分并相加(或相减),则行列式的值不变。
这个性质对于简化行列式的计算非常有帮助。
例如,在计算3阶行列式时,可以选择将第一列按照一定方式进行拆分,然后相加或相减。
这样可以将行列式化简为两个2阶行列式的形式,从而更容易计算。
4.分块矩阵法对于大规模的方阵,计算行列式将变得较为复杂。
分块矩阵法是一种较为高效的计算行列式的方法。
分块矩阵法的基本思想是将一个大的方阵分割为若干个小的方阵,并利用分块矩阵的性质进行计算。
这样可以将复杂的计算问题化简为对小方阵的计算问题,从而降低了计算的难度和复杂度。
5.逆序数法逆序数法是一种计算行列式的方法,它利用了逆序数和奇偶性的关系。
逆序数是指在一个排列中,逆序对的个数。
行列式的计算方法总结行列式是线性代数中的重要概念,它在矩阵理论、方程组求解、向量空间等许多领域都有广泛的应用。
计算行列式的方法有很多种,下面我们来总结一下常见的计算行列式的方法。
1.代数余子式法:代数余子式法是计算行列式的一种经典方法。
对于n*n阶行列式A,可以按照第一行(或第一列)的元素展开得到n个代数余子式,然后按照代数余子式定义计算行列式。
具体步骤如下:(1)选择行列式A的第一行(或第一列)的所有元素,记作a11,a12,...,a1n。
(2)计算n个代数余子式,第i个代数余子式记作A(i,1)(或A(1,i))。
A(i,1)等于元素a1i所在行与列组成的n-1阶子行列式的行列式值。
(3)用代数余子式计算行列式,行列式的值等于各代数余子式与元素a1i的乘积之和:det(A) = a11*A(1,1) - a12*A(2,1) + a13*A(3,1) - ... + (-1)^(n+1)*a1n*A(n,1)。
2.拉普拉斯展开法:拉普拉斯展开法也是计算行列式的一种常用方法。
具体步骤如下:(1)选择行列式A的其中一行(或其中一列),记作第k行(或第k列)。
(2)计算代数余子式,第i行第j列元素所对应的代数余子式记作A(i,j)(或A(j,i))。
A(i,j)等于元素aij所在行与列组成的n-1阶子行列式的行列式值。
(3)用代数余子式计算行列式,行列式的值等于各代数余子式与元素aij的乘积之和:det(A) = a1k*A(1,k) - a2k*A(2,k) + a3k*A(3,k) - ... + (-1)^(k+1)*ank*A(n,k)。
3.克莱姆法则:克莱姆法则是计算线性方程组的一个重要方法,也可以用来计算行列式。
对于n个未知数的n个线性方程组Ax = b,其中A是一个n*n阶矩阵,x和b都是n维列向量。
如果矩阵A是非奇异的(即行列式det(A)≠0),则可以用克莱姆法则求解方程组。
具体步骤如下:(1)将线性方程组的系数矩阵A按列分成n个子矩阵A1,A2,...,An,其中第i个子矩阵Ai将系数矩阵A的第i列替换为等号右边的向量b。
行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
线性代数行列式计算方法总结线性代数是数学中的一个重要分支,而行列式计算方法则是线性代数中的一个重要内容。
行列式是矩阵的一个标量,它可以帮助我们求解线性方程组的解、判断矩阵的可逆性以及计算向量的夹角等。
在学习线性代数的过程中,行列式的计算方法是一个必须要掌握的基础知识。
本文将对线性代数中行列式的计算方法进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
一、行列式的定义。
行列式是一个非常重要的概念,它可以用来描述一个矩阵的性质。
对于一个n阶方阵A,它的行列式记作det(A)或者|A|。
行列式的计算方法有多种,接下来我们将逐一介绍。
二、行列式的计算方法。
1. 代数余子式法。
代数余子式法是一种常用的行列式计算方法。
对于一个n阶方阵A,它的行列式可以通过如下公式计算:det(A) = a11A11 + a12A12 + ... + a1nA1n。
其中,a11, a12, ..., a1n为矩阵A的元素,A11, A12, ..., A1n为对应元素的代数余子式。
通过递归计算每个代数余子式的行列式,最终可以得到整个矩阵的行列式值。
2. 克拉默法则。
克拉默法则是另一种行列式计算方法。
对于一个n阶线性方程组Ax = b,如果A是一个可逆矩阵,那么方程组的解可以表示为:xi = det(Ai) / det(A)。
其中,det(Ai)是将矩阵A的第i列替换为b后所得到的新矩阵的行列式,det(A)是矩阵A的行列式。
通过计算各个未知数的值,可以得到方程组的解。
3. 数学归纳法。
数学归纳法是一种递归的行列式计算方法。
对于一个n阶方阵A,它的行列式可以通过以下步骤计算:当n=1时,行列式的值就是矩阵A的唯一元素。
当n>1时,可以通过展开定理将n阶矩阵的行列式转化为n-1阶矩阵的行列式,然后递归计算下去,直到n=1时结束。
4. 其他方法。
除了上述方法外,行列式的计算还有其他一些特殊情况下的方法,比如利用特征值和特征向量、利用矩阵的对角化等。
幻灯片1 幻灯片21、定义法:适用于0比较多的行列式.2、利用性质化三角形行列式3、 按行(列)展开4、 其他方法: 析因子法 箭形行列式行(列)和相等的行列式 递推公式法加边法(升级法) 拆项法 数学归纳法 幻灯片3(一)析因子法幻灯片4221123122323152319x D x -=-例:计算解:由行列式 定义知为 的4次多项式. x D 又,当 时,1,2行相同,有 ,D =1x =±1x ∴=±为D 的根.当 时,3,4行相同,有 0,D =2x =±2x ∴=±为D 的根.故 有4个一次因式: 1,1,2,2x x x x +-+-D (1)(1)(2)(2),D a x x x x =+-+-设令 则 0,x =112312231223152319D ==-幻灯片5(二)箭形行列式第1列,得: 幻灯片6可转为箭形行列式的行列式:(把第 i 行分别减去第1行, 即可转为箭形行列式)幻灯片7(三)行(列)和相等的行列式幻灯片8幻灯片9 幻灯片10(四)升级法(加边法)幻灯片11幻灯片121(1)2(2)12.a ⋅⋅-⋅⋅-=- 3.a ∴=-即,解:把所有的第 列 的 倍加到 (1,,)i n =L i ic a -1i +12(1)(1)(1)na n bb b a n b a bc c c a n b b a+-+-++++-L L L M M M M L 解:D 12311341(1)2113211221n nn n n D n n n n n -+=----L LMM ML M ML L 解121121221211000n nn nn n n a a a a b a a D a a b a a a a b ++=++L L L M M M L M L 解:1)(五)递推公式法幻灯片13(先将行列式表成两个低阶同型的行列式的线形关系式,再用递推关系及某些低阶(2阶,1阶)幻灯片14(六)拆项法(主对角线上、下元素相同)幻灯片15继续下去,可得幻灯片16幻灯片17(七) 数学归纳法 例、证明:112c ()n n n D a b D abD --+-按 展开解2221,D a ab b D a b=++=+而11(1)n n n na b a b D a bn a a b++⎧-⎪≠=⎨-⎪+=⎩由以上两式解得行列式的值求出 的值) D112200n n na x a a a x a a a a x a a a x a D a aa x a aax ++++=++L LL L L L O L L L L L L L L 解:1212110 (1)nn n n i ix x x D x x x a x =≠=+∑L L ,当 时 当 时也可以用加边法做:0(1,2)i x i n ≠=L幻灯片18幻灯片19幻灯片20(八) 范德蒙行列式幻灯片21幻灯片22 练习1、计算证:当 时, ,结论成立. 111111(1)D a a a =+=+1n =假设 时结论成立,即, n k=对 ,将 按最后一列拆开,1n k =+1k D+所以 时结论成立,故原命题得证. 1n k =+12222122221212111nn n n n n nn n nnx x x x x x D x x x x x x ---=L L L L LO L L L 例、计算行列式解:考察 阶范德蒙行列式 1n +显然 就是行列式 中元素 的余子式 , .1n n M +1n x -()f x D即,1,1n n n n n D M A ++==- ,( 为代数余子式) ,1n n A +又由 的表达式及根与系数的关系知, ()f x 1n x-()f x 中 的系数为:,1121()()n n n i j j i nA x x x x x +≤<≤=-+++-∏L 即,幻灯片23幻灯片24 幻灯片25 幻灯片26 练习2、计算于是有 幻灯片27 同理有幻灯片28 练习3、计算幻灯片2921121122121000000n nn nn n a a a a a a a D a a a a a a a a ++=++++L L L M M M L M L 解i 1121500495c 94920,549n n n n n D D D D -----=-L L L L LO O O L L L O O L L L 按行展 开解:即有 11254(5),n n n n D D D D ----=-1111545445n n n n n n nn n D D D D D ++--⎫-=⇒=-⎬-=⎭即000n c b b b a c bb bc a b b a b b D cc a b c a b c c c a c c a-=+L L L L L L L L L L L L L L L L L L 解幻灯片30幻灯片31练习4、证明:幻灯片32幻灯片33 练习5、计算幻灯片3400n b b b b a b c a b b c a b b D cc a b c c a b c c c a c c c a-=+L L L L L L L O O O L L O O O L LL 又a b a c ⨯-⨯-()-()①②,得[()()]/nnn c b D c a b b a c c b≠=----,当 时1[(1)]()n n c b D a n b a b -==+--,当 时证: 时, . 结论成立. 1cos D α=1n =假设 时,结论成立. n k≤当 时, 按第 行展开得 1k +1n k =+1k D+由归纳假设12cos cos cos(1)k D k k ααα+=--于是 时结论亦成立,原命题得证. 1n k =+解:考察 阶范德蒙行列式1n +2,1n M +()g x 显然 就是行列式 中元素的余子式 ,即 n D 由 的表达式知, 的系数为: ()f x x2,123121211()()n n n n i j j i nA x x x x x x x x x x x +-≤<≤=-+++-∏L L L L 即。
行列式的若干计算技巧与方法内容摘要1•行列式的性质2.行列式计算的几种常见技巧和方法定义法2.12.2利用行列式的性质2.3降阶法2.4升阶法(加边法)2.5数学归纳法2.6递推法3•行列式计算的几种特殊技巧和方法3.1拆行(列)法3.2构造法3.3特征值法4.几类特殊行列式的计算技巧和方法4.1三角形行列式4.2“爪”字型行列式4.3“么”字型行列式4.4“两线”型行列式4.5“三对角”型行列式4.6范德蒙德行列式5.行列式的计算方法的综合运用5.1降阶法和递推法5.2逐行相加减和套用范德蒙德行列式5.3构造法和套用范德蒙德行列式标准实用=0.1.2行列式的性质性质1 行列互换,行列式不变•即an a 12 a 1nana 21a n1a 21a 22 a 2na 12a 22a n2a n1a n2a nna 1na 2na nn性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式•即a 11 a 12 a 1 na11a12a1nka i1ka i2 ka ink a i1ai2aina n1a n2a nnan1an2ann性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的 和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列) 一样•即a 12 Ka ina iiMa n1b 2 C 2K b n C n M M a n2Ka nna 11 a 12K a1n M MM M b 1 b 2K b n M MM Ma n1 a n2Ka nna 11 a 12K a1n M M M Mq C2 K C n M MM M a n1 a n2Ka nn性质4 如果行列式中有两行 那么行列式为零•即a 11 a 12 a 1 na 11 a 12 a 1 na i1a i2a ina i 1 a i2a inkka i1 ka i2 ka ina i1 a i2 a ina n1 a n2a nna n1a n2a nn(或列)对应元素相同或成比例,标准实用性质5 把一行的倍数加到另一行,行列式不变.即a11 a12 a1n a11 a12 a1 na ii ca ki a i2 ca k2 a in Ca kn a i1 a i2 a ina ki a k2 a kn a k1 a k2 a kna n1 a n2 a nn a n1 a n2 a nn性质6 对换行列式中两行的位置,行列式反号•即a11 a12 a1n a11 a12 a1 na i1 a i2 a in a k1 a k2 a kna k1 a k2 a kn =-a i1 a i2 a ina n1 a n2 a nn a n1 a n2 a nn性质7 行列式一行(或列)元素全为零,则行列式为零•即a1 ,n-1 a1 na11 a120 0 0 0 0a n1 a n2 a n,n-1 a nn2、行列式的几种常见计算技巧和方法2.1定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.标准实用主对角线下方的元素与第一行元素对应相同, 故用第一行的 1例1计算行列式解析:这是一个四级行列式,在展开式中应该有4! 24项,但由于出现很多的零,所以不等于零的项数就大大减少•具体的说,展开式中的项的一般形式是a 1j 1 a 2 j 2 a 3j 3 a 4 j 4•显然,女口果j 14,那么31j 10,从而这个项就等于零.因此只须考虑 j 1 4的项,同理只须考虑j 2 3, j 3 2, j 41的这些项,这就是说,行列式中不为零的项只有a 14a 23a 32a 41,而43216,所以此项取正号•故2.2利用行列式的性质43211 &14&23&32&41 24.即把已知行列式通过行列式的性质化为上三角形或下三角形 •该方法适用于低阶行列式.2.2.1化三角形法上、下三角形行列式的形式及其值分别如下:a 11 a 12a 13 a 1na 110 0 0 a 22a 23a 2na 21a 220 00 a 33 a 3na 11 a 22a nn,a 31 a 32a 33a nna n1 a n2 a n3a nn例2计算行列式D na 1 a 1b 1 a 2 a n a 1a 2a nb n解析:观察行列式的特点,a 2 a n a 11a 22a nn•倍加到下面各行便可使主对角线下方的元素全部变为零•即:化为上三角形.解:将该行列式第一行的倍分别加到第2,3 •••(n 1)行上去,可得2.2.2连加法D n 1这类行列式的特征是行列式某行(或列)a ib iMa2加上其余各行a nb n(或列)后,使该行(或列)均相等或出现较多零,从而简化行列式的计算•这类计算行列式的方法称为连加法.例3计算行列式D n 解: x1mX1 x2mX2X nX nX n mni 1 nX i m X2 i 1X i m X2 m ni 1 X i m X2X1D nX nX n1 X2 X n 1 X2 X n n 1 X2 m X n n 0 m 0 X i m X i m1 i 11 X2 X n m 0 0 mX nnn 1m X i mi 12.2.3滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,解:从最后一行开始每行减去上一行,有1 2 3 n 1 n1 2 3 n 1 n11 1 1 12 0 0 0 2 D n1 1 1 1 12 2 00 21 11111 1 1111 2 3 1 0 0 2n 21 1 01 1 1 1 02.2.4逐行相加减n 行的和全相同,但却为零•用连加法明显不行,这是我们可以解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:这种方法叫滚动消去法. 122 1例4计算行列式D n 3 23 n 1 n2 n 2 n 11 n 3 n2 n 2n 2 21n n 12n对于有些行列式,虽然前a 1a 1 0a 2 a 2 例5计算行列式D0 0 a s0 0 01110 0 0 0 0a n a n1 1尝试用逐行相加减的方法.2.3降阶法将高阶行列式化为低阶行列式再求解.2.3.1按某一行(或列)展开例6 解行列式D n解:按最后一行展开,得2.3.2按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D中任意选定了k 1 k n -1个行.由这k行兀素所组成的一切k级子式与它们的代数余子式的乘积的和等于行列式 D.即D M 1A1 M2A2 M n A n,其中A i是子式M i对应的代数余子式.a ia2a3a n2n n 1 a1a2a n 1n 1 a1a2an .a n a n 2 a2 a1n 1 n 2D n a1x a2x a n 1XB nnC nn2.4升阶法算行列式的方法叫做升阶法或加边法•升阶法的最大特点就是要找每行或每列相同的因子 升阶之后,就可以利用行列式的性质把绝大多数元素化为 其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一 般行列的位置.例7解行列式D nA nn 0C nn B nnA nn ?B nn .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得D nn 1 ab就是把n阶行列式增加一行一列变成 n+1 阶行列式,再通过性质化简算出结果,这种计,那么0,这样就达到简化计算的效果.(n 1) 110 1 00 0 1 D0 0 0 0 0n 11 n 1 .2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法0 1 11 0 1例8 解行列式D=1 1 01 1 11 1 11 1 1 1 1 1 0 1 1 01阶行列式,即1 1 1 0 0 1 0 1 0D1 1 1 1 1 1 0 1 1 0再将第一行的1倍加到其他各行,得:1 1 1 1 1 0 1 0 1D=1 1 0 0 0 0 1 0 0 1从第二列开始,每列乘以1加到第一列,得:1 1 0 0 0 01 0 0 1解:使行列式D 变成n去证明•对于高阶行列式的证明问题,数学归纳法是常用的方法.cos 1 0 0 01 2 cos 1 0 0例9计算行列式D n 0 1 2 cos0 00 0 0 2 cos 10 0 0 1 2 cos解:用数学归纳法证明当n 1 时,D i coscos 1 2当n2 时,D2i 2cos 2C0S 1 C0S2猜想,D n cosn由上可知,当n 1,n 2时,结论成立•假设当n k时,结论成立•即:D k cosk .现证当n k 1时,结论也成立cos 1 0 0 01 2 cos 1 0 0当n k 1时,D k 1 0 1 2cos0 00 0 0 2 cos 10 0 0 1 2 cos 将D k i按最后一行展开,得cos 1 0 01 2cos 1 0D k 1k 1 k 11 ?2cos 0 1 2cos 00 0 0 2coscos k1时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立.即:D n cosn2.6递推法 技巧分析:若n 阶行列式D 满足关系式aD n bD n 1 cD n 2 0.则作特征方程ax 2 bx c 0.① 若0,则特征方程有两个不等根,则 D n Ax ; 1 Bx ; 1 ② 若0,则特征方程有重根 X 1 X 2,则D n A nB x ; 1在①②中,A ,B 均为待定系数,可令 n 1, n 2求出.因为D k所以cos2cos2cos2 cos D kcoskcos k cos cosk cos sin k sin ,2 cos D k D k 12 cos cosk cosk cos sin k sincosk cossin k sin这就证明了当9 5 °°°°°4 95 °°°°° 4 9 5 °°°例1° 计算行列式D n°°°° 4 9 5°°°°° 49解:按第一列展开,得D n 9D n 1 2°D n 2 •即D n9 D n i 2° D n2 °.作特征方程2x 9x 2°°.解得X i 4, X2 5.则D n A?4n1 B?5n1.当n 1 时,9 A B ;当n 2 时,61 4A 5B .解得A 16,B 25 ,所以D n 5n 14n1.3、行列式的几种特殊计算技巧和方法3.1拆行(列)法3.1.1概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值•拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和.3.1.2例题解析1 a1a2 0 0 01 1 a2a3 0 0例11 计算行列式D n 0 1 1 a30 00 0 0 1 a n 1 a n0 0 0 1 1 a解:把第一列的元素看成两项的和进行拆列,得1 a1 a2 0 0 01 0 1 82 a3 0 0D n 0 0 1 1 a30 00 0 0 0 1 a n 1 a n0 0 0 0 1 1 a n3232 1 33333n 113n3n31 0 3232133333n 3n3n上面第一个行列式的值为所以D n 1 31 1 321a3a33n11 31 D n 1 .这个式子在对于任何n n都成立, 因此有D n 1 aQ na11 32D n 2 a1 a〔a2ii1 3j.j 13.2构造法3.2.1概念及计算方法有些行列式通过直接求解比较麻烦, 3n3nn 13132 3n这时可同时构造一个容易求解的行列式,从而求出原行列式的值.322例题解析1 1 1X1 X2 X n2 2 2 例12 求行列式D nX1 X2 X nn 2 n 2 n 2治X2 X nn n nX1 X2 X n 值.构造n 1阶的范德蒙德行列式,得1 1 1 1X1 X2 X n X2 2 2 2X1 X2 X n Xf Xn 2 n 2 n 2 n 2X1 X2 X n Xn 1 n 1 n 1 n 1X1 X2 X n Xn n n nX1 X2 X n X将f x按第n 1列展开,得f x A,n 1 A;n 1其中,x 的系数为A n,n 1 又根据范德蒙德行列式的结果知f x x X-! 由上式可求得x n 1的系数为n 1X A n,n 1X n1A n 1,n 1xn n 1 ——1 D n D n解:虽然D n不是范德蒙德行列式, 但可以考虑构造n 1阶的范德蒙德行列式来间接求出D n的X x2X X n X i X j .1 j i nx1x2x n x i x j.1 j i n故有D n X i X2 X n X i X j .1 j i n3.3特征值法3.3.1概念及计算方法设1,2,n是n级矩阵A的全部特征值,则有公式A 1 2 n .故只要能求出矩阵A的全部特征值,那么就可以计算出A的行列式.3.3.2例题解析例13 若1, 2, n是n级矩阵A的全部特征值,证明:A可逆当且仅当它的特征值全不为零.证明:因为A 1 2 n,贝UA 可逆A 0 1 2 n 0 i 0 i 1,2 n .即A可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1三角形行列式4.1.1概念a 11a 2i a 22 a 3i a 32a 33a n1a n2 a n3 a nn故称为"三角形”行列式.4.1.2计算方法由行列式的定义可知,4.2.2计算方法方法可归纳为:“爪”字对角消竖横.a i1a i2 a i3 a i na 22a 23 a 2n 形如a 33a 3na nna iia i2a i3a i na ii0 0 a 22a 23 a 2na 2ia 220 0 0 a 33 a 3na ii a 22 a nn,a 3i a 32a 33a nna ni a n2 a n3a nna ii a 22a nn .这样的行列式,形状像个三角形,4.2 “爪”字型行列式 4.2.1 概念形如a 。
行列式的若干计算技巧与方法目 录,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --=ββββsin sin cos cos k k -=.()β1cos +=k 这就证明了当时也成立,从而由数学归纳法可知,1+=k n 对一切的自然数,结论都成立.即:.βn D n cos =2.6 递推法技巧分析:若阶行列式满足关系式n D .021=++--n n n cD bD aD 则作特征方程.02=++c bx ax ①若,则特征方程有两个不等根,则0≠∆.1211--+=n n n Bx Ax D ②若,则特征方程有重根,则0=∆21x x =解得,25,16=-=B A 所以.1145++-=n n n D 3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和.3.1.2 例题解析例11 计算行列式小结本文主要介绍了行列式计算的一些技巧和方法,还有一些特殊行列式的计算技巧,通过归纳和总结这些技巧和方法,让读者在计算行列式时游刃有余.然而在这么多方法面前,我们需要多观察、多思考,这样便于我们更加轻松地解决有关行列式的问题,也让我们更加灵活的运用这些方法和技巧来解决实际问题.参考文献:[1]北大数学系代数小组. 高等代数(第三版)[M].北京:高等教育出版社,2003:50~104.[2]钱吉林. 高等代数题解精粹[M].北京:中央民族大学出版社,2002:24~58[3]刘家保,陈中华,陆一南.若干类型行列式计算方法.佛山科学技术学院学报(自然科学版),2012年3月,30(2).[4]杨鹏辉.行列式的计算技巧.宜春学院报,2011年4月,33(4).[5]丁冰.三线型行列式的计算.科技通报,2012年2月,28(2).[6]龚德仁.高阶行列式计算的若干技巧.课外阅读(中下).2012年03期.[7]张新功.行列式的计算方法探讨.重庆师范大学学报(自然科学版),2011年7月,28(4).[8]王爱霞.关于n阶行列式的计算方法与技巧的探讨.佳木斯教育学院学报.2012年第1期.[9] 樊正华,徐新萍.浅谈行列式的计算方法.江苏教育学院学报(自然科学),2011年2月,27(1).[10]卢潮辉.三对角行列式的计算. 漯河职业技术学院学报,2010年3月,9(2).[11] 陈林.求n阶行列式的几种方法和技巧. 科技信息报,2007年第8期.[12]“爪”字型和“么”字型行列式的计算.河北理科教学研究(短文集锦),2006年第4期.学习体会与建议:计算行列式的最重要的一点就是化繁就简。
行列式的计算技巧与方法汇总行列式是线性代数中非常重要的概念,它在许多数学和科学领域中都有广泛的应用。
本文将汇总一些行列式的计算技巧和方法,帮助读者更好地理解和运用行列式。
一、定义和符号行列式是一个数,是由方阵中的元素按照特定的规则计算而得到的。
行列式通常用两种符号表示,分别是方括号和竖线。
例如,一个3x3的矩阵A的行列式可以表示为det(A),或者用竖线表示为,A。
二、一阶和二阶行列式的计算一阶行列式是一个1x1的矩阵,只有一个元素。
计算一阶行列式非常简单,即该元素本身。
二阶行列式是一个2x2的矩阵,如下所示:abcd计算二阶行列式的方法是将对角线上的两个元素相乘,并将结果减去另外两个元素的乘积。
即det(A) = ad - bc。
三、三阶行列式的计算三阶行列式是一个3x3的矩阵,如下所示:abcdefghi计算三阶行列式的方法是按照下面的规则计算:1.将每个元素与其相交的两个行和两个列组成的2x2矩阵的行列式相乘。
2.第一行的元素与第二行和第三行组成的2x2矩阵的行列式相乘,再加上第二行和第三行组成的2x2矩阵的行列式与符号相反。
3.将这些结果相加得到最终的行列式。
四、高阶行列式的计算对于高阶行列式,计算的方法和三阶行列式类似,也是按照逐步展开的方式计算。
五、行列式的性质行列式具有以下几个重要的性质:1.行列互换性质:交换行的位置,行列式的值不变。
2.列列互换性质:交换列的位置,行列式的值不变。
3.行列式的倍数性质:将行的倍数乘以一个数,行列式的值也乘以这个数。
4.行列式的零行性质:如果行列式的其中一行全为0,则行列式的值为0。
5.行列式的行之和性质:如果行列式的其中一行的各元素都是两个数之和,那么行列式的值可以分拆成两个行列式之和。
6.行列式的行之差性质:如果行列式的其中一行的各元素都是两个数之差,那么行列式的值可以分拆成两个行列式之差。
利用这些性质,我们可以简化行列式的计算。
六、行列式的性质之递推关系行列式的递推关系是行列式计算的重要方法之一、具体来说,如果矩阵A的第k列元素全为0,那么det(A)可以根据矩阵A去掉第k列得到一个更小的矩阵来计算。
专题五行列式的计算方法1.递推法例1求行列式的值:(1)的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方第一条次对角线的元全为1,其余元全为0;即为三对角线型。
又右下角的(n)表示行列式为n阶。
解把类似于,但为k阶的三对角线型行列式记为。
把(1)的行列式按第一列展开,有两项,一项是另一项是上面的行列式再按第一行展开,得乘一个n– 2阶行列式,这个n– 2阶行列式和原行列式的构造相同,于是有递推关系:(2)移项,提取公因子β:类似地:(递推计算)直接计算若;否则,除以后移项:再一次用递推计算:∴,当β≠α(3)当β=α,从从而。
由(3)式,若。
注递推式(2)通常称为常系数齐次二阶线性差分方程.注1仿照例1的讨论,三对角线型的n阶行列式(3)和三对角线型行列式(4)有相同的递推关系式(5)(6)注意两个序列和的起始值相同,递推关系式(5)和(6)的构造也相同,故必有由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。
前面算出,故例2 计算n阶范德蒙行列式行列式解:即n阶范德蒙行列式等于这n个数的所有可能的差的乘积2.拆元法例3:计算行列式解①×(x + a)②×(x – a)3.加边法例4计算行列式分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法.解4.数学归结法例5计算行列式解:猜测:证明(1)n = 1, 2, 3时,命题成立。
假设n≤k– 1时命题成立,考察n=k的情形:故命题对一切自然数n成立。
5.消去法求三对角线型行列式的值例6求n阶三对角线型行列式的值:(1)的构造是:主对角线元全为2,主对角线上方第一条次对角线与下方第一条次对角线的元全为1,其余的元全为0。
解用消去法,把中主对角线下方第一条次对角线的元1全部消成0:首先从第二行减去第一行的倍,于是第二行变为其次从第三行减去第二行(指新的第二行,以下同)的倍,则第三行变为再从第四行减去第三行的倍,则第四行变为类似地做下去,直到第n行减去第n– 1行的倍,则第n行变为最后所得的行列式为(2)上面的行列式是三角型行列式,它的主对角线元顺次为93)又主对角线下方的元全为0。
行列式的计算方法总结行列式的计算方法有哪些呢?可能大部分同学并不知道。
为了普及知识。
下面是由小编为大家整理的“行列式的计算方法总结”,仅供参考,欢迎大家阅读。
行列式的计算方法总结第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)第三、行列式的计算最重要的两个性质:(1)对换行列式中两行(列)位置,行列式反号(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。
拓展阅读:行列式的性质有哪些?行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的所有的元素都乘以同一数k,等于用数k乘此行列式;行列式如果有两行(列)元素成比例,则此行列式等于零;若行列式的某一列(行)的元素都是两数之和,则这个行列式是对应两个行列式的和;把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数。
当我们写的时候,写成一个表是为了方便的反映函数的物性。
当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看。
为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理。
行列式的计算方法总结大全
行列式的计算方法有很多种,以下是其中一些常见的方法:
1. 代数余子式法:利用代数余子式展开式,将行列式按某一行或某一列展开,然后计算各项的代数余子式的乘积之和,即可求出行列式的值。
2. 递推法:利用递推关系式,将行列式按某一行或某一列展开,然后逐步递推,即可求出行列式的值。
3. 归纳法:利用归纳法,通过观察和分析较小的行列式,逐步归纳出行列式的展开规律,然后逐步展开,即可求出行列式的值。
4. 矩阵相乘法:将行列式转换为矩阵相乘的形式,然后利用矩阵相乘的性质,计算行列式的值。
5. 元素替换法:利用元素替换的性质,将行列式中的某些元素替换为已知的值,然后逐步简化,即可求出行列式的值。
以上是常见的行列式计算方法,不同的行列式可能需要采用不同的方法进行计算。
在具体计算时,需要根据具体情况选择适合的方法。
计算技巧及方法总结一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式2112221122211211a a a a a a a a -=2、三阶行列式333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式601504321- 解 =-601504321601⨯⨯)1(52-⨯+043⨯⨯+)1(03-⨯⨯-051⨯⨯-624⨯⨯-4810--=.58-=但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。
但在此之前需要记忆一些常见行列式形式。
以便计算。
计算上三角形行列式nn nnn n a a a a a a a a a 221122211211000=下三角形行列式 nnn n a a a a a a 21222111000.2211nn a a a =对角行列式nn nnn n a a a a a a a a a221121222111000=二、用行列式的性质计算1、记住性质,这是计算行列式的前提将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若,212222111211nnn n n n a a a a a a a a a D=则 nnn n n n T a a a a a a a a a D212221212111=. 性质1 行列式与它的转置行列式相等, 即.T D D =注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有.性质2 交换行列式的两行(列),行列式变号.推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即.2121112112121112111kD a a a a a a a a a k a a a ka ka ka a a a D nnn n in i i n nnn n in i i n ===第i 行(列)乘以k ,记为k i ⨯γ(或k C i ⨯).推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如,nnn n in in i i i i n a a a c b c b c b a a a D21221111211+++=.则21212111211212111211D D a a a c c c a a a a a a b b b a a a D nnn n in i i n nn n n in i i n +=+=.性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变.注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +.2、利用“三角化”计算行列式计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:如果第一列第一个元素为0, 先将第一行与其它行交换使得第一列第一个元素不为0; 然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;再用同样的方法处理除去第一行和第一列后余下的低一阶行列式,如此继续下去,直至使它成为上三角形行列式,这时主对角线上元素的乘积就是所求行列式的值.例2若21101321-=D , 则.213102011D D T =-=例3(1)01212111001211121---=--(第一、二行互换).(2)1211021101211121---=--(第二、三列互换) (3)072501111=(第一、二两行相等) (4)0337224112=---(第二、三列相等)例4(1)02222510211=--因为第三行是第一行的2倍. (2)075414153820141=---因为第一列与第二列成比例,即第二列是第一列的4倍.例5若121013201--=D , 则D 2121013201)2(121013402-=---=---- 又 D 412101320141240112204=--=--.例6 设,1333231232221131211=a a a a a a a a a 求.53531026333231232221131211a a a a a a a a a ---- 解 利用行列式性质,有33323123222113121153531026a a a a a a a a a ----=3332312322211312115353522a a a a a a a a a ---5)3(2⋅-⋅-=333231232221131211a a a a a a a a a 15)3(2⋅⋅-⋅-=.30=例7(1).110111311103111132+=++=(2)()1)2(1272305)2(11121272305211--+--++=----+122720521112730511---+--=. 例8 因为,12310403212213==++--+而15)40()29(02213123=+++=-+-.因此221312303212213-+-≠++--+.注: 一般来说下式是不成立的22211211222112112222212112121111b b b b a a a a b a b a b a b a +≠++++.例9(1)13201013113214113112----r r ,上式表示第一行乘以-1后加第二行上去, 其值不变.(2)33204103113214113113c c +--,上式表示第一列乘以1后加到第三列上去, 其值不变.例10计算行列式2150321263-=D .解 先将第一行的公因子3提出来:,21503242132150321263-=-再计算.162354100430201541104702215421087042127189087042132150324213=⨯====----=-=D例11 计算.3351110243152113------=D解 21c c D→3315112043512131-------14125r r r r +-72160112064802131------32r r ↔72160648011202131----- 242384r r r r -+ 1510001080011202131---- 3445r r +.4025001080011202131=--- 例12计算.3111131111311113=D 解 注意到行列式的各列4个数之和都是6.故把第2,3,4行同时加到第1行,可提出公因子6,再由各行减去第一行化为上三角形行列式.D4321r r r r +++311113111131111163111131111316666= 141312r r r r r r ---.4820000200002011116=注:仿照上述方法可得到更一般的结果:.)]()1([1---+=n b a b n a abbbb b a b b b b a例13 计算.1111000000332211a a a a a a --- 解 根据行列式的特点,可将第1列加至第2列,然后将第2列加至第3列,再将第3列加至第4列,目的是使4D 中的零元素增多.4D12c c +1121000000033221a a a a a --23c c +1321000000003321a a a a -34c c +.44321000000000321321a a a a a a = 例14 计算.3610363234232dc b a c b a b a a dc b a cb a b a a dc b a cb a ba a d c baD ++++++++++++++++++=解 从第4行开始,后一行减前一行:Drr r r r r ---33412 .363023200c b a b a a c b a b a a cb a b a a dc b a +++++++++ 3423r r r r --.20200ba aab a a a cb a b a a dc ba +++++34r r -..0020004a ab a a cb a b a a dc ba =++++三、 行列式按行(列)展开(降阶法)1、行列式按一行(列)展开定义1 在n 阶行列式D 中,去掉元素ij a 所在的第i 行和第j 列后,余下的1-n 阶行列式,称为D 中元素ij a 的余子式, 记为ij M , 再记ij j i ij M A +-=)1(称ij A 为元素ij a 的代数余子式.引理(常用) 一个n 阶行列式D , 若其中第i 行所有元素除ij a 外都为零,则该行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =定理1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和, 即),,,2,1(2211n i A a A a A a D inin i i i i =+++= 或 ).,,2,1(2211n j A a A a A a D njnj j j j j =+++=推论 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零, 即,,02211j i A a A a A a jn in j i j i ≠=+++或 .,02211j i A a A a A a nj ni j i j i ≠=+++2、用降价法计算行列式(常用)直接应用按行(列)展开法则计算行列式, 运算量较大, 尤其是高阶行列式. 因此, 计算行列式时,一般可先用行列式的性质将行列式中某一行(列)化为仅含有一个非零元素, 再按此行(列)展开,化为低一阶的行列式, 如此继续下去直到化为三阶或二阶行列式.3、拉普拉斯定理(一般少用)定义 2 在n 阶行列式D 中,任意选定k 行k 列)1(n k ≤≤, 位于这些行和列交叉处的2k 个元素,按原来顺序构成一个k 阶行列式M , 称为D 的一个k 阶子式,划去这k 行k 列, 余下的元素按原来的顺序构成k n -阶行列式,在其前面冠以符号kkj j i i +++++- 11)1(,称为M 的代数余子式,其中k i i ,,1 为k 阶子式M 在D 中的行标,k j j j ,,,21 为M 在D 中的列标.注:行列式D 的k 阶子式与其代数余子式之间有类似行列式按行(列)展开的性质. 定理2 (拉普拉斯定理) 在n 阶行列式D 中, 任意取定k 行(列))11(-≤≤n k ,由这k 行(列)组成的所有k 阶子式与它们的代数余子式的乘积之和等于行列式D .例15求下列行列式的值:(1)214121312-- (2)120250723解 (1) 213142131)1(21122214121312-⨯+-⨯--⨯=--.272856)61(4)32()14(2-=--=--+--+-=(2) .3)45(312253120250723=-=⨯=例16计算行列式 .5021011321014321---=D解 521011321014321---=D 313422r r r r ++520711321014107----109211206527211417)1()1(2123223-=---⨯-=-++r r r r.241861926)1(122-=--=--⨯=+例17计算行列式 .0532004140013202527102135----=D解 53204140132021352)1(053200414001320252710213552-----=----=+D 53241413252---⋅-=1213)2(r r r r -++6627013210---.1080)1242(206627)2(10-=--=--⋅-=例18求证 21)1(11213112211132114321-+-=---n n x x x x x x x n x x n xn n .证 D3221143r r r r r r r r nn ----- 1111111111000011000111001111011110xxxx x x x ---- 11011100111101111111111)1(1xx x xn -----=+3221143r r r r r r r r nn ----- .)1(11000000010001000010000)1(211-++-=-----n n n x xxx x x x xx例19设,3142313150111253------=D D 中元素ij a 的余子式和代数余子式依次记作ij M 和ij A ,求14131211A A A A +++及41312111M M M M +++.解 注意到14131211A A A A +++等于用1,1,1,1代替D 的第1行所得的行列式,即314231315011111114131211-----=+++A A A A3413r r r r +-11202250111111---11222511---= 12c c + .4205201202511=-=--又按定义知,31413131501112514131211141312111-------=-+-=+++A A A A M M M M34r r +311501121)1(010313150111251---=----312r r - .0311501501=----- 例20 用拉普拉斯定理求行列式2100321003210032 的值.解 按第一行和第二行展开2100321003210032=2132)1(21322121+++-⨯2031)1(31023121+++-⨯+2030)1(32033221+++-⨯+ 0121+-=.11-=。