第7章数字高程模型(3D建模及可视化)
- 格式:pdf
- 大小:4.90 MB
- 文档页数:94
数字高程模型数字高程模型(Digital Elevation Model,简称DEM)是一种用于表示地球表面高程信息的数字模型。
它通常是基于地理空间数据采集和处理技术得到的数字地形模型,反映了地表不同位置的高程值。
数字高程模型在地理信息系统、地貌分析、水文模拟等领域具有广泛的应用价值。
数字高程模型的原理和构建方法数字高程模型是通过采集地表高程信息,构建数学模型,并进行数字化表达得到的。
构建数字高程模型的最基本方法是通过激光雷达、全球定位系统(GPS)等技术采集地面高程点,并据此构建高程表面模型。
另一种常用的方法是通过航空或卫星影像获取地表高程信息,并结合插值算法生成数字高程模型。
数字高程模型生成的过程中,需要考虑地球椭球体形状、椭球体参数、大地水准面等因素,并进行数学变换和处理以得到准确的高程数据。
常用的数字高程模型包括数字地面模型(DSM)、数字地形模型(DTM)等,它们之间的区别在于对地物表面和地表以下构造的不同描述。
数字高程模型在地理信息系统中的应用数字高程模型在地理信息系统中有广泛的应用,主要包括地形分析、三维可视化、洪水模拟、景观规划等方面。
在地形分析中,数字高程模型可以用于提取地形特征,计算坡度、坡向、流域分割线等地形参数,进而实现地貌分类、地形图绘制等功能。
三维可视化是数字高程模型应用的一个重要领域,通过将数字高程模型与空间数据结合,可以实现虚拟地形的构建和沉浸式视角的展示。
在洪水模拟和预测方面,数字高程模型可以用于模拟雨水径流路径、洪水淹没范围等,为防洪减灾提供重要的数据支持。
数字高程模型的发展趋势随着遥感技术、地理信息系统技术以及计算机处理能力的不断提升,数字高程模型的精度和分辨率也在不断提高。
未来,数字高程模型将更加精细化、高分辨率化,应用领域也将更加广泛,涉及城市规划、资源管理、环境保护等方面。
另外,数字高程模型的数据融合、多源信息整合、模型开放共享等方向也是未来发展的重点。
《高等摄影测量》主讲:王树根武汉大学遥感信息工程学院The third DimensionDEM与DSM的区别与联系进一步关于DEM和DSM关于数字目标模型DOMq 目标是广义的,大到一个数字地球或数字 城市关于数字目标模型DOMq 小到一个建筑物、工业零件或细胞关于3D空间数据的可视化3D建模与可视化研究发展趋势q 摄影测量(遥感)的研究体现出从大 到小的研究趋势 q 计算机视觉的研究体现出从小到大的 研究趋势 q 数字摄影测量与计算机视觉的结合与建模和可视化有关的几个术语q Aliasing: 指对信号(几何、纹理)的一 种欠采样现象,造成结果的不真实痕迹欠采样与建模和可视化有关的几个术语q Breakline: 指断裂线、特征线等,需要 在多边型格网中体现出来 q Level of Detail (LoD): 涉及信息的量或 复杂性,LoD通常是目标物与观察者之 间距离的函数与建模和可视化有关的几个术语q Mesh: 指表面网格(眼),是一些连续 的三角形或四边形的集合 三种形式 规则格网 不规则三角格网(TIN) 混合式不同类型格网的比较规则(矩形)格网 存储量小,便于使 优 点 用和管理 不能准确地表示地 缺 点 形的结构和细部 不规则三角形 (或称TIN) 能较好地顾及地貌 的特征点、线 数据量大;数据结 构复杂,因而使用 和管理也较复杂混合式格网将结合两者的优点与建模和可视化有关的几个术语 q任何一个Mesh都将包括:ü顶点(vertices) ü边缘(edges) ü面(face) 通常采用有限元的方法 来产生一个表面网格与建模和可视化有关的几个术语q Modeling: 指建模,是关于目标物体的 数学结构或计算机表示。
它实际上是通 过定义一系列的三维点(Xi,Yi,Zi)阵 列,这些点通过数学模型连接在一起, 以便生成多边形,再用多边形(格网) 来表达目标(表面)。
测绘技术中的数字高程模型创建方法测绘技术中的数字高程模型(Digital Elevation Model,简称DEM)是目前应用广泛的一种地理信息数据模型,它能够准确地反映地表的海拔高度,作为地形分析、水文模拟、城市规划等领域的重要工具。
本文将介绍数字高程模型的创建方法,包括数据获取、处理和模型生成等方面。
一、数据获取创建数字高程模型的第一步是获取高程数据。
目前常用的数据获取方法主要包括航测、卫星遥感和地面测量。
航测是利用航空器进行的大范围地面高程数据采集方法。
它通过搭载激光雷达仪器,对地表进行扫描和测量,获取高程点云数据。
这种方法具有高精度、高效率的特点,适用于大范围地区的高程数据采集。
卫星遥感是基于卫星传感器对地球表面进行观测和测量,以获取高程数据。
卫星遥感数据通常具有较大的空间分辨率和全球覆盖的优势,可用于大尺度地形分析。
地面测量是通过在地面上设置测量站点,利用全站仪或GPS等仪器对地面高程进行测量。
这种方法适用于小范围地域的高程测量,具有较高的精度。
以上这些数据获取方法都有各自的适用范围和精度要求,根据实际需求选择适合的数据获取方法。
二、数据处理获取到高程数据后,需要对原始数据进行处理,以便生成数字高程模型。
数据处理主要包括数据格式转换、数据配准和数据过滤等步骤。
数据格式转换是将不同数据源的高程数据转换成统一的格式,常见的格式包括点云数据格式(如LAS、XYZ等)和栅格数据格式(如TIFF、ASCII等)。
数据配准是将不同数据源的高程数据校正到统一的坐标系和水平基准上。
配准过程中需要考虑大地坐标系的转换、数据的精度评定和高程基准的转换等问题。
数据过滤是对高程数据进行噪声剔除和异常值处理,以提高模型的精度和可靠性。
常用的数据过滤方法有高度阈值法、点密度法和坡度法等。
三、模型生成数据处理完成后,即可进行数字高程模型的生成。
数字高程模型的生成方法主要分为三种:插值法、三角网剖分法和机器学习方法。
一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:V i=(X i,Y i,Z i);i=1,2,…,n式中, X i, Y i是平面坐标, Z i是(X i, Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1.来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2.数字高程数据类型1)分辨率①.10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②.12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(AdvancedLand Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(A VNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③.不同分辨率下的晕渲图对比图 1 不同分辨率下的晕渲图2)遥感测量方法a)SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。