克莱姆法则及证明
- 格式:docx
- 大小:39.73 KB
- 文档页数:9
第三节 克莱姆法则教学目的及要求: 1.克莱姆法则2.利用克莱姆法则求解线性方程组教学重点、难点: 克莱姆法则的应用教学过程:一、复习利用行列式求解二元线性方程组 二、新课讲授1.n 元线性方程组的概念 从二元线性方程组的解的讨论出发,对更一般的线性方程组进行探讨。
在引入克莱姆法则之前,我们先介绍有关 n 元线性方程组的概念。
含有 n 个未知数 x 1,x 2, , x n 的线性方程组a 11x 1 a 12x 2 a 1n x nb 1,a 21x 1a 22x 2a 2n x nb 2,(1)a n1x 1 a n2x 2 a nn x nb n ,a 11 a 12 a 1n Da 21a 22a 2na n1 a n2 a nn2. 克莱姆法则定理 1 ( 克莱姆法则 ) 若线性方程组 解,其解为性方程组 ,当 b 1,b 2 , ,b n 全为零时 , 线性方程组 (1)称为齐次线性方程组,即a 11x 1 a 12x 2 a 1n x n0,a 21x 1a 22x 2 a 2n x n0,(2)a n1x 1 a n2x 2 a nn x n0.称为 n 元线性方程组 .当其右端的常数项 b 1,b 2, 线性方程组 (1)的系数 a ij 构成的行列式称为该方程组的系数行列式 D ,即,b n 不全为零时 ,线性方程组 (1) 称为非齐次线 (1)的系数行列式 D 0, 则线性方程组 (1)有唯一2 2 5 20,20,8545D jx j D(j 1,2, ,n) (3)其中D j(j 1,2, ,n)是把D中第j列元素a1j,a2j, ,a nj对应地换成常数项b1,b2, ,b n,而其余各列保持不变所得到的行列式.一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的. 对具体的数字线性方程组,当未知数较多时往往可用计算机来求解. 用计算机求解线性方程组目前已经有了一整套成熟的方法.克莱姆法则在一定条件下给出了线性方程组解的存在性、唯一性,与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值. 撇开求解公式(3), 克莱姆法则可叙述为下面的定理.定理 2 如果线性方程组(1)的系数行列式 D 0, 则(1)一定有解,且解是唯一的.在解题或证明中,常用到定理 2 的逆否定理:定理 2 如果线性方程组(1) 无解或有两个不同的解, 则它的系数行列式必为零.对齐次线性方程组(2), 易见x1 x2 x n 0 一定该方程组的解, 称其为齐次线性方程组(2)的零解. 把定理2应用于齐次线性方程组(2),可得到下列结论.定理 3 如果齐次线性方程组(2)的系数行列式 D 0, 则齐次线性方程组(2)只有零解. 定理3 如果齐次方程组(2) 有非零解,则它的系数行列式D 0.注: 在第三章中还将进一步证明,如果齐次线性方程组的系数行列式 D 0, 则齐次线性方程组(2)有非零解.三、例题选讲例 1 用克莱姆法则求解线性方程组:2x1 3x2 5x3 2x1 2x2 53x 2 5x3 4解D20235D1( 2) 2 5D260,1820.D 1D 2 D 3x 11, x 23, x 311D2D 3D例 3( E02) 大学生在饮食方面存在很多问题 ,很多人不重视吃早饭,多数大学生日常饮食 没有规律, 为了身体的健康就要制订营养改善行动计划, 大学生一日食谱配餐: 需要摄入一 定的蛋白质、脂肪和碳水化合物,下边是三种食物,它们的质量用适当的单位计量。
克莱姆法则的证明及应用克莱姆法则(Cramer's rule)是线性代数中的一个重要定理,它提供了一种求解线性方程组的方法。
克莱姆法则的证明可以通过矩阵的行列式理论进行推导,并且可以应用于求解n个未知数的n个线性方程组。
下面我们将详细介绍克莱姆法则的证明以及其应用。
证明:假设有一个n个未知数的线性方程组,可以表示为Ax=b,其中A为一个n阶方阵,x为未知数向量,b为常数向量。
1.首先,我们求解方阵A的逆矩阵A^-12.接下来,我们用行列式的形式表示方程组的解x_i。
(1)当i=1时,我们将方程组的第i列替换为常数列b,得到矩阵A_i。
(2) 计算矩阵A_i的行列式det(A_i),并用方程组的解x_i表示为x_i=det(A_i)/det(A)。
3.重复步骤2,直到求解出n个方程的解x_1,x_2,...,x_n。
通过上述步骤,我们证明了克莱姆法则。
应用:1.求解2x2线性方程组:当线性方程组只包含两个未知数时,可以直接应用克莱姆法则求解。
例如,对于方程组:a₁x+b₁y=c₁a₂x+b₂y=c₂其中a₁、b₁、c₁、a₂、b₂、c₂为已知常数,求解x和y的值可以通过下面的公式计算:x=(c₁b₂-b₁c₂)/(a₁b₂-b₁a₂)y=(a₁c₂-c₁a₂)/(a₁b₂-b₁a₂)2.求解3x3线性方程组:对于包含三个未知数的线性方程组,同样可以利用克莱姆法则进行求解。
例如,对于方程组:a₁x+b₁y+c₁z=d₁a₂x+b₂y+c₂z=d₂a₃x+b₃y+c₃z=d₃其中a₁、b₁、c₁、d₁等为已知常数,可以通过克莱姆法则计算x、y、z 的值。
3.求解特殊矩阵的逆矩阵:4.分析线性方程组的可解性:总结:克莱姆法则是一种求解线性方程组的有效方法,其基本思想是通过行列式运算推导出方程组的解。
克莱姆法则的证明可以通过矩阵的行列式理论进行推导,其应用范围广泛,可以用于求解不同数量未知数的线性方程组,也可以应用于求解特殊矩阵的逆矩阵和判断线性方程组的可解性。
克莱姆法则及其应用前 言克莱姆法则是瑞士数学家克莱姆经过证明的出的,克莱姆 (Cramer,Gabriel,1704-1752),瑞士数学家。
生于瑞士,卒于法国。
在巴塞尔时与与约翰·伯努利、欧拉多人学习交流,并成为挚友,,曾任教学和哲学教授,克莱姆对数学的贡献主要指在高等代数和解析几何方面。
克莱姆法则是高等代数的重点内容之一,以及克莱姆法则在理论上和应用上都有着十分重要的意义。
例如计算行列式,在生活中也有很多地方用到了克莱姆法则。
1. 预备知识若想学习克莱姆法则,必须知道什么是系数行列式。
现在就给介绍一下系数行列式。
设含有n 个未知量n 个方程的111122112212222212n n n n nn n a x a x a b a x a x a b a a a b +++=+++=+++=(1-1)其系数构成的行列式111212122212n nn n nna a a a a a D a a a =称为方程组(1-1)的系数行列式。
1. 克莱姆法则的定义克莱姆法则(Cramer Rule ):一个含有n 个未知量n 个方程的线性方程组(1-1)当它的系数行列式0D ≠时,有且仅有一个解:1212,,,.n n D D D x x x D D D === (1-2)期中JD 是将D 的第j 列换成常数项21,,,nb b b 而其余列不变的行列式。
即111,111,11212,122,121,1,1j j n j j n j n n j n n j nna ab a a a a b a a D a a b a a −+−+−+=1122,(1,2,).j j n nj b A b A b A j n =+++=2. 克莱姆法则的证明方法克莱姆法则有多种证明方法,在此我中立出三种证明方法,分别是2.1克莱姆法则的一般证明方法2.1.1 克莱姆法则的一般证明方法在给 在第一节中已经给出克莱姆法则的定义,再次就不在家赘述。
克莱姆法则求解行列式1.引言1.1 概述概述部分的内容可以包括以下内容:概述部分应该介绍文章的主题和背景,同时概述克莱姆法则在求解行列式中的重要性和应用。
可以简要介绍克莱姆法则的定义和原理,以及它在线性代数中的重要性和广泛应用的领域。
克莱姆法则是线性代数中解线性方程组的一种方法,通过利用行列式的性质来求解方程组中的变量。
它得名于法国数学家克莱姆,被广泛应用于数学、物理学、工程学等各个领域中。
在解决实际问题时,常常需要求解一些线性方程组,通过克莱姆法则,我们可以将这一过程转化为求解行列式的问题,从而简化求解过程。
克莱姆法则基于行列式的性质,将方程组的系数矩阵转化为行列式,然后通过计算行列式的值来求解方程组的解。
这种方法在一些具有特殊结构的方程组中特别有效。
克莱姆法则在求解行列式中具有一些重要的优势。
首先,它提供了一种简便的方法来求解行列式,避免了其他复杂的计算过程。
其次,它可以通过行列式的性质直接得到方程组的解,无需进行矩阵的求逆等运算。
这使得克莱姆法则在一些特殊情况下具有更高的效率和精度。
通过本文的研究,我们旨在深入探讨克莱姆法则在求解行列式中的原理和应用,分析其优势和局限性,并总结出一些有关克莱姆法则的重要结论。
在后续的章节中,我们将介绍克莱姆法则的详细原理和应用,并通过具体的例子来说明其实际应用的过程和效果。
1.2文章结构1.2 文章结构本文将按照以下内容进行讨论和阐述克莱姆法则在求解行列式中的应用:1. 克莱姆法则的介绍和原理:我们将详细介绍克莱姆法则的基本概念和原理。
包括行列式的定义和性质,以及克莱姆法则的推导和证明过程。
通过深入理解克莱姆法则的基本原理,我们可以更好地应用该法则解决实际问题。
2. 克莱姆法则的应用:本节将重点讨论克莱姆法则在求解行列式中的具体应用。
我们将通过一些实例和案例来说明如何利用克莱姆法则求解各种规模的行列式。
同时,我们将介绍一些常见的应用场景,如线性方程组的求解和矩阵的逆运算等,以展示克莱姆法则在实际问题中的广泛适用性。
第7 节克莱姆(Cramer)法则
一、线性方程组
元线性方程组是指形式为:
的方程组,其中代表个未知量,是方程的个数,,
称为方程组的系数,称为常数项。
线性方程组的一个解是指由个数组成的有序数组,当个
未知量分别用代入后,式(1)中每个等式都成为恒等式。
方程组(1)的解的全体称为它的解集合,如果两个线性方程组有相同的解集合,就称它们是同解方程组。
为了求解一个线性方程组,必须讨论以下一些问题:
(1). 这个方程组有没有解?
(2). 如果这个方程组有解,有多少个解?
(3). 在方程组有解时 , 解之间的关系 , 并求出全部解。
本节讨论方程的个数与未知量的个数相等(即)的情形。
二、克莱姆法则
定理 1 (克莱姆法则)如果线性方程组
的系数行列式:
接下来证明定理。
首先,证明 3)确实是(2) 的解。
将行列式 按第 列展开得:
那么这个方程组有解,并且解是唯一的,这个解可表示成:
其中 是把 中第 列换成常数项 所得的行列式,即
方程组有解; 解是唯一的; 解由公式(3)给出。
因此证明的步骤是:
有解,并且(3)是一个解,即证明了结论 与 。
第二,证明如果 是方程组(2)的一个解,那么一定有。
这就证明了解的唯一性,即证明了结论 。
3)
代入方程组,验证它确实是解。
这样就证明了方程组
证明:先回忆行列式的一个性质,设 阶行列式
第一,把
,则有:
其中是行列式中元素的代数余子式。
现把
代入第个方程的左端,得:
这说明将(3)代入第个方程后,得到了一个恒等式,所以(3)是(2)的
一个解。
其次,设是方程组(2)的一个解,那么,将代入(2)后,得到个恒等式:
4)
用系数行列式的第列的代数余子式依次去乘(4)中个恒等式,得到:
将此 个等式相加,得:
三、齐次线性方程组
在线性方程组中,有一种特殊的线性方程组,即常数项全为零的方程组,称为齐次线性 方程组。
显然,齐次线性方程组总是有解的,因为 就是它的解,这个解 称为零解;其他的,即 不全为零的解(如果还有的话),称为非零解。
所以,对于齐次 线性方程组,需要讨论的问题,不是有没有解,而是有没有非零解。
这个问题与齐次线性方 程组解的个数是有密切关系的。
如果一个齐次线性方程组只有零解,那么这个方程组就只有 唯一解;反之, 如果某个齐次线性方程组有唯一解, 那么由于零解是一个解,所以这个方 程组不可能有非零解。
对于方程个数与未知量个数相同的齐次线性方程组,应用克莱姆法则,有 推论 1 如果齐次线性方程组
的系数行列式不等于零,那么(5)只有零解。
推论 2 齐次线性方程组
从而有:
这就是说,如果 是方程组(2)的
一个解,那么一定有
,所以方程组只有一个解。
有非零解的必要条件是它的系数行列式等于零。
四、例子
例 1 解线性方程组
解:方程组的系数行列式:
这个线性方程组有唯一解。
又因所以根据克莱姆法则,
所以这个线性方程组的唯一解为:
在四个点 处的
值分别为: ,试求其系数 。
解:将三次曲线在4 点处的值代入其方程,得到关于 的线性方程组:
例 2 解线性方程组
解:方程组的系数行列式:
所以根据克莱姆法则, 这个线性方程组有唯一解。
所以这个线性方和组的唯一解为:
例 3 已知三次曲线 又因
它的系数行列式是范德蒙行列式:
即所求的三次曲线方程为
例 4 如果齐次线性方程组
有非零解,那么 必须满足什么条件?
解:由克莱姆法则知,齐次线性方程组有非零解的必要条件是其系数行列式等于零,因 此有
所以根据克莱姆法则,
所以
这个线性方程组有唯一解。
又因
满足的条件为
注 用克莱姆法则求解系数行列式不等于零的 元非齐次线性方程组,需要计算
个 阶行列式,它的计算工作量很大。
实际上关于数字系数的线性方程组(包括系数行列式 等于零及方程个数和未知量个数不相同的线性方程组)的解法,一般都采用后续章节介绍的 方法来求解。
克莱姆法则主要是在理论上具有重要的意义,特别是它明确地揭示了方程组的 解和系数之间的关系。
必须
又由:
,从而。