(完整版)椭圆常见题型总结
- 格式:doc
- 大小:436.26 KB
- 文档页数:9
椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。
其中的定点F1和F2称为焦点,常数2a称为长轴的长度。
椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。
椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。
1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。
其中(h,k)是椭圆的中心坐标。
2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。
而椭圆的半短轴的长度等于b。
3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。
即PF1+PF2=2a。
4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。
离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。
5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。
其中θ的取值范围一般为0≤θ≤2π。
二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。
解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。
2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。
解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。
3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。
第15讲 椭圆中6大最值问题题型总结【题型目录】题型一:利用均值不等式求最值题型二:利用焦半径范围求最值题型三:椭圆上一点到定点距离最值问题题型四:椭圆上一点到直线距离最值问题题型五:椭圆有关向量积最值问题题型六:声东击西,利用椭圆定义求最值【典型例题】题型一:利用均值不等式求最值【例1】已知,是椭圆的两个焦点,点M 在C 上,则1F 2F 22:12516x y C +=12MF MF ⋅的最大值为( ).A .13B .12C .25D .16【答案】C 【解析】【分析】根据椭圆定义可得,利用基本不等式可得结果.1210MF MF +=【详解】由椭圆方程知:;根据椭圆定义知:,5a =12210MF MF a +==(当且仅当时取等号),21212252MF MF MF MF ⎛+⎫∴⋅≤= ⎪⎝⎭12MF MF =的最大值为.12MF MF ∴⋅25故选:C.【例2】(2022·安徽·高二阶段练习)已知椭圆C :221169x y +=的左、右焦点分别为1F ,2F ,点P 是椭圆C 上的动点,1m PF =,2n PF =,则14m n +的最小值为( )A .98B .54C D 【答案】A 【解析】【分析】由椭圆的定义可得8m n +=;利用基本不等式,若0a b >, ,则a b +≥,当且仅当a b =时取等号.【详解】根据椭圆的定义可知,1228a PF PF +==,即8m n +=,因为40m ≥>,40n ≥>,所以()141141419558888n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当83m =,163n =时等号成立.故选:A【题型专练】1.(2022·河南·辉县市第一高级中学高二期末(文))设P 是椭圆22194x y +=上一点,1F 、2F 是椭圆的两个焦点,则12cos F PF ∠的最小值是( )A .19-B .1-C .19D .12【答案】A 【解析】【分析】利用椭圆的定义以及基本不等式可求得12cos F PF ∠的最小值.【详解】在椭圆22194x y +=中,3a =,2b =,c ==,由椭圆定义可得1226PF PF a +==,122F F c ==,由余弦定理可得()2222212121212121212122cos 22PF PF F F PF PF PF PF F F F PF PF PF PF PF +--⋅+-∠==⋅⋅22121262016161111218922PF PF PF PF -=-≥-=-=-⋅⎛+⎫⨯ ⎪⎝⎭,当且仅当123PF PF ==时,等号成立,因此,12cos F PF ∠的最小值为19-.故选:A.2.(2022·全国·高二课时练习)已知 P ( m , n ) 是椭圆上的一个动点,则22+=112x y 22m n+的取值范围是( )A .B .C .D .(]0,1[]1,2(]0,2[)2,+∞3.(2022·全国·高三专题练习)已知点P 在椭圆上,22221(0)y x a b a b +=>>12F F 、为椭圆的两个焦点,求的取值范围.12||||F P P F ⋅【答案】.22,b a ⎡⎤⎣⎦题型二:利用焦半径范围求最值【例1】(2022·全国·高二课时练习)已知椭圆C :()的右焦点,点22221x y a b +=0a b >>(),0F c (),P x y 是椭圆C 上的一个动点.求证:.a c PF a c-≤≤+【例2】(2021·山西吕梁·一模(理))已知为椭圆的左焦点,P 为椭圆上一点,则F 22143x y +=PF 的取值范围为_________.【答案】[1,3]【分析】设出点P 的坐标,由两点间的距离公式求出||PF ,进而根据点在椭圆上将式子化简,最后求出范围.【例3】(2022·河南·新蔡县第一高级中学高二开学考试(文))已知椭圆,点,22142x y +=()0,1A P为椭圆上一动点,则的最大值为____.PA【例4】(2023·全国·高三专题练习)已知点是椭圆+=1上的动点(点不在坐标轴上),P 24x 2y P 为椭圆的左,右焦点,为坐标原点;若是的角平分线上的一点,且丄12F F 、O M 12F PF ∠1F M MP,则丨丨的取值范围为( )OMA .(0B .(0,2)C .(l ,2)D 2)【题型专练】1.平面内有一长度为4的线段,动点P 满足,则的取值范围是( )AB ||||6PA PB +=||PA A .B .C .D .[1,5][1,6][2,5][2,6]【答案】A【解析】由题可得动点在以为焦点,长轴长为6的椭圆上,P ,A B ,3,2a c ∴==则可得的最小值为,最大值为,||PA 1a c -=5a c +=的取值范围是.∴||PA [1,5]故选:A.2.已知动点在椭圆上,若点的坐标为,点满足,且,则P 2214940x y +=A (30),M ||1AM = 0PM AM ⋅= 的最小值是 .||PM【答案】15【解析】由题意知 ,所以,解得,所以40,4922==b a 92=c 3=c ()0,3A 为椭圆的右焦点,由题意知点是以为圆心,为半径上的圆上一动点,且所以M A 1AM PM ⊥1222-=-=PA AMPA PM ,因的最小值为,所以PA437=-=-c a 15142min=-=PM3.已知是椭圆上的动点,且与的四个顶点不重合,,p 22:198x y C +=C 1F 2F 分别是椭圆的左、右焦点,若点在的平分线上,且,则M 12F PF ∠10MF MP ⋅=OM的取值范围是( )A .B .C .D .()0,2(0,(0,3-()0,1【答案】D 【解析】【分析】作出辅助线,得到,求出的取值范围,从而求出的取值范围.212OM F N =2F N OM 【详解】如图,直线与直线相交于点N ,1F M 2PF 由于PM 是的平分线,且,即PM ⊥,12F PF ∠10MF MP ⋅=1F N 所以三角形是等腰三角形,1F PN 所以,点M 为中点,1PF PN =1F N 因为O 为的中点,12F F 所以OM 是三角形的中位线,12F F N所以,212OM F N =其中,212112226F N PF PF PF a PF =-=-=-因为P 与的四个顶点不重合,设,则,C (),P m n ()0,3m ∈22198m n +=,193m ==+所以,又,()12,4PF ∈20F N >所以,()20,2F N ∈()210,12OM F N =∈∴的取值范围是.||OM ()0,1故选:D.题型三:椭圆上一点到定点距离最值问题【例1】(2022·全国·高三专题练习)已知椭圆的长轴长为,短轴长为,则椭圆上任意一点108P 到椭圆中心的距离的取值范围是( )O A .B .C .D .[]4,5[]6,8[]6,10[]8,10【例2】(2022·全国·高三专题练习)已知点是椭圆上的任意一点,过点作圆:P 221129x y +=P C 的切线,设其中一个切点为,则的取值范围为( )()2211x y +-=M PMA .B .C .D .4⎤⎦4⎤⎦【例3】(2022·重庆市实验中学高二阶段练习)已知点P 在椭圆22193x y +=上运动,点Q 在圆225(1)8x y -+=上运动,则PQ 的最小值为___________.【解析】【分析】将求PQ最小值的问题,转化为求点P 到圆心()1,0M 距离最小值的问题,结合点P满足椭圆方程,转化为二次函数求最值即可.【详解】不妨设点P 为()00,x y ,[]03,3x ∈-,则2200193x y +=,则220033x y =-设圆225(1)8x y -+=的圆心为M ,则M 坐标为()1,0则PQ的最小值,即为MP的最小值与圆225(1)8x y -+=.又MP ===当[]03,3x ∈-时,MP ≥,当且仅当032x =时取得等号;故PQ ≥=.故答案为.【题型专练】1.(2021·陕西·长安一中高二期中(文))设B 是椭圆的上顶点,点P 在C 上,则22:14x C y +=PB 的最大值为________.2.已知椭圆的焦点,过点引两条互相垂直的两直线、,若222:1(1)x T y a a+=>(20)F -,(01)M ,1l 2l P 为椭圆上任一点,记点到、的距离分别为、,则的最大值为( )P 1l 2l 1d 2d 2212d d +A .2B .C .D .134134254【答案】D【解析】由题意知 ,所以,解得,所以椭圆的方程为,设4,122==c b 52=a 5=a 1522=+y x ,因为,且,所以又因,所以()00,y x P 21l l ⊥()1,0M (),1202022221-+==+y x PM d d 152020=+y x ,202055y x -=所以因为,所以当时,6241255020020202221+--=+-+-=+y y y y y d d 110≤≤-y 410-=y 的最大值为2221d d +4253.(多选题)已知点是椭圆:上的动点,是圆:P C 2213x y +=Q D ()22114x y ++=上的动点,则( )A .椭圆的短轴长为1B .椭圆C C C .圆在椭圆的内部D .的最小D C PQ 【答案】BC 【解析】【分析】AB.利用椭圆的方程求解判断;C.由椭圆方程和圆的方程联立,利用判别式法判断;D.利用圆心到点的距离判断.【详解】解:因为椭圆方程为:,2213x y +=所以,故A 错误,B 正确;222223,1,2,c a b c a b e a ===-===由,得,()222213114x y x y ⎧+=⎪⎪⎨⎪++=⎪⎩2824210x x ++=因为,2244821960∆=-⨯⨯=-<所以椭圆与圆无公共点,又圆心在椭圆内部,()1,0-所以圆在椭圆内部,故C 正确;设,()(,P x y x ≤≤,==当时,取得最小则的最小,故D 错误,32x =-PD PQ 12故选:BC4.(全国·高二课前预习)点、分别在圆和椭圆上,则、P Q (222x y+=2214x y +=P Q两点间的最大距离是( )A .B .C .D .5.(2022·全国·高三专题练习)设椭圆的的焦点为2222:1(0)x y C a b a b +=>>12,,F F P是C 上的动点,直线的一个焦点,的周长为y x =12PF F △4+(1)求椭圆的标准方程;(2)求的最小值和最大值.12PF PF +题型四:椭圆上一点到直线距离最值问题两种思路:法一:设椭圆参数方程,即设椭圆上一点为()θθsin ,cos b a P ,用点到直线的距离公式法二:利用直线与椭圆相切,联立方程,利用判别式0=∆,求出切线,再求两直线间距离【例1】(2022·黑龙江·齐齐哈尔市恒昌中学校高二期中)椭圆22143x y +=上的点P 到直线l :30x y ++=的距离的最小值为( )ABCD【答案】C 【解析】【分析】根据椭圆的形式,运用三角代换法,结合点到直线距离公式、辅助角公式进行求解即可.【详解】由222cos 143x x y y θθ=⎧⎪+=⇒⎨⎪⎩,设(2cos )P θθ,设点P 到直线l :30x y ++=的距离d ,所以有d ,其中tan (0,))2πϕϕ=∈,所以当2()2k k Z πθϕπ+=-∈时,d 有最小=,故选:C【例2】(2022·全国·高二专题练习)椭圆上的点到直线22143x y +=290l x =:-的距离的最大值为______.【例3】(2021·浙江·慈溪市浒山中学高二阶段练习)设点在椭圆上,点()11,P x y 22182x y +=在直线上,则的最小值为___________.()22,Q x y 280x y +-=212136x x y y -+-【题型专练】1.(2022·甘肃·兰州一中高二期中(文))已知实数x ,y 满足方程,则22220x y +-=x y +的最大值为________.2.(2022·全国·高二专题练习)椭圆:上的点到直线C 22194x y +=P 43180l x y ++=:的距离的最小值为_____.3.(2022·四川遂宁·高二期末(理))如图,设P 是圆229x y +=上的动点,点D 是P 在x 轴上的射影,M 为PD 上的一点,且.23MD PD =(1)当P 在圆上运动时,求点M 的轨迹C 方程;(2)求点M 到直线距离的最大值.:290l x y +-=4.(2020·海南·高考真题)已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为 ,12(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.联立直线方程与椭圆方程,2x y m -=2211612x y +=可得:,()2232448m y y ++=化简可得:,2216123480y my m ++-=题型五:椭圆有关向量积最值问题【例1】(2022·黑龙江·佳木斯一中高二期中)已知P 为椭圆2212524x y +=上任意一点,EF 为圆22:(1)4N x y -+=任意一条直径,则PE PF ⋅的取值范围为( )A .[8,12]B .[12,20]C .[12,32]D .[32,40]【答案】C 【解析】【分析】由题意可得圆心(1,0)N 恰好是椭圆的右焦点,将PE PF ⋅ 化简得24NP-+ ,由椭圆的性质可知[,]NP a c a c ∈-+,从而可求出PE PF ⋅ 的取值范围【详解】由2212524x y +=,得2225,24a b ==,则5,1a b c ===,圆22:(1)4N x y -+=的圆心(1,0)N 恰好是椭圆的右焦点,圆的半径为2,因为()()PE PF NE NP NF NP⋅=-⋅- ()2NE NF NP NE NF NP=⋅-⋅++ 2cos 0NE NF NPπ=⋅-+ 24NP=-+ ,因为P 为椭圆2212524x y +=上任意一点,N 为椭圆的右焦点,所以[,]NP a c a c ∈-+ ,即[4,6]NP ∈ ,所以2[16,36]NP ∈ ,所以24[12,32]NP -+∈ ,所以PE PF ⋅的取值范围为[12,32],故选:C【例2】(2022·全国·高三专题练习)已知是椭圆12,F F 22:142x y E +=的两个焦点,P 是椭圆E 上任一点,则的取值范围是____________12⋅ F P F P【例3】(2022·全国·高三专题练习)已知点满(),P x y =,点A ,B 关于点对称且,则的最大值为( )()0,2D -2AB =PA PB ⋅A .10B .9C .8D .2【题型专练】1.(2022·山东·高三开学考试)在椭圆上有两个动点,为定点,,则2214x y +=,P Q ()1,0E EP EQ ⊥的最小值为( )EP QP →→⋅131223故选:C .2.(2022·全国·高三专题练习多选题)已知椭圆的左、右焦点为、,点22:132x y C +=1F 2F M为椭圆上的点不在轴上),则下列选项中正确的是( )(M xA .椭圆的长轴长为CB .椭圆的离心率C 13e =C .△的周长为12MF F 2+D .的取值范围为12MF MF ⋅[1,2)3.(2022·全国·高三专题练习)已知是椭圆的两个焦点,12,F F 22163x y +=,A B分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.P AB 12PF PF ⋅4.(2015·山西大同市·高二期末(理))设、分别是椭圆的左、右焦点,若Q 是该椭圆上的一个动点,则的最大值和最小值分别为A .与B .与C .与D .与12-22-11-21-【答案】A【详解】试题分析:设,由题得,所以(,)Q x y 12(F F ,12(,),,)QF x y QF x y =-=--,因为在椭圆上,所以所以2212·3QF QF x y =-+(22)x -≤≤(,)Q x y ,所以当有最小值;或222123·31244x x QF QF x =-+-=- (22)x -≤≤0x =2-2x =2-时,有最大值1题型六:声东击西,利用椭圆定义求最值此种类型题目,一般要利用椭圆定义,转化为三点共线问题,利用三角形两边之和大于第三边,或者两边之差小于第三边解决【例1】(2022·辽宁·高二期中)动点M 分别与两定点(5,0)A -,(5,0)B 连线的斜率的乘积为1625-,设点M 的轨迹为曲线C ,已知N ,(3,0)F -,则||||MF MN +的最小值为( )A .4B .8C .D .12【答案】B 【解析】【分析】求出轨迹方程2212516x y +=,根据椭圆的定义,可得210MF MF +=,当2MF 经过点N 时,MF MN+最短.【详解】设动点M 的坐标为()M x y , ,则165525y y x x ⋅=-+- 整理后得:2212516x y += ,动点M的轨迹为椭圆,左焦点为()30F -,,右焦点为()230F , ,210MF MF += ,如下图所示,当2MF 经过点N 时,MF MN+最短,此时210108MF MN MF MN +=-+==故选:B【例2】已知是椭圆的左焦点,为椭圆上任意一点,点坐标为,则F 22:11615x y C +=P C Q (4,4)的最大值为( )||||PQ PF +A B .13C .3D .5【答案】B 【解析】【分析】利用椭圆的定义求解.【详解】如图所示:,||||||2||2||813PQ PF PQ a PF a QF ''+=+-≤+==故选:B【例3】(2022·全国·高二课时练习)已知椭圆C:2212516x y +=内有一点()2,3M ,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆C 上的一点,求:(1)1PM PF -的最大值与最小值;(2)1PM PF +的最大值与最小值.【答案】(1)最大,最小值为(2)最大值为10,最小值为10【解析】【分析】(1)由题意可知:根据三角形的性质,即可求得11||||||||PM PF MF -…然后得到1||||PM PF -的最大值与最小值;(2)利用椭圆的定义表示出1||||PM PF +,根据椭圆的定义及三角形三边的关系,即可求得答案.(1)由椭圆22:12516x y C +=可知5a =,4b =,3c =,则1(3,0)F -,2(3,0)F ,则11||||||||PM PF MF -…,当且仅当P 、M 、1F 三点共线时成立,所以1||||PM PF -…,所以1||||PM PF -和;(2)210a =,2(3,0)F ,2||MF =,设P 是椭圆上任一点,由12||||210PF PF a +==,22||||||PM PF MF -…,12212210PM PF PF MF PF a MF ∴+-+=-=…,等号仅当22||||||PM PF MF =-时成立,此时P 、M 、2F 共线,由22||||||PM PF MF +…,12212210PM PF PF MF PF a MF ∴+++=+=+…,等号仅当22||||||PM PF MF =+时成立,此时P 、M 、2F 共线,故1||||PM PF +的最大值10与最小值为10.【题型专练】1.(2022·全国·高二专题练习)已知点(4,0)A 和(2,2)B ,M 是椭圆221259x y +=上的动点,则||||MA MB +最大值是( )A .10+B .10-C .8+D .8【答案】A 【解析】【分析】设左焦点为(4,0)F -,A 为椭圆右焦点,利用椭圆定义转化||||10||||MA MB MB MF +=+-,然后利用平面几何的性质得最大值.【详解】解:椭圆221259x y +=,所以A 为椭圆右焦点,设左焦点为(4,0)F -,则由椭圆定义||||210MA MF a +==,于是||||10||||MA MB MB MF +=+-.当M 不在直线BF 与椭圆交点上时,M 、F 、B 三点构成三角形,于是||||||MB MF BF -<,而当M 在直线BF 与椭圆交点上时,在第一象限交点时,有||||||MB MF BF -=-,在第三象限交点时有||||||MB MF BF -=.显然当M 在直线BF 与椭圆第三象限交点时||||MA MB +有最大值,其最大值为||||10||||10||1010MA MB MB MF BF +=+-=+==+.故选:A.2.(2022·全国·高二专题练习)已知F 为椭圆221259x y +=的左焦点,(2,2)B 是其内一点,M为椭圆上的动点,则MF MB+的最大值为__,最小值为__.【答案】 10+10-【解析】【分析】设A 为椭圆右焦点,设左焦点为(4,0)F -,B 在椭圆内,由椭圆定义210MA MF a +==,结合当M 在直线AB 与椭圆交点上时和当M 在直线BA与椭圆交点,分别求得其最大值与最小值,即可求解.【详解】设A 为椭圆右焦点,设左焦点为(4,0)F -,B 在椭圆内,则由椭圆定义210MA MF a +==,当M 在直线AB 与椭圆交点上时,M 在x 轴的上方时,10MF MB AB+=-,取得最小值,最小值为:1010-=-;当M 在直线BA 与椭圆交点,在x 轴的下方时,MF MB+有最大值,其最大值为1010MF MB MF MA AB AB +≤++=+=+.故答案为:10+10-3.(2022·四川·成都七中高二期末(文))已知点()4,0A ,()2,2B 是椭圆221259x y +=内的两个点,M 是椭圆上的动点,则MA MB+的最大值为______.【答案】10+##10+【解析】【分析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为221259x y +=,所以5,3,4a b c ===,所以()4,0A 是椭圆的右焦点,设左焦点为()4,0C -,根据椭圆的定义可知210MA MB a MC MB MB MC+=-+=+-,=,所以MA MB+的最大值为10+故答案为:10+4.(多选题)已知椭圆的左、右焦点分别为、,点在椭圆内部,点22:12521x y C +=1F 2F ()2,3P Q在椭圆上,则可以是( )2QF QP+A .B .C .D .5101520【答案】ABC 【解析】【分析】作出图形,设直线交椭圆于点、,利用椭圆定义可得1PF C M N 2110QF QP QP QF +=+-,利用点分别与点、重合时取得最小值和最大值可求得Q M N 2QF QP+的取值范围,即可得出合适的选项.【详解】在椭圆中,,,,则、,如下图所示:C 5a =b =2c =()12,0F -()22,0F设直线交椭圆于点、,1PF C M N 5=由椭圆定义可得,则,故,1210QF QF +=2110QF QF =-2110QF QP QP QF +=+-当点与点重合时,此时取得最小值,即,Q M 2QF QP +()21min 105QF QP PF +=-=当点与点重合时,此时取得最大值,即.Q N 2QF QP+()21max 1015QF QP PF +=+=因此,的取值范围是.2QF QP+[]5,15故选:ABC.。
椭圆题型总结一、椭圆的定义和方程问题(一)定义:PA+PB=2a>2c1.命题甲:动点到两点的距离之和命题乙: 的轨迹P B A ,);,0(2常数>=+a a PB PA P 是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知、是两个定点,且,若动点满足则动点的轨迹1F 2F 421=F F P 421=+PF PF P 是( )A.椭圆B.圆C.直线D.线段3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得1F 2F P P F 1Q ,那么动点的轨迹是( )2PF PQ =Q A.椭圆 B.圆 C.直线 D.点4.已知、是平面内的定点,并且,是内的动点,且1F 2F α)0(221>=c c F F M α,判断动点的轨迹.a MF MF 221=+M 5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中192522=+y x M 1F N 1MF O 心,则的值是。
ON (二)标准方程求参数范围1.若方程表示椭圆,求k 的范围.(3,4)U (4,5)13522=-+-k y k x 2.( )轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知方程表示焦点在Y 轴上的椭圆,则实数m 的范围是.112522=-+-m y m x 4.已知方程表示焦点在Y 轴上的椭圆,则实数k 的范围是 .222=+ky x 5.方程所表示的曲线是.231y x -=6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。
222=+ky x y k 7.已知椭圆的一个焦点为,求的值。
06322=-+m y mx )2,0(m 8.已知方程表示焦点在X 轴上的椭圆,则实数k 的范围是.222=+ky x (三)待定系数法求椭圆的标准方程1.根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;P (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求)2,3(),1,6(21--P P 椭圆方程.2.以和为焦点的椭圆经过点点,则该椭圆的方程)0,2(1-F )0,2(2F )2,0(A 为 。
椭圆常见题型与典型方法归纳考点一 椭圆的定义椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e=ac(0<e<1)的动点M 的轨迹叫做椭圆.这个定点是椭圆的焦点,这条定直线叫做椭圆的准线,这个常数e 是椭圆的离心率.注意:当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F =的点的轨迹是线段12FF ; 当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F <的点的轨迹不存在. 例 动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为 ( ) A 、椭圆 B 、线段12,F F C 、直线12,F F D 、不能确定考点二 椭圆的标准方程一 标准方程1焦点在x 轴上 标准方程是:22221x y a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(,0),(,0)c c -2焦点在y 轴上 标准方程是:22221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(0,),(0,)c c -3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22179x y +=的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>)例 已知椭圆过两点,1),(2)42A B --,求椭圆标准方程5 与12222=+b y a x (a >b >0)共焦点的椭圆为12222=+++k b y k a x二 重难点问题探析: 1.要有用定义的意识例 已知12,F F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点若2212F A F B += 则AB =________。
椭圆综合题型分类总结大全一、直线与椭圆位置关系的常规解题方法:1.设直线的方程(注意:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别)2.设交点坐标(注意:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组,得到新的一元二次方程4.求出韦达定理(注意:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化,常有以下类型:①“以弦AB 为直径的圆过点0”(注意:需讨论K 是否存在,OA ⊥OB ) ②“点在圆内、圆上、圆外问题”“直角、锐角、钝角问题”⇔“向量的数量积大于、等于、小于0问题”⇔12120x x y y +>③“等角、角平分、角互补问题”即斜率关系(120K K +=或12K K =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”即坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想1、“常规求值”问题:找等式关系,“求范围”问题需要找不等式;2、“是否存在”问题:应当假设存在去求,若求出答案则假设成立,若不存在则计算时会无解;3、证明定值问题的方法:⑴常把变量用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明(此方法用得少)4、处理定点问题的方法:⑴常把方程参数分离,使参数乘以的因式为0,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;、题型一、椭圆与向量(1)给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知A、B与PQ的中点三点共线;(5)给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6)给出,等于已知是的定比分点,为定比,即(7)给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。
椭圆典型题型归纳题型一. 定义及其应用例1:已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;练习:1.6=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆3.10=成立的充要条件是( )A.2212516x y += B.221259x y += C. 2211625x y += D. 221925x y +=4.1m =+表示椭圆,则m 的取值范围是5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;题型二. 椭圆的方程 (一)由方程研究曲线例1.方程2211625x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹 (二)分情况求椭圆的方程例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程;(三)用待定系数法求方程例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;例4.求经过点(2,3)-且与椭圆229436x y +=有共同焦点的椭圆方程;(四)定义法求轨迹方程;例5.在ABC ∆中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>且,,b a c 成等差数列时顶点A 的轨迹;练习:1、动圆P 与圆221:(4)81C x y ++=内切与圆222:(4)1C x y -+=外切,求动圆圆心的P 的轨迹方程。
2、已知动圆C 过点A (2,0)-,且与圆222:(2)64C x y -+=相内切,则动圆圆心的轨迹方程为 ;(五)相关点法求轨迹方程;例6.已知x 轴上一定点(1,0)A ,Q 为椭圆2214x y +=上任一点,求AQ 的中点M 的轨迹方程;(六)直接法求轨迹方程;例7.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于,A B 两点,点P 是直线l 上满足1PA PB ∙=的点,求点P 的轨迹方程;(七)列方程组求方程例8.中心在原点,一焦点为F 的椭圆被直线32y x =-截得的弦的中点的横坐标为12,求此椭圆的方程;题型三.焦点三角形问题椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决;椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PFF ∆中,12FPF α=∠,则当P 为短轴端点时α最大,且 ①122PF PF a +=; ②22212122cos 4c PF PF PF PF α=+-;③12121sin 2PF F S PF PF α∆==2tan 2b α⋅。
高中数学椭圆题型归类目录曲线与方程题型1:曲线的方程的判断题型2:直接法求曲线的方程题型3:定义法求曲线的方程题型4:相关点法求曲线的方程题型5:参数法求曲线的方程题型6:交轨法求曲线的方程椭圆题型1:求轨迹(椭圆)方程题型1.1:定义法求轨迹(椭圆)方程题型1.2:直接法求轨迹(椭圆)方程题型1.3:相关点法求轨迹(椭圆)方程题型1.4:参数法求轨迹(椭圆)方程题型2:求椭圆标准方程题型2.1:已知椭圆上一点及焦点,定义法求椭圆标准方程题型2.2:已知椭圆上两点,待定系数法求椭圆标准方程题型2.3:已知a,b,c关系,方程组法求椭圆标准方程题型3:椭圆的定义题型4:椭圆的对称性题型5:椭圆的离心率题型5.1:求椭圆的离心率题型5.2:求椭圆的离心率取值范围题型6:椭圆的弦中点题型7:椭圆的焦点三角形题型8:椭圆的弦长题型9:椭圆中的三角形面积题型10:直线与椭圆的位置关系题型10.1:直线与椭圆的位置关系题型10.2:椭圆的切线方程题型11:椭圆的求值问题题型12:椭圆中求取值范围问题题型13:椭圆中最值问题题型14:椭圆的定值问题方法是先猜后证。
猜法:取特殊情况或极端情况,此不赘述。
题型14.1:和差相消为定值题型14.2:乘除相约为定值题型14.3:消参数为定值题型15:椭圆的定点问题方法是先猜后证。
猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上,此不赘述。
题型15.1:直线恒过定点题型15.2:曲线恒过定点题型16:证明、探究问题题型1:曲线的方程的判断1.已知曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则“f 1(x 0,y 0)=f 2(x 0,y 0)”是“点M(x 0,y 0)是曲线C 1与C 2的交点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 2.方程|y|-1=表示的曲线是()A.两个半圆B.两个圆C.抛物线D.一个圆 3.方程(x+y-1)=0所表示的曲线是()A.B.C.D.题型2:直接法求曲线的方程1.到(0,2)和(4,-2)距离相等的点的轨迹方程___________2.设动点P 到点F(-1,0)的距离是到直线y=1的距离相等,求点P 的轨迹方程,并判定此轨迹是什么图形.3.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?题型3:定义法求曲线的方程1.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为.2.过点(-2,0)的直线与圆221x y +=相交于A,B,求弦AB 中点M 的轨迹方程。
椭圆典型题型归纳题型一. 定义及其应用例1:已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;练习:1.6=对应的图形是〔 〕A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是〔 〕A.直线B. 线段C. 椭圆D. 圆3.10=成立的充要条件是〔 〕A.2212516x y += B.221259x y += C. 2211625x y += D. 221925x y +=4.1m =+表示椭圆,则m 的取值范围是5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;题型二. 椭圆的方程〔一〕由方程研究曲线例1.方程2211625x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹 〔二〕分情况求椭圆的方程例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程;〔三〕用待定系数法求方程例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;例4.求经过点(2,3)-且与椭圆229436x y +=有共同焦点的椭圆方程;〔四〕定义法求轨迹方程;例5.在ABC ∆中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>且,,b a c 成等差数列时顶点A 的轨迹; 练习:1、动圆P 与圆221:(4)81C x y ++=内切与圆222:(4)1C x y -+=外切,求动圆圆心的P 的轨迹方程。
2、已知动圆C 过点A (2,0)-,且与圆222:(2)64C x y -+=相内切,则动圆圆心的轨迹方程为 ;〔五〕相关点法求轨迹方程;例6.已知x 轴上一定点(1,0)A ,Q 为椭圆2214x y +=上任一点,求AQ 的中点M 的轨迹方程;〔六〕直接法求轨迹方程;例7.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于,A B 两点,点P 是直线l 上满足1PA PB •=的点,求点P 的轨迹方程;〔七〕列方程组求方程例8.中心在原点,一焦点为F 的椭圆被直线32y x =-截得的弦的中点的横坐标为12,求此椭圆的方程;题型三.焦点三角形问题椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决;椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PFF ∆中,12FPF α=∠,则当P 为短轴端点时α最大,且 ①122PF PF a +=; ②22212122cos 4c PF PF PF PF α=+-;③12121sin 2PF F S PF PF α∆==2tan 2b α⋅。
完整版)椭圆大题题型汇总例题+练习解决直线和圆锥曲线的位置关系的步骤如下:1.判断直线的斜率是否存在,如果存在,求出斜率。
2.联立直线和曲线的方程组。
3.讨论一元二次方程的情况。
4.计算一元二次方程的判别式。
5.运用韦达定理、同类坐标变换等技巧。
6.计算弦长、中点、垂直、角度、向量、面积、范围等。
在解题过程中需要掌握中点坐标公式和弦长公式,同时还需要了解两条直线垂直的判定方法和XXX定理的应用。
常见的题型包括数形结合确定直线和圆锥曲线的位置关系以及弦的垂直平分线问题。
对于后者,需要掌握垂直和平分的相关知识。
举例来说,对于题型一,可以给定一个点T和一条直线l,要求找到与曲线N相交的点A、B,并判断是否存在一点E使得三角形ABE是等边三角形。
对于题型二,可以给定一个椭圆和一些已知点,要求求出过这些点且与给定直线相切的圆的方程。
在解题过程中,需要注意排除格式错误和明显有问题的段落,同时对每段话进行小幅度的改写,使其更加通顺和易懂。
练1:Ⅰ)椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
Ⅱ)设直线 $l:y=kx+m(k\neq0)$ 与椭圆C交于不同的两点M、N,线段MN的垂直平分线过定点G$(x_G,y_G)$。
根据对称性可知,$G$ 在$x$轴上,即$y_G=0$。
由于线段MN的垂直平分线过点$G$,所以$G$ 是线段MN的中点。
又因为MN是直线$l$的斜率为$k$的两点之间的线段,所以MN的中点的横坐标为$-\frac{m}{k}$。
因此,$x_G=-\frac{m}{k}$。
又因为$M$、$N$ 在椭圆上,所以它们满足椭圆的方程,代入直线方程可得关于$k$的二次方程。
由于线段MN不垂直于$x$轴,所以$k\neq0$。
根据二次方程的判别式,当判别式大于等于$0$时,线段MN存在,$k$的取值范围为$\left(-\infty,-\frac{a}{b}\right)\cup\left(\frac{a}{b},+\infty\right)$。
椭圆题型总结一、焦点三角形1. 设F 1、F 2是椭圆12322=+y x 的左、右焦点,弦AB 过F 2,求1ABF △的面积的最大值。
(法一)解:如图,设2(0)xF B ααπ∠=<<,22||||AF m BF n ==,,根据椭圆的定义,1||AF m =,1||BF n =,又12||2F F =,在ΔAF 2F 1和ΔBF 2F 1中应用余弦定理,得2222)44cos )44cos m m m n n n αα⎧=+-⎪⎨=++⎪⎩,∴m =,n =∴11211||||2()sin 22F ABB A S F F y y m n α∆=⋅-=⋅⋅+α== 令sin t α=,所以01t <≤,∴21()22t g t t t t==++在(01],上是增函数 ∴当1t =,即2πα=时,max 1()3g t =,故1ABF △(法二)解:设AB :x=my+1,与椭圆2x 2+3y 2=6联立,消x 得 (2m 2+3)y 2+4my-4=0 ∵ AB 过椭圆内定点F 2,∴ Δ恒大于0.设A(x 1,y 1),B(x 2,y 2),则Δ=48(m 2+1)1ABF S ∆=|y 1-y 2|=令t=m 2+1≥1,m 2=t-1,则 1ABF S ∆=t ∈[1,+∞) f(t)=144t t++在t ∈[1,+∞)上单调递增,且f(t)∈[9,+∞) ∴ t=1即m=0时,ΔABF 1注意:上述AB 的设法:x=my+1,方程中的m 相当于直线AB 的斜率的倒数,但又包含斜率不存在的情况,即m=0的时候。
在直线斜率不等于零时都可以这样设,往往可使消元过程简单化,而且避免了讨论。
2. 如图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1) 求点P 的轨迹方程;(2) 若2·1cos PM PN MPN-∠=,求点P 的坐标.解:(1) 由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴 b =225a c -=, 所以椭圆的方程为221.95x y += (2) 由2,1cos PM PN MPN=-g 得cos 2.PM PN MPN PM PN =-g g ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形. 在△PMN 中,4,MN =由余弦定理有2222cos .MN PM PN PM PN MPN =+-g②将①代入②,得22242(2).PM PN PM PN =+--g故点P 在以M 、N 为焦点,实轴长为23的双曲线2213x y -=上. 由(Ⅰ)知,点P 的坐标又满足22195x y +=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩ 解得33,25.2x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为335335335335(,)-、(,-)、(-,)或(,-).二、点差法定理 在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.3. 直线l 经过点A (1,2),交椭圆2213616x y +=于两点P 1、P 2,(1)若A 是线段P 1P 2的中点,求l 的方程;(2)求P 1P 2的中点的轨迹.解:(1)设P 1(x 1,y 1)、P 2(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧=+=+116361163622222121y x y x ⇒016))((36))((21212121=+-++-y y y y x x x x …………*∵A (1,2)是线段P 1P 2的中点,∴x 1+x 2=2,y 1+y 2=4, ∴016)(436)(22121=-+-y y x x ,即922121-=--x x y y 。
平面内一个动点到两个定点、的距离之和等于常数()
点的轨迹叫椭圆
若,则动点的轨迹为线段;
若,则动点的轨迹无图形
.当焦点在轴上时,椭圆的标准方程:,其中;
.当焦点在轴上时,椭圆的标准方程:,其中;
.在椭圆的两种标准方程中,都有和;
当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
椭圆的的简单几何性质
对于椭圆标准方程,把
,方程都不变,所以椭圆是以
②椭圆(
表示,记作。
越小,因
椭圆的图像中线段的几何特征(如下图):
),,;
),,;
),,;知识点四:椭圆与(
,,
,,
关于x轴、y轴和原点对称
,,
=,短轴长=
,,椭圆,(
和,
知识点四:椭圆与(
,,
,,
关于x轴、y轴和原点对称
,,
=,短轴长=
,,椭圆,(
和,
可化为,即,
当时,椭圆的焦点在
当时,椭圆的焦点在
程中的参数、、的值。
其主要步骤是
与椭圆()共焦点的椭圆方程可设为(
与焦点三角形有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角()结合起来,建立、之间的
长轴与短轴的长短关系决定椭圆形状的变化。
离心率,因为
表示为,当越小时,椭圆越扁,越大;当越大,椭圆趋近圆,。
椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+= ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x xy y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()43200000032004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---,,,,所以()22120021PF PF x y ⋅=--=,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x =-,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k +++-=,设()B B B x y ,,则1B x ==同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -=-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+. 4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k-+=+, 即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k=,所以222212m k k k +=+,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y xx y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E Dn y y m k ==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k =,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B ,,且3AP PB =, 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-,所以112m -<-或112m <, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-或112m <.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--,,,,,. 由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>. 所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k-+--+,解得213k . (3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅的取值范围. 解:(13)AP =,,设()(31)Q x y AQ x y =--,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-因为221182y x +=,即22(3)18x y +=,而22(3)2|||3|x y x y +⋅,所以18618xy -.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x 轴上.若右焦点到直线0x y -+的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=. (2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+,所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y += (2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=,所以()()112222x y x y λ-=-,,, 所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,,所以()22121221x xx x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭,因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===,,, 所以113λ<,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25||3PA PB -<t 取值范围.解:(1)由题意知c e a =,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=. (2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为25||3PA PB-<12x -<,所以()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为(()26223-,,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x ab+=,由题意可得2a b c ===,故椭圆方程为22142y x += 设AB 的直线方程:y m =+.由22124y m y x ⎧=+⎪⎨+=⎪⎩,,得22440xm ++-=,由()22)1640m ∆=-->,得m -<< P 到AB 的距离为d =则1||2PAB S AB d ∆=⋅=,)(2188m -=当且仅当2(m =±∈-取等号,所以三角形P AB . (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t .当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()331122-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=相切,得2||11t k =+,即221t k =+.所以()()()()()222222212122224443||4||1434t t k t AB x x y y k k t k ⎡⎤-⎢⎥=-+-=+-=⎢⎥+++⎣⎦. 因为243||43||233||||t AB t t t ==++,且当3t =±时, 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯,当且仅当3t =±时,AOB ∆面积S 的最大值为1,相应的T 的坐标为(03)-,或(03),.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m的函数,并求AB 的最大值. 解:由题意知,||1m .当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB =; 当1m =-时,同理可得AB =;当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a ba b+=>>上的三点,其中点A 的坐标为0),BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m,不是左右顶点),且以AB为直径的圆过椭圆C的,两点(A B=+与椭圆C相交于A B右顶点,求证:直线l过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点1M,,平行于OM(2)的直线l在y轴上的截距为(0),两个不同点.m m≠,l交椭圆于A B(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA MB,与x轴始终围成一个等腰三角形.。
椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。
6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
椭圆题型归纳、知识总结1.椭圆的定义 :把平面内与两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2 )的点的轨迹叫做椭圆 .这两个定点叫做焦点,两焦点的距离叫做焦距 (设为 2c ) .焦点在坐标轴上的椭圆标准方程有两种情形,可设方程为 mx 2 ny 2 1(m 0,n 0) 不必考虑焦点位置,求出方程。
3. 范围. 椭圆位于直线 x =±a 和 y =± b 围成的矩形里. |x|≤a ,|y|≤b .4. 椭圆的对称性椭圆是关于 y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.5. 顶点椭圆有四个顶点: A 1(-a, 0)、A 2(a, 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2 分别叫做椭圆的长轴和短轴 .。
2.椭圆的标准方程:2 2长轴的长等于2a. 短轴的长等于2b.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在 Rt △OB 2F 2 中,|OF 2|2=|B 2F 2|2-|OB 2|2,即 c 2=a 2-b 2.2y2 1 (a >b >0) 的左右焦点分别为 F 1,F 2,点 P 为椭圆上任意一点b 2 b 2,即K AB a考点一 定义及其应用例 1. 已知一个动圆与圆 C :(x 4)2 y 2 100 相内切,且过点 A(4,0) ,求这个动圆 圆心M 的轨迹方程;例 2. 如果方程 x 2 (y m)2 x 2 (y m)2 m 1表示椭圆,则 m 的取值范围F 1PF 2,则椭圆的焦点角形的面积为 S F 1PF2b 2 tan .228. 椭圆 x 2 a 2y 2 1(a >b >0)的焦半径公式 |MF 1 | a ex 0 , |MF 2 | a ex 0 b( F 1( c,0) , F 2(c,0) M (x 0,y 0)). x 2 9. AB 是椭圆x 2ab 21的不平行于对称轴的弦 ,M (x 0, y 0)为 AB 的中点,则b 2 x 0 2a y 01)a27. 椭圆 x 2a 2是例 3. 过椭圆 9x 2 4y 2 1的一个焦点 F 1的直线与椭圆相交于 A, B 两点,则 A,B 两点与椭圆的另一个焦点 F 2构成的 ABF 2 的周长等于;例 4. 设圆 (x 1)2 y 2 25的圆心为 C , A(1,0)是圆内一定点, Q 为圆周上任意一 点,线 段 AQ 的垂直 平分线与 CQ 的连线交 于点 M ,则点 M 的轨迹方 程考点二 椭圆的方程例 1. 已知椭圆以坐标轴为对称轴,且长轴是短轴的 圆的方程;例 2. 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 2( 3, 2) ,求椭圆的方程;3 倍,并且过点 P(3,0) ,求椭P 1( 6,1) 、例 3. 求经过点(2, 3)且与椭圆9x2 4y2 36 有共同焦点的椭圆方程;2 2 2 2注:与椭圆x2y2 1共焦点的椭圆可设其方程为2x2y1(k b2) ;a b a k b k例 1. 在ABC中,A,B,C 所对的三边分别为a,b,c ,且B( 1,0), C (1,0) ,求满足b a c且b,a,c 成等差数列时顶点 A 的轨迹;2例 2. 已知x轴上一定点A(1,0) ,Q为椭圆y2 1上任一点,求AQ 的中点M 的4轨迹方程;例 3. 设动直线 l 垂直于 x 轴,且与椭圆 x 2 2y 2 4交于 A, B 两点,点 P 是直线 l 上 满足 PA PB 1的点,求点 P 的轨迹方程;例 4. 中心在原点,一焦点为 F(0, 50) 的椭圆被直线 y 3x 2截得的弦的中点的横 坐标为 1 ,求此椭圆的方程;2考点三 焦点三角形问题x 2 y 2 5例1. 已知椭圆1x 6 2y 5 1上一点 P 的纵坐标为 53 ,椭圆的上下两个焦点分别为 F 2、F 1,求 PF 1 、 PF 2 及 cos F 1PF 2;考点四椭圆的几何性质2例 1. 已知P 是椭圆x2a2y2 1上的点,的纵坐标为5,F1、F2分别为椭圆的两个b2 31 2焦点,椭圆的半焦距为c,则PF1 PF2 的最大值与最小值之差为22 例 2. 椭圆x2y2 1 (a a2b2b 0)的四个顶点为A,B,C,D ,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率为考点五求范围例 1. 方程2x2m2y(m 1)21表示准线平行于x轴的椭圆,求实数m 的取值范围;例 3. 若椭圆2xk11 的离心率为1,则k22例 4. 若P 为椭圆x2a2yb2 1(a b 0) 上一点,F1 、F2 为其两个焦点,且PF1F2 150,PF2F1 750,则椭圆的离心率为考点六. 椭圆的第二定义的应用例 1. 方程 2 (x 1)2(y 1)2x y 2 所表示的曲线是例 2. 求经过点M (1,2),以y轴为准线,离心率为1的椭圆的左顶点的轨迹方程;222 例 3. 椭圆x y25 9 1上有一点P,它到左准线的距离等于52,那么P到右焦点的距离为2 例 4 .已知椭圆x42y3 1,能否在此椭圆位于y轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点F1, F2距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由。
椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆22221(0)xyabab上一点00(,)Pxy和焦点1(,0)cF,2(,0)cF为顶点的
12PFF中,12FPF,则当P为短轴端点时最大,且
①122PFPFa; ②22212122cos4cPFPFPFPF;
③12121sin2PFFSPFPF=2tan2b(b短轴长)
2、直线与椭圆的位置关系:直线ykxb与椭圆22221(0)xyabab交于1122(,),(,)AxyBxy两点,则222121212()114ABkxxkxxxx
3、椭圆的中点弦:设1122(,),(,)AxyBxy是椭圆22221(0)xyabab上不同两点,
00(,)Mxy是线段AB的中点,可运用点差法可得直线AB斜率,且2020ABbxkay;
4、椭圆的离心率 范围:01e,e越大,椭圆就越扁。
求椭圆离心率时注意运用:cae,222cba
5、椭圆的焦半径 若00(,)Pxy是离心率为e的椭圆22221(0)xyabab上任一点,焦点为1(,0)cF,2(,0)cF,则焦半径10PFaex,10PFaex; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2a,2b值,结合焦点位置直接写出椭圆方程;
⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2a,2b,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221AxBy
; 椭圆方程的常见题型 1、点P到定点(4,0)F的距离和它到定直线10x的距离之比为1:2,则点P的轨迹方程为 ;
2、已知x轴上一定点(1,0)A,Q为椭圆2214xy上的动点,则AQ中点M的轨迹方程是 ; 3、平面内一点M到两定点2(0,5)F、2(0,5)F的距离之和为10,则M的轨迹为( ) A 椭圆 B 圆 C 直线 D 线段 4、经过点(2,3)且与椭圆229436xy有共同焦点的椭圆为( )
A 2211510xy B 2211015xy C 221510xy D 221105xy
5、已知圆221xy,从这个圆上任意一点P向y轴做垂线段1PP,则线段1PP的中点M的轨迹方程是( )
A 2241xy B 2241xy
C2214xy D2214yx
6、设一动点P到直线3x的距离与它到点(1,0)A的距离之比为3,则动点P的轨迹方程是 ( )
A22132xy B22132xy C 22(1)132xy D 22123xy
7、动圆P与圆221:(4)81Cxy内切与圆222:(4)1Cxy外切,求动圆圆心的P的轨迹方程。 8、已知动圆C过点A(2,0),且与圆222:(2)64Cxy相内切,则动圆圆心的轨迹方程为 ; 9、已知椭圆的焦点在y轴上,焦距等于4,并且经过点(2,26)P,则椭圆方程为 ;
10、已知中心在原点,两坐标轴为对称轴的椭圆过点35(,)22A,(3,5)B,则该椭圆的标准方程为 ; 11、设,AB是两个定点,且||2AB,动点M到A点的距离是4,线段MB的垂直平分线l交MA于点P,求动点P的轨迹方程. 12、若平面内一动点M到两定点1F,2F之和为常数2a,则M的轨迹是 ; 13、已知椭圆经过两点(2,0)和(0,1),求椭圆的标准方程; 14、已知椭圆的焦距是2,且过点5(,0)P,求其标准方程; 椭圆定义的应用 1、已知1F、2F是椭圆的两个焦点,AB是经过焦点1F的弦且8AB,若椭圆长轴长是10,
求21FAFB的值; 2、已知A、B是两个定点,4AB,若点P的轨迹是以A,B为焦点的椭圆,则PAPB的值可能为( ) A 2 B 3 C 4 D 5
3、椭圆221259xy的两个焦点为1F、2F,P为椭圆上一点,若01290FPF,求12
FPF
的面积。 4、设P是椭圆221499xy上的点,1F、2F是椭圆的两个焦点,,若12PF,则2PF
5、椭圆221259xy上一点M到焦点1F的距离为2,N是1MF中点,则ON( ) A 2 B 6 C 4 D 32 6、在椭圆2219yx上有一点P,1F、2F分别是椭圆的上下焦点,若122PFPF,则2
PF
= ; 7、已知1F、2F为椭圆221259xy的两个焦点,过1F的直线交椭圆于A、B两点,若
2212FAFB,则AB ; 8、设1F、2F为椭圆221496xy的两个焦点,P是椭圆上的点,且12=43PFPF::,求12
FPF
的面积。 9、0mn是方程221mxny表示焦点在y轴上的椭圆的 条件;
10、若方程22125xykk表示椭圆,则的取值范围为 ; 11、已知ABC的顶点在椭圆2213xy上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是 ;
椭圆与向量有关题型 例1已知椭圆C:2212yx的右焦点为F,右准线为l,Al,线段AF交C于点B,若3FAFB,则AF= ; 例2已知椭圆C:22221(0)xyabab的离心率为32,过右焦点F且斜率为k(0)k的直线与C相交于A、B两点,且3AFFB,则k为 ; 1、已知椭圆2214xy的焦点为1F、2F,点M在该椭圆上,且120MFMF,则点M到y轴的距离为 ; 2、已知1F、2F是椭圆22221(0)xyabab的两个焦点,P为椭圆上一点,且12PFPF,若12PFF的面积为9,则b ; 3、已知椭圆C:223112yx的右焦点为F,右准线为l,Al,线段AF交C于点B,若3FAFB,则AF= ; 椭圆的离心率问题 例1、1F、2F分别是椭圆22221(0)xyabab的两个焦点,A和B是以O为圆心,以1OF
为半径的圆与该椭圆的两个交点,且2FAB是等边三角形,则椭圆的离心率为 ;
例2、已知1F、2F是椭圆的两个焦点,点P在椭圆上,且01260FPF,求椭圆的离心率的取值范围;
1、设1F、2F分别是椭圆22221(0)xyabab的左、右焦点,若在其右准线上存在点P,使线段1PF的中垂线过点2F,则椭圆离心率的取值范围是 ; 2、在平面直角坐标系xoy中,设椭圆22221(0)xyabab的焦距为2C,以点O为圆心,a为半径作圆M,若过点2(,0)aPc所作圆M的两条切线相互垂直,则该椭圆的离心率
为 ; 3、已知椭圆22221(0)xyabab的左焦点为 F,(,0),(0,)AaBb为椭圆的两个顶点,
若F到AB的距离等于7b,则椭圆的离心率为 ; 4、已知椭圆22221(0)xyabab的左右焦点分别为1F、2F,且122FFc,点A在椭圆上,1120AFFF,212AFAFc,则椭圆的离心率为 ; 5、已知1F、2F,是椭圆的两个焦点,过1F且与椭圆长轴垂直的直线交椭圆于A、B两点,若2ABF是等腰直角三角形,则这个椭圆的离心率为 ; 6、椭圆22221(0)xyabab的右焦点为F,其右准线与x轴的交点为A。在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆的离心率取值范围是 ;
7、已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且2BFFD,则C的离心率为 ;
8、以椭圆22221(0)xyabab的右焦点为圆心的圆经过原点O,且与该椭圆的右准线交于A、B两点,已知OAB是正三角形,则该椭圆的离心率是 ; 9、已知A B C分别为椭圆22221(0)xyabab的右顶点、上顶点、和左焦点,若090ABC
,则该椭圆的离心率为 ;
10设是椭圆2222:1(0)xyEabab的左、右焦点,P为直线上一 点,是底角为的等腰三角形,则E的离心率为 ( ) A.12 B.23 C. D.
11椭圆22221xyab(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为_______________.
椭圆的焦点三角形 1、椭圆22192xy的焦点为1F、2F,点P在椭圆上,若14PF,则2PF ;12FPF的大小为 ;
12FF32ax
21FPF30 2、P是椭圆2212516xy上的一点,1F和2F是焦点,若1230FPF,则12FPF的面积等于 ( ) ()A3316 ()B)32(4 ()C)32(16 ()D16(2-3)
3、P是椭圆221259xy上的一点,1F和2F为左右焦点,若1260FPF。 (1)求12FPF的面积;(2)求点P的坐标。
焦半径问题 1椭圆221123xy的左右焦点分别为1F、2F,点P在椭圆上,如果线段1PF的中点在y
轴上,那么1PF是的2PF的 倍;
椭圆的中点弦问题 例1、已知椭圆221(0)axbyab与直线10xy相交于A、B两点,C是AB
的中点,若22AB,OC的斜率为22,求椭圆方程。