数学建模范例
- 格式:doc
- 大小:598.00 KB
- 文档页数:24
数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。
在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。
下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。
案例一,交通拥堵问题。
在城市交通管理中,交通拥堵一直是一个严重的问题。
如何合理规划道路和交通流量,是一个复杂的问题。
数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。
案例二,股票价格预测。
股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。
数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。
案例三,物流配送优化。
在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。
数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。
案例四,环境污染监测。
环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。
数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。
通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。
数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。
因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。
希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。
数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。
以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。
2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。
3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。
4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。
5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。
6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。
7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。
数学建模获奖作品范例近年来,数学建模竞赛在高中和大学生中越来越受欢迎。
数学建模是一种将实际问题转化为数学问题并求解的方法,通过建立数学模型,对问题进行分析和预测,得出有关结论和解决方案。
下面将介绍一些数学建模获奖作品的范例,以展示数学建模的应用和价值。
第一个范例是关于城市交通流量的建模。
城市交通流量是一个复杂的问题,涉及到车辆的流动、道路的拥堵、信号灯的控制等多个因素。
一支参赛团队利用数学建模的方法,通过收集城市交通数据和实地观察,建立了一个交通流量模型。
他们使用了微分方程和概率统计等数学工具,对车辆的速度、密度和流量进行了建模和预测。
通过模型的分析,他们提出了一些优化交通流量的方法,如调整信号灯的时长、增加道路的容量等。
他们的建模方法和解决方案得到了专家的肯定,并在数学建模竞赛中获得了一等奖。
第二个范例是关于物种扩散的建模。
物种扩散是生态学中的一个重要问题,研究物种的扩散过程对于了解生态系统的稳定性和保护生物多样性具有重要意义。
一支参赛团队通过数学建模的方法,结合实地调查和数据分析,建立了一个物种扩散模型。
他们使用了偏微分方程和随机过程等数学工具,对物种的扩散速度和扩散范围进行了建模和预测。
通过模型的分析,他们揭示了物种扩散的规律和影响因素,并提出了一些保护生物多样性的建议。
他们的建模方法和研究成果在数学建模竞赛中获得了特等奖。
第三个范例是关于金融风险管理的建模。
金融风险管理是一个重要的经济问题,涉及到金融市场的波动、投资组合的风险等多个因素。
一支参赛团队利用数学建模的方法,通过收集金融数据和分析市场趋势,建立了一个金融风险管理模型。
他们使用了时间序列分析、随机过程和蒙特卡洛模拟等数学工具,对金融资产的风险价值进行了建模和预测。
通过模型的分析,他们提出了一些风险管理的策略,如分散投资、对冲交易等。
他们的建模方法和风险管理方案在数学建模竞赛中获得了一等奖。
以上是关于数学建模获奖作品的三个范例。
这些范例展示了数学建模在不同领域中的应用和价值。
10.1牙膏的销售量某大型牙膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司生产的牙膏销售量与销售价格、广告投入等之间的关系,从而预测出在不同价格和广告费用下的销售量。
为此,销售部的研究人员收集了过去30个销售周期(每个销售周期为4周)公司生产的牙膏的销售量、销售价格、投入的广告费用,以及同期其它厂家生产的同类牙膏的市场平均销售价格,见表1-1(其中价格差指其它厂家平均价格与公司销售价格之差)。
试根据这些数据建立一个数学模型,分析牙膏销售量与其它因素的关系,为制订价格策略和广告投入策略提供数量依据表1-1牙膏销售量与销售价格、广告费用等数据一、问题重述根据过去30个销售周期(每个销售周期为4周)公司生产的牙膏的销售量、销售价格、投入的广告费用,以及同期其它厂家生产的同类牙膏的市场平均销售价格,见表1-1。
根据这些数据建立一个数学模型,分析牙膏销售量与其它因素的关系,为制订价格策略和广告投入策略提供数量依据二、问题分析由于牙膏是生活必需品,对大多属顾客来说,在购买同类产品的牙膏是更多地会在意不同品牌之间的价格差异,而不是它们的价格本身。
因此,在研究各个因素对销量的影响时,用价格差代替公司销售价格和其他厂家平均价格更为合适。
三、模型假设1.画出牙膏销售量与价格差,公司投入的广告费用的散点图2.由散点图确定两个函数模型,再由这两个函数模型解出回归模型3.对模型进行改进,添加新的条件确定更好的回归模型系数,得到新的回归模型4.对模型进一步改进,确定最终的模型四、符号约定牙膏销售量为y,其他厂家平均价格和公司销售价格之差(价格差)为x1,公司投入的广告费用为x2,其他厂家平均价格和公司销售价格分别为x3和x4,x1=x3-x4。
基于上面的分析,我们仅利用1x和2x来建立y的预测模型。
五、模型的建立和求解1.基本模型利用表1-1的数据用matlab 作出y 与x1的散点图(图1-1),y 与x2的散点图(图1-2) 代码如下:x1=[-0.05 0.25 0.6 0 0.25 0.2 0.15 0.05 -0.15 0.15 0.2 0.1 0.4 0.45 0.35 0.3 0.5 0.5 0.4 -0.05 -0.05 -0.1 0.2 0.1 0.5 0.6 -0.05 0 0.05 0.55];x2=[5.5 6.75 7.25 5.5 7 6.5 6.75 5.25 5.25 6 6.5 6.25 7 6.9 6.8 6.8 7.1 7 6.8 6.5 6.25 6 6.5 7 6.8 6.8 6.5 5.75 5.8 6.8];y=[7.38 8.51 9.52 7.5 9.33 8.28 8.75 7.87 7.1 8 7.89 8.15 9.1 8.86 8.9 8.87 9.26 9 8.75 7.95 7.65 7.27 8 8.5 8.75 9.21 8.27 7.67 7.93 9.26];A1=polyfit(x1,y,1); yy1=polyval(A1,x1); A2=polyfit(x2,y,2); x5=5:0.05:7.25; yy2=polyval(A2,x5);subplot(1,2,1);plot(x1,y,'o',x1,yy1); title('图1 y 对x1的散点图'); subplot(1,2,2);plot(x2,y,'o',x5,yy2); title('图2 y 对x2的散点图');图(1-1)与图(1-2)从图1可以发现,随着1x 的增加,y 的值有比较明显的线性增长趋势,图中的直线是用线性模型:011y x ββε=++(1)拟合的(其中ε是随机误差)。
数学建模作业题目:基金使用计划教学班:教学X班组员:指导老师:二〇〇九年十二月一日一、摘要在社会生活中,我们常会遇到一笔资金有很多不同的投资机会,面对这些机会,我们可以选择不同的投资方式,从而使这笔资金在一段时间内达到收益最大化。
本文涉及的问题是基金会的一笔资金,每年都要用一部分本息进行必要的资助,每年的资助金额要求大致相同,在可以将其存入银行业可购买国库券的俩中投资方式机会下,怎样安排一个几年的计划,时期每年用于资助的金额尽可能多,而且几年后仍然保留原有的金额不变。
本文给出了基金存款策略的数学模型。
对于基金M使用n年的情况而言,首先把M 分成n份,其中第i(1≤i≤n)份存款Mi存期为i年,那么只有当第i(i≤n-1)份资金按最佳存款策略存款到期后的本息和等于当年的资助金额,并且第n份资金按最佳存款策略存款n年后的本息和等于原基金M与当年的奖学金数之和时,每年发放的奖学金才能达到最多。
通过求解此模型,我们得到了基金的最佳存款策略,并求出了在n= 10 年, M= 2000 万元的情况下,基金的最佳使用方案。
在可存款也可购买国库券时,采取一种转化方法,将国库券购买情况转化为相应年期的定期存款,结合问题(一)即可求得在n=10年,M=2000万元的情况下,基金的最佳使用方案;在第八年基金会庆祝时资助金额比其它年度多20%的问题的分析方法和模型的解决方法与前相同。
二、问题的重述某基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。
当前银行存款及各期国库券的利率见下表.假设国库券每年至少发行一次,发行时间不定。
基金会计划在n年内每年用部分本息进行必要的资助,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。
基金会希望获得最佳的基金使用计划,以提高每年的奖金额。
请你帮助基金会在如下情况下设计基金使用方案,并对M=2000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券;3.在基金到位后的第8年为庆祝基金会的资助成果,基金会希望这一年的奖金比其它年度多20%。
数学建模有趣的例子
1. 嘿,你知道吗?数学建模能帮我们规划最优的快递配送路线呢!就像给快递小哥设计一条超级捷径,让包裹能最快到达我们手中。
这是不是很有趣呀?
2. 哇塞,数学建模还可以用来模拟传染病的传播呢!就如同解开一个神秘疾病扩散的谜团,太奇妙了吧。
3. 哎呀,想想看,用数学建模来优化城市交通信号灯的时间安排,这不就像是给城市的交通脉络做了一次精心梳理嘛,多有意思啊!
4. 嘿,数学建模甚至能帮助农民伯伯确定最佳的种植布局呢!是不是感觉像给田地施了一次神奇的魔法呀。
5. 哇哦,通过数学建模来分析股票的走势,那不就像是在股海里找到正确的航向嘛,这可太引人入胜啦!
6. 天哪,数学建模可以帮助消防员确定最佳的救援路线,这简直就是给生命开辟快速通道啊,太厉害了吧!
7. 哈哈,数学建模能用来给超市设计最合理的货架摆放呢!这不就像是给商品们找到了最舒适的家嘛。
8. 你想想,利用数学建模来预测天气变化,岂不是像拥有了提前知晓大自然秘密的超能力,有趣极了呀!
我觉得数学建模真的是充满了无限可能和乐趣,它在各个领域都能发挥出神奇的作用,让我们的生活变得更加美好和高效。
一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。
而且以下计算中,飞机航线途中站点经纬度用表一的数据。
表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。
试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。
初中数学建模举例所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。
现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。
求所挂重物重量为6kg 时弹簧的长度。
既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。
可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。
求解二元一次方程组,得出k=0.3,b=6。
从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。
于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。
这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。
但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。
二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。
小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。
求解二元一次方程组,得解k=0.5,b=5。
得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。
从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。
本例至此,似乎已经解决了问题。
但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。
因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。
数学建模获奖作品范例数学建模是一种通过数学模型来解决实际问题的方法。
许多学生和研究人员都参与了数学建模竞赛,通过自己的努力和创新,获得了获奖的机会。
本文将以数学建模获奖作品范例为主题,介绍一些获奖作品的内容和方法,以期激发更多人对数学建模的兴趣和热情。
一、基于人口增长的城市规划优化在城市规划过程中,人口增长是一个重要的考虑因素。
一组学生在数学建模竞赛中提出了一种基于人口增长的城市规划优化模型。
他们首先收集了一座城市的人口数据,并通过数学方法对未来的人口增长进行预测。
然后,他们建立了一个优化模型,考虑了城市的土地利用、交通网络和公共设施等因素,以最大化城市的可持续发展和居民的生活质量。
通过对模型的求解和分析,他们得出了一些关于城市规划的有价值的结论,并在竞赛中获得了一等奖。
二、基于数据挖掘的股票预测模型股票市场是一个充满不确定性的领域,许多投资者希望能够通过分析历史数据来预测未来的股票走势。
一组研究人员在数学建模竞赛中提出了一种基于数据挖掘的股票预测模型。
他们首先收集了大量的股票市场数据,并通过数学方法对这些数据进行分析和挖掘。
然后,他们建立了一个预测模型,可以根据历史数据预测未来的股票走势。
通过对模型的验证和比较,他们发现这个模型在股票预测方面具有一定的准确性和可靠性,因此在竞赛中获得了特等奖。
三、基于运筹学的物流优化模型物流是现代经济中一个重要的环节,对于企业的运营效率和成本控制都起着至关重要的作用。
一组学生在数学建模竞赛中提出了一种基于运筹学的物流优化模型。
他们通过收集一家物流公司的运输数据和成本数据,建立了一个数学模型来优化物流网络和运输路径。
通过对模型的求解和分析,他们得出了一些关于物流优化的有益结论,为物流公司提供了一些建议和改进措施。
他们的工作得到了评委的认可,获得了一等奖。
四、基于图论的社交网络分析模型社交网络在当今的互联网时代中扮演着重要的角色,许多人希望能够通过分析社交网络的结构和关系来了解人际关系的特点和演变规律。
1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。
然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。
不是一般性,假设一个整数规划的最优点不是孤立的奇点。
假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。
前两页空白且不编页码从该页开始编页码摘要本文在依照电力市场交易原则和输电阻塞管理原则的前提下,通过多元线性回归分析、目标规划等方法,对电力市场的输电阻塞管理问题进行了研究。
问题1中,通过对散点图进行分析,可以得到所有机组出力值都与各线路的有功潮流值存在线性关系。
于是,我们利用多元线性回归分析模型,分别得到6条线路的有功潮流与8个机组出力的带有常数项的线性表达式,其中,模型中的参数用最小二乘法估计,并进行了检验,证明函数关系可行。
问题2中,通过分析可知,阻塞费用主要是包括两部分,分别是序内容量不能出力的部分和报价高于清算价的序外容量出力的部分。
“公平对待”就理解为电网公司赔偿两者在交易中所有的收入损失,从而制定出了阻塞费用的计算规则和公式。
针对问题3,为了下一个时段各机组的出力分配预案,我们按照电力市场规则,以在各机组出力存在上下极限(受爬坡速率影响)和机组出力值之和必须满足预报负荷为约束条件,以购电费用最少为目标函数,建立线性规划模型。
最终问题4中,把问题3的计算数据代入问题4,通过问题1所得函数关系的计算易知部分线路出现阻塞,需调整出力方案。
于是,我们以在各条线路上的有功潮流的绝对值不超出限值,各机组出力在其上下极限范围内以及机组出力值之和必须满足预报负荷为约束条件,以阻塞费用最低为目标函数,建立非线性目标规元。
针对问题5,重复问题3、4的工作。
但因其预报负荷较大,无法输电阻塞消除,需将安全裕度纳入考虑范围之内。
于是,根据安全且经济的原则的原则,以各条线路上的有功潮流的绝对值不超出安全裕度上限,各机组出力在其上下极限范围内以及机组出力值之和必须满足预报负荷为约束条件,以每条线路上潮流的绝对值超过限值的百分比最小和阻塞费用最低为目标函数,建立双目标规划模元。
关键词:多元线性回归分析;最优解;非线性规划;多目标规划一、问题重述近年来我国电力系统的市场化改革正在积极、稳步地进行。
电力从生产到使用的四大环节——发电、输电、配电和用电是瞬间完成的。
我国电力市场初期是发电侧电力市场,采取交易与调度一体化的模式。
根据电力市场交易规则:1.以15分钟为一个时段组织交易,每台机组在当前时段开始时刻前给出下一个时段的报价。
2.在当前时段内,按段价从低到高选取各机组的段容量或其部分,直到它们之和等于预报的负荷。
最后一个被选入的段价(最高段价)称为该时段的清算价,该时段全部机组的所有出力均按清算价结算。
计算当执行各机组出力分配预案时电网各主要线路上的有功潮流,判断是否会出现输电阻塞。
如果不出现,接受各机组出力分配预案;否则,按照如下原则实施阻塞管理:我们需要做的工作如下:1. 某电网有8台发电机组,6条主要线路,表1和表2中的方案0给出了各机组的当前出力和各线路上对应的有功潮流值,方案1~32给出了围绕方案0的一些实验数据,试用这些数据确定各线路上有功潮流关于各发电机组出力的近似表达式。
2.设计一种简明、合理的阻塞费用计算规则,除考虑上述电力市场规则外,还需注意:在输电阻塞发生时公平地对待序内容量不能出力的部分和报价高于清算价的序外容量出力的部分。
3.假设下一个时段预报的负荷需求是982.4MW,表3、表4和表5分别给出了各机组的段容量、段价和爬坡速率的数据,试按照电力市场规则给出下一个时段各机组的出力分配预案。
4.按照表6给出的潮流限值,检查得到的出力分配预案是否会引起输电阻塞,并在发生输电阻塞时,根据安全且经济的原则,调整各机组出力分配方案,并给出与该方案相应的阻塞费用。
5.假设下一个时段预报的负荷需求是1052.8MW,重复3~4的工作。
二、条件假设1.假设各机组对线路上有功潮流值的影响相互独立,互不干扰;2.假设在误差范围内,可以用有功潮流值与机组出力值关系的近似表达来计算在各机组出力确定的情况下,各线路上的有功潮流值的大小;3.假设机组的段容量区间为左开右闭,便于统一计算处理;4.各机组出力值的总和等于总负荷需求量,不计传输损失。
三、符号说明i :各机组的序号; s :下一时段的负荷量;j :各线路的序号; p :清算价;i x :第i 个机组的出力值; w :总的购电费用;j y :第j 条线路上有功潮流绝对值的大小; z :阻塞费用;j i ,β:第i 个机组出力值对第j 条线路上有 1z :序外容量补偿费;功潮流值大小的影响系数; 2z :序内容量补偿费;i v :第i 个机组的爬坡速率; j l :线路j 上潮流值的限值。
α:线路上有功潮流值超出限值的百分比;四、问题分析我国电力市场发展的初期是发电侧电力市场,采取交易与调制一体化的模式。
因此,在此情况下研究电力市场的输电及其输电阻塞的管理十分必要。
为了解题步骤清晰,给出该模式下的操作流程图,图1 机组出力值计算流程图 针对问题1,题中给出了某一时刻下,各机组的出力值及其个线路上有功潮流值的大小,随后针对该时刻,分别单独地改变每个机组的出力值,记录各线路有功潮流值的大小。
我们可以选取其中某一根线路上的有功潮流值大小进行研究。
表1和表2各机组的出力方案及主线路潮流值中共有33组数据,其中方案0给出了各机组的当前出力和各线路上对应的有功潮流值,方案1~32给出了围绕方案0的一些实验数据。
通过观察表1的33组数据后,我们发现表中每连续4组数值(比如:1—4组,5—8组,9—12组等)中只有某一个机组的出力在发生变化而其余7个机组的出力值保持不变。
图2 1y 与1x 的散点图 图3 1y 与2x 的散点图由上图可知,1y 与1x 、2x 都呈线性关系,同理可得,i y (1,2,,6)i 与j x (1,2,,8)j 都呈线性关系。
因此,可以利用线性回归回归分析来求解近似表达式 针对问题2,因为预案中各机组的出力值大小可能导致某条或者多条线路上的有功潮流值的大小超过限值,为此出于安全因素的考虑,需要对原有的预案进行调整,使得处事交易方案不能执行,为此要支付阻塞费用,阻塞费用分为序外补偿费用和序内补偿费用。
我们计算序外容量和序内容量都按照预案清算价和新方案出力对应报价之差计算。
给出相应的补偿公式及其阻塞费用公式。
针对问题3,该问题是在下一时段需求负荷为982.4MW 的情况下,计算各机组出力分配预案,不考虑输电阻塞的因素。
最终的预案应该使得到的清算价取得最小值。
此外除了各机组的出力值总和要等于需求负荷,每个机组的预算出力值还要受到当前出力值和该机组的爬坡速率的影响,即,机组的出力值有范围限制。
对此我们可以建立0-1规划的目标规划模型,清算价为目标函数,实现其最小,爬坡速率等限制条件作为约束条件,利用lingo 即可求出对应的各机组出力分配预案。
针对问题4,本问题是对问题3的后序处理,首先利用问题1所得到的线路有功潮流值关于机组出力大小的关系表达式,计算问题3预案机组出力分配情况下每条线路上的有功潮流值,判断是否出现阻塞,如果出现阻塞,就应该调整原有的预案分配。
其中出现补偿情况,为了使补偿费用最小,用补偿费用作为优化目标建立目标规划模型,增加有功潮流限值的约束条件,利用lingo 求解得到新的机组出力分配预案。
针对问题5,下一时段的需求负荷为1052.8MW 的情况,此问题除了对问题3,4进行再讨论外,主要是针对在出现输电阻塞,且无论如何调整各机组出力的分配预案也无法消除阻塞情况的分析。
此时需要使用安全裕度输电,此方案不仅要使阻塞费用最小,还要求每条线路上潮流值超出限值的百分比尽量小,对此我们可以建立双目标规划求解,在问题4的约束条件下还要添加每条线路上潮流值超过限值的百分比小于安全裕度的约束条件。
利用lingo 求解出各机组出力的分配预案。
五、模型建立与求解5.1 问题1的建模与求解5.1.1 模型分析利用线性回归回归分析的方法求出8个机组对该线路上有功潮流值大小影响关系表达式,继而求出6条线路上,每条线路上有功潮流值大小与各机组出力的近似表达式,并进行误差分析,讨论所得的近似表达式是否可以用来计算在机组出力值确定的情况下,计算每条线路上有功潮流值的大小。
5.1.2 模型建立假设每个机组对线路上有功潮流值大小的影响都是独立的,且每条线路上潮流值的变化与各机组出力分配成线性关系,即可以表示为8,81,1,0x x y j j j j •++•+=βββ其中,i x 表示第i 个机组的出力值,j i ,β表示第i 个机组对线路j 的影响系数。
以1y 为例进行求解。
设887766554433221101x b x b x b x b x b x b x b x b b y ++++++++=。
相同的方法,我们可以得到j y ()6,5,4,3,2,1=j 均与87654321,,,,,,,x x x x x x x x 成线性关系,故都可以用上式表达。
5.1.3 模型求解直接利用matlab 统计工具箱中的命令regress 求解,使用格式为:[]()alpha x y regress stats r r b b ,,int,,int,,=其中输入y 为模型(3)中y 的数据(n 维向量,n=30),x 为对应于回归系数()876543210,,,,,,,,b b b b b b b b b b =的数据矩阵[],,,,,,,,,187654321x x x x x x x x (n*9矩阵,其中第一列为全1向量),alpha 为置信水平α(缺省时05.0=α);输出b 为β的估计值,常记作b ,bint 为b 的置信区间,r 为残差向量xb y -,rint 为r 的置信区间,stats 为回归模型的检验统计量,有3个值。
第1个是回归方程的决定系数2R (R 是相关系数),第2个是F 统计量值,第3个是与F 统计量值对应的概率值p 。
得到模型(3)的回归系数估计值及其置信区间(置信水平05.0=α)、检验统计量值2R ,F,p 的结果见表 0.9995,5862, 3.5536F P E 表1 问题1模型的计算结果结果分析:利用多重判定系数2R 、统计量F 、F 所对应的概率P 来验证模型的可行性。
2R 越接近1,回归平面拟合程度越高,统计量F 越大,回归平面拟合程度越高,当F 所对应的概率05.0=<αp 时,拟合程度越高。
这样我们得到了1y 关于87654321,,,,,,,x x x x x x x x 的近似表达式,同理也可得到65432,,,,y y y y y 关于87654321,,,,,,,x x x x x x x x 的近似表达式。
具体形式如下:8765432120985.00186.01127.00867.00332.00001.01275.00547.03521.131x x x x x x x x y +--++-+-=8765432132012.00028.00024.01247.00099.01565.00620.00694.09928.108x x x x x x x x y --++--+--=8765432140763.01452.00057.00120.00209.02050.01028.00346.06116.77x x x x x x x x y +++--+--=8765432150092.00039.00700.00655.00412.00647.02428.00003.01334.133x x x x x x x x y --+---++=8765432160004.01664.00003.00466.00929.00781.00607.02376.08481.120x x x x x x x x y ++-++--+=对求出的j i ,β进行残差分析并对各组系数在进行线性回归时的显著性程度p进行分析P=0.0013 p=0.0010 p=0.0011p=0.0010 p=0.0011 p=0.0014图 4 j i ,β进行残差分析上述的显著性程度平均小于α=0.0025,可知回归模型中得到的系数矩阵可以接受,即正确。