估计量的评选标准
- 格式:pptx
- 大小:1.65 MB
- 文档页数:9
第十八讲 估计量的评选标准及区间估计1. 估计量的评价标准判断估计量好坏的标准是:有无系统偏差;波动性的大小;伴随样本容量的增大是否是越来越精确,这就是估计的无偏性,有效性和相合性。
(1)无偏性设∧θ是未知参数θ的估计量,则∧θ是一个随机变量,对于不同的样本值就会得到不同的估计值,我们总希望估计值在θ的真实值左右徘徊,即其数学期望恰等于θ的真实值。
定义: 设∧∧=θθ(n X X X ,,,21 )是未知参数θ的估计量,若)(∧θE 存在,且对Θ∈∀θ有)(∧θE =θ,则称∧θ是θ的无偏估计量,称∧θ具有无偏性。
在科学技术中,)(∧θE -θ称为以∧θ作为θ的估计的系统误差,无偏估计的实际意义就是无系统误差。
例1:设总体X 的k 阶中心矩)(kk X E =μ)1(≥k 存在,),,,(21n X X X 是X 的一个样本,证明:不论X 服从什么分布,∑==n i ki k X n A 11是k μ的无偏估计量。
证明:n X X X ,,21与X 同分布,n i X E X E k k ki ,,2,1)()( ===∴μ第七章 参数估计第3节 估计量的评选标准从上一节得到:对于同一参数,用不同的估计方法求出的估计量可能不相同,用相同的方法也可能得到不同的估计量,也就是说,同一参数可能具有多种估计量,而且,原则上讲,其中任何统计量都可以作为未知参数的估计量,那么采用哪一个估计量为好呢?这就涉及到估计量的评价问题。
对定义的理解:设Θ∈θ是总体X 的分布参数,Θ∈∀θ,即服从某一分布形式的任意总体分布,参数θ的估计量∧∧=θθ(,,21X X n X , )(是简单随机样本的函数)的数学期望都等于θ。
k n i ki k X E n A E μ==∴∑=1)(1)(特别,不论X 服从什么分布,只要)(X E 存在,X 总是)(X E 的无偏估计。
例2:设总体X 的2)(,)(σμ==X D X E 都存在,且02>σ,若2,σμ均为未知,则2σ的估计量∑=-=ni i X X n 122)(1ˆσ是有偏的。
估计量的三个评价标准估计量是统计学中非常重要的概念,它在实际应用中有着广泛的用途。
在进行估计量的评价时,我们通常会采用一些评价标准来衡量其优劣,从而选择最适合的估计量。
本文将从三个方面来介绍估计量的评价标准。
首先,我们来看估计量的无偏性。
无偏性是评价估计量优劣的重要标准之一。
一个估计量如果是无偏的,意味着在重复抽样的情况下,其期望值等于被估计的参数真值。
换句话说,无偏估计量不会出现系统性的偏差,能够在一定程度上准确地估计参数的真值。
因此,无偏性是评价估计量优劣的重要标准之一。
其次,我们来讨论估计量的一致性。
一致性是另一个重要的评价标准。
一个估计量如果是一致的,意味着当样本容量趋于无穷大时,估计量收敛于被估计的参数真值。
换句话说,一致估计量能够在大样本情况下稳定地接近参数的真值,具有较高的精确度和可靠性。
因此,一致性也是评价估计量优劣的重要标准之一。
最后,我们来考虑估计量的效率。
效率是评价估计量优劣的另一个重要标准。
一个估计量如果是有效的,意味着在所有无偏估计量中具有最小的方差,能够以最小的误差估计参数的真值。
换句话说,有效估计量具有最佳的精确度和准确性,能够在给定的样本容量下提供最优的估计结果。
因此,效率也是评价估计量优劣的重要标准之一。
综上所述,无偏性、一致性和效率是评价估计量优劣的三个重要标准。
在实际应用中,我们需要综合考虑这三个标准,选择最合适的估计量来进行参数估计。
只有在估计量具有较高的无偏性、一致性和效率时,我们才能够更准确地估计参数的真值,从而得到更可靠的统计推断结果。
因此,在统计学中,对于估计量的评价标准是非常重要的,它直接影响着我们对于总体参数的估计和推断的准确性和可靠性。
估计量的评选标准估计量是指对未知数或未知参数的估计值,它是统计推断的基础,对于估计量的评选标准,是统计学中非常重要的问题。
在实际应用中,我们需要根据一定的标准来评价估计量的好坏,以便选择出最合适的估计量进行推断。
下面将从偏差、精确度和效率三个方面来探讨估计量的评选标准。
首先,偏差是评价估计量优劣的重要指标之一。
偏差是指估计量的期望值与真值之间的差异,如果一个估计量的偏差较小,则说明它是一个较为准确的估计量。
在实际应用中,我们常常希望估计量的偏差能够尽可能地接近于零,这样才能更好地反映出真实情况。
因此,偏差越小的估计量往往被认为是更为可靠的估计量。
其次,精确度也是评价估计量优劣的重要标准之一。
精确度是指估计量的方差,它反映了估计量的稳定性和可靠性。
一个精确度高的估计量意味着它的取值波动较小,对真值的估计更加准确。
因此,我们通常会选择具有较高精确度的估计量进行统计推断,以确保推断结果的可靠性。
最后,效率也是评价估计量优劣的重要指标之一。
效率是指在给定精确度下,估计量所具有的信息量。
一个效率高的估计量意味着它在给定精确度的情况下能够提供更多的信息,从而使得推断结果更加准确。
因此,我们通常会选择具有较高效率的估计量进行统计推断,以获得更加精确的推断结果。
综上所述,偏差、精确度和效率是评价估计量优劣的重要标准,它们相互关联、相互制约。
在实际应用中,我们需要综合考虑这三个方面的指标,选择出最合适的估计量进行统计推断。
希望本文对估计量的评选标准有所帮助,谢谢阅读。
估计量的评选标准
估计量在统计学中扮演着非常重要的角色,它是对未知参数进行估计的数值。
在实际应用中,估计量的准确性和可靠性直接影响到统计结论的正确性。
因此,如何评选一个好的估计量是非常重要的。
下面将从偏差、方差和均方误差三个方面来探讨估计量的评选标准。
首先,偏差是评价估计量优劣的重要指标之一。
偏差是指估计量的期望值与真实参数值之间的差异。
一个好的估计量应当具有较小的偏差,即在重复抽样下,估计量的平均值应当接近于真实参数值。
因此,评选估计量时,需要对其偏差进行严格的评估,选择偏差较小的估计量作为最优估计。
其次,方差也是评选估计量的重要指标。
方差是用来度量估计量的离散程度,即在重复抽样下,估计量的变异程度。
一个好的估计量应当具有较小的方差,即在重复抽样下,估计量的取值应当比较稳定。
因此,评选估计量时,需要对其方差进行严格的评估,选择方差较小的估计量作为最优估计。
最后,均方误差是评价估计量优劣的综合指标。
均方误差是偏
差和方差的平方和,它综合考虑了估计量的偏差和离散程度。
一个好的估计量应当具有较小的均方误差,即在重复抽样下,估计量的预测误差应当较小。
因此,评选估计量时,需要对其均方误差进行严格的评估,选择均方误差较小的估计量作为最优估计。
综上所述,评选估计量的标准应当综合考虑偏差、方差和均方误差三个方面。
一个好的估计量应当在偏差小、方差小和均方误差小的情况下,具有较高的准确性和可靠性。
在实际应用中,需要根据具体问题和数据特点,选择合适的评选标准,以得到最优的估计量。
希望本文对您有所帮助。