估计量的三大评选标准
- 格式:docx
- 大小:36.11 KB
- 文档页数:1
第十八讲 估计量的评选标准及区间估计1. 估计量的评价标准判断估计量好坏的标准是:有无系统偏差;波动性的大小;伴随样本容量的增大是否是越来越精确,这就是估计的无偏性,有效性和相合性。
(1)无偏性设∧θ是未知参数θ的估计量,则∧θ是一个随机变量,对于不同的样本值就会得到不同的估计值,我们总希望估计值在θ的真实值左右徘徊,即其数学期望恰等于θ的真实值。
定义: 设∧∧=θθ(n X X X ,,,21 )是未知参数θ的估计量,若)(∧θE 存在,且对Θ∈∀θ有)(∧θE =θ,则称∧θ是θ的无偏估计量,称∧θ具有无偏性。
在科学技术中,)(∧θE -θ称为以∧θ作为θ的估计的系统误差,无偏估计的实际意义就是无系统误差。
例1:设总体X 的k 阶中心矩)(kk X E =μ)1(≥k 存在,),,,(21n X X X 是X 的一个样本,证明:不论X 服从什么分布,∑==n i ki k X n A 11是k μ的无偏估计量。
证明:n X X X ,,21与X 同分布,n i X E X E k k ki ,,2,1)()( ===∴μ第七章 参数估计第3节 估计量的评选标准从上一节得到:对于同一参数,用不同的估计方法求出的估计量可能不相同,用相同的方法也可能得到不同的估计量,也就是说,同一参数可能具有多种估计量,而且,原则上讲,其中任何统计量都可以作为未知参数的估计量,那么采用哪一个估计量为好呢?这就涉及到估计量的评价问题。
对定义的理解:设Θ∈θ是总体X 的分布参数,Θ∈∀θ,即服从某一分布形式的任意总体分布,参数θ的估计量∧∧=θθ(,,21X X n X , )(是简单随机样本的函数)的数学期望都等于θ。
k n i ki k X E n A E μ==∴∑=1)(1)(特别,不论X 服从什么分布,只要)(X E 存在,X 总是)(X E 的无偏估计。
例2:设总体X 的2)(,)(σμ==X D X E 都存在,且02>σ,若2,σμ均为未知,则2σ的估计量∑=-=ni i X X n 122)(1ˆσ是有偏的。
7.2估计量的评选标准第二节估计量的评选标准对于同一个参数,哪一个估计量较好呢?下面介绍评价估计量优劣的三个标准。
用不同的估计方法得到的估计,有时相同,有时不同.在不同时,一、无偏性由于估计量是样本的函数,因此是一个随机希望估计量的期望等于未知参数的真值!这就是所谓的估计量的无偏性概念。
尽管样本值不同,估计量的取值(估计值)变量。
也不同,估计值与参数的真值可能不同,但是我们定义1是参数q则称为q的无偏设若的估计量,估计量。
例1证明;样本均值是总体均值E(X)=m的无偏估计量.证独立,又∴是总体均值E(X)=m的无偏估计量。
定义1是参数q则称为q的无偏设若的估计量,估计量。
且与总体X同分布,定义1设是参数q的则称为的无偏估计。
可证:是总体方差的无偏估计量。
注意:总体X的方差D(X)的矩估计量不是D(X)的无偏估计。
见书P117。
估计量,若思考题是总体X的样本,判断估计量设是否为总体均值m的无偏估计。
定义1是参数q的估若,则称为q的无偏估计量。
设计量,若为总体X简单随机样本,则(1)相互独立(2)中每一个与X有相同的分布。
2.有效性都是总体均值m的两个无偏估计量.哪个估计量更好一些?我们希望参数q的无偏估计量对q的平均偏差越小越好,注意到即一个好的估计量,设未知参数q有两个无偏估计量即那么如何去判定这两个估计量的好坏呢?应当有尽可能小的方差。
定义2分别是参数q两个则称较有效.设如果及无偏估计量,定义1设是参数q的估若,则称为q的无偏估计量。
计量,例2设是总体X的样本,分别是m的两个估计量,证明比有效。
证是m的两个无偏估计量(由例1得)定义2设是参数q如果两个无偏估计量,则称较有效.及定义1设是参数q的估若,则称为q的无偏估计量。
计量,又∵∴比有效。
3.相合性估计量一个好的估计量应当随着n的增大而愈加精确,因此有定义3设为q的估计量,若对任给的e>0,则称为的相合估计.则称序列{Xn}依概率收敛于a,记作Pa即Pq 定义3设为的估计量,若对任给的则称为的相合估计量.定理1设是q的一个若估计量,则是q的相合估计。