6-4最大流问题
- 格式:pdf
- 大小:514.30 KB
- 文档页数:15
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
1-1:流体有哪些特性?论述液体与气体特征的异同。
1)流动性、压缩、膨胀性、粘性1—2: 什么是连续介质模型?为什么要建立?1) 将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质,于是可将流体视为在时间和空间连续分布的函数.2) ①可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;②可以用连续函数的解析方法等数学工具去研究流体的平衡和运动规律。
1-3:流体密度、相对密度概念,它们之间的关系?1) 密度:单位体内流体所具有的质量,表征流体的质量在空间的密集程度。
相对密度:在标准大气压下流体的密度与4℃时纯水的密度的比值。
关系: 1-4:什么是流体的压缩性和膨胀性?1) 压缩性:在一定的温度下,单位压强增量引起的体积变化率定义为流体的压缩性系数,其值越大,流体越容易压缩,反之,不容易压缩。
2) 膨胀性:当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性1-5:举例说明怎样确定流体是可压缩还是不可压缩的?气体和液体都是可压缩的,通常将气体时为可压缩流体,液体视为不可压缩流体。
水下爆炸:水也要时为可压缩流体;当气体流速比较低时也可以视为不可压缩流体. 1—6:什么是流体的黏性?静止流体是否有黏性?1) 流体流动时产生内摩擦力的性质程为流体的黏性2) 黏性是流体的本身属性,永远存在。
1-7:作用在流体上的力有哪些?质量力、表面力。
1-8: 什么是表面张力?表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力2—1:流体静压强有哪些特性?如何证明?1) 特性一:流体静压强的作用方向沿作用面的内法线方向特性二:静压强与作用面在空间的方位无关,只是坐标点的连续可微函数2)????2-2:流体平衡微分方程的物理意义是什么?在静止流体内的任一点上,作用在单位质量流体上的质量力与静压强的合力相平衡 2—3:什么是等压面?等压面的方程是什么?有什么重要性质?1) 在流体中压强相等的点组成的面。
第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。
(1)流体的PVT 关系可以直接用于设计。
(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。
只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。
2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。
【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。
2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。
5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。
6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。
7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。
2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。
2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。
真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。
2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。
其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。
为了提高计算复杂分子压缩因子的准确度。
偏心因子不可以直接测量。
偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。
1、发生过最窘迫的事情是什么,怎么解决的。
2、你有什么作弊的手段?3、你睡觉的时候流口水吗?4、和男女朋友进行到哪一步?5、你有没有钟意的人?是谁?6、你到底喜欢胸小还是胸大?7、身上哪个部位最敏感?8、认同没有性的爱情和没有爱的性吗?9、去年让你觉得最伤心的事情是什么?10、到目前为止你做过最疯狂的事是?11、今天穿什么颜色的内裤?12、每天睡觉前都会想起的人是谁?13、你最怕的事情或东西是什么(说出三件)。
14、你们对初恋的印象深还是对初夜的印象深?15、小时候被你妈妈打过最惨的一次是因为什么?16、男生答复自己的下面有多长?17、你一般用什么手指来挖鼻孔呢?18、你想和在场的哪一位玩大冒险?19、在场哪一位异性对你说我喜欢你,你会最开心?20、我在你眼里什么样?(可以是上一位玩家,由主持人决定)21、你最关心的异性是谁?(除了亲人或男女朋友)22、如果时间能倒流你希望回到哪一时间,为什么?23、如果前一个异性玩家爱上你了,你怎么办?24、你觉得在座那位异性的嘴唇看起来最想Kiss?25、为什么家里有电脑还要去网吧,为什么接吻就摸胸?26、洗澡洗到一半没水了怎么办?(注意是身上有泡沫的时候)27、你的初吻是多少岁呢?28、你有多少任男朋友呢?29、你暗恋过多少个人?30、你第一个喜欢的人是谁?31、你吻过多少个女生。
32、你第一个春梦的对象是谁呢?33、在场你有喜欢的人吗?34、你心里面一直惦记着的名字是?35、每天晚上睡觉之前你心里面念着的是谁。
36、你特别在意你男朋友什么。
37、打算什么时候结婚。
38、你在意伴侣是否是处吗?39、你什么时候尿床?40、你内裤是什么颜色的。
一、判断题1.动态规划分为线性动态规划和非线性动态规划。
()正确答案:×2.对于一个动态规划问题,应用顺推法和逆推法可能会得到不同的最优解。
()正确答案:×3.在用动态规划解题时,定义状态时应保证各个阶段中所做的决策的相互独立性。
()正确答案:√4.动态规划计算中的“维数障碍”主要是由问题中阶段数的急剧增加而引起的。
()正确答案:×二、选择题1.关于图论中图的概念,以下叙述()正确。
A.图中的有向边表示研究对象,结点表示衔接关系。
B.图中的点表示研究对象,边表示点与点之间的关系。
C.图中任意两点之间必有边。
D.图的边数必定等于点数减1。
正确答案:B2. 关于树的概念,以下叙述()正确。
A.树中的点数等于边数减1B.连通无圈的图必定是树C.含n个点的树是唯一的D.任一树中,去掉一条边仍为树。
正确答案:B3. 一个连通图中的最小树()。
A.是唯一确定的B.可能不唯一C.可能不存在D.一定有多个。
正确答案:B4.关于最大流量问题,以下叙述()正确。
A.一个容量网络的最大流是唯一确定的B.达到最大流的方案是唯一的C.当用标号法求最大流时,可能得到不同的最大流方案D.当最大流方案不唯一时,得到的最大流量应相同。
正确答案:D5. 图论中的图,以下叙述()不正确。
A.图论中点表示研究对象,边或有向边表示研究对象之间的特定关系。
B.图论中的图,用点与点的相互位置,边的长短曲直来表示研究对象的相互关系。
C.图论中的边表示研究对象,点表示研究对象之间的特定关系。
D.图论中的图,可以改变点与点的相互位置。
只要不改变点与点的连接关系。
正确答案:C6. 关于最小树,以下叙述()正确。
A.最小树是一个网络中连通所有点而边数最少的图B.最小树是一个网络中连通所有的点,而权数最少的图C.一个网络中的最大权边必不包含在其最小树内D.一个网络的最小树一般是不唯一的。
正确答案:B7.关于可行流,以下叙述()不正确。
流体力学重难点分析(4)第6章 明槽恒定流动【内容提要和学习指导】这一章是工程水力学部分内容最丰富也是实际应用最广泛的一章。
本章有4个重点:明渠均匀流水力计算;明渠水流三种流态的判别;明渠恒定非均匀渐变流水面曲线分析和计算,这部分也是本章的难点;水跃的特性和共轭水深计算。
学习中应围绕这4个重点,掌握相关的基本概念和计算公式。
这一讲我们讨论前2个问题,后面2个问题将放在第7讲讨论。
明渠水流的复杂性在于有一个不受边界约束的自由表面,自由表面能随上下游的水流条件和渠道断面周界形状的变化而上下变动,相应的水流运动要素也发生变化,形成了不同的水面形态。
6.1 明槽和明槽水流的几何特征和分类(1) 明槽水流的分类 明槽恒定均匀流明槽恒定非均匀流明槽非恒定非均匀流明槽非恒定均匀流在自然界是不可能出现的。
明槽非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。
(2) 明槽梯形断面水力要素的计算公式:水面宽度 B = b +2 mh (6—1) 过水断面面积 A =(b + mh )h (6—2) 湿周 (6—3) 水力半径 (6—4) 式中:b 为梯形断面底宽,m 为梯形断面边坡系数,h 为梯形断面水深。
(3)当渠道的断面形状和尺寸沿流程不变的长直渠道我们称为棱柱体渠道。
(4)掌握明渠底坡的定义,明渠有三种底坡:正坡(i >0)平坡(i =0)和逆坡(i <0。
6.2明槽均匀流特性和计算公式(1)明槽均匀流的特征:a )均匀流过水断面的形状、尺寸沿流程不变,特别是水深h 沿程不变,这个水深也称为正常水深。
b )过水断面上的流速分布和断面平均流速沿流程不变。
212m h b x ++=212)(m h b h mh b x A R +++==c )总水头线坡度、水面坡度、渠底坡度三者相等,J = J s = I 。
即水流的总水头线、水面线和渠底线三条线平行。
从力学意义上来说:均匀流在水流方向上的重力分量必须与渠道边界的摩擦阻力相等才能形成均匀流。
电线允许通过的最大电流导线截面积与载流量的计算2021-02-19 12:15一、一般铜导线载流量导线的平安载流量是按照所允许的线芯最高温度、冷却条件、敷设条件来肯定的。
一般铜导线的平安载流量为5~8A/mm2,铝导线的平安载流量为3~5A/mm2。
<关键点>一般铜导线的平安载流量为5~8A/mm2,铝导线的平安载流量为3~5A/mm2。
如:铜导线平安载流量的推荐值2.5×8A/mm2=20A4mm2BVV铜导线平安载流量的推荐值4×8A/mm2=32A二、计算铜导线截面积利用铜导线的平安载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S=<I/〔5~8〕〔mm2〕S-----铜导线截面积〔mm2〕I-----负载电流〔A〕三、功率计算一般负载〔也可以成为用电器,如点灯、冰箱等等〕分为两种,一种是电阻性负载,一种是电感性负载。
对于电阻性负载的计算公式:P=UI对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数。
不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取。
也就是说若是一个家庭所有效电器加上总功率为6000瓦,那么最大电流是I=P/Ucosф=6000/220×0.8=34(A)可是,一般情况下,家里的电器不可能同时利用,所以加上一个公用系数,公用系数一般。
所以,上面的计算应该改写成I=P×公用系数/Ucosф=6000×0.5/220×0.8=17(A)也就是说,这个家庭总的电流值为17A。
那么总闸空气开关不能利用16A,应该用大于17A 的。
估算口诀:二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)本节口诀对各类绝缘线(橡皮和塑料绝缘线)的载流量(平安电流)不是直接指出,而是“截面乘上必然的倍数〞来表示,通过心算而得。
第六章图论(Graph Theory)◎知识目标:掌握图的方法与原理;图的基本概念;最小树、最短路、最大流的概念、计算与应用;了解中国邮路问题与解法。
◎能力目标:通过学习,使学生掌握图的方法与原理,提高分析问题和解决问题的能力。
◎本章重点:最小树、最短路、最大流的计算与应用◎本章难点:最短路的应用、最大流的计算引例:哥尼斯堡七桥问题18世纪著名古典数学问题之一。
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。
问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关图论研究的热点问题。
18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。
当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。
这就是哥尼斯堡七桥问题。
L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。
他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。
Konigsberg城中有一条名叫Preg el的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。
他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。
所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。