1 立体化学
- 格式:pptx
- 大小:12.51 MB
- 文档页数:114
化学反应中的立体化学与对映体选择性在化学反应中,立体化学和对映体选择性是理解和解释许多反应机理的重要概念。
立体化学关注于分子的三维结构,而对映体选择性则指的是对一对手性分子在反应中不对称形成的偏好性。
本文将探讨化学反应中的立体化学原理以及对映体选择性的机理和应用。
一、立体化学的基础原理立体化学是研究分子和化学反应中的空间构型的分支学科。
分子的立体构型取决于键角和键的旋转性质。
键角决定了分子的几何形状,而键的旋转性质则决定了分子的立体异构体。
常见的立体异构体有手性异构体和顺反异构体。
1.手性异构体:手性异构体是指分子在空间中无法与其镜像重叠的异构体。
其中最常见的类型是立体异构体分为左旋体和右旋体,也称为对映体。
对映体具有相同的化学性质,但与其他手性分子发生反应时,可以表现出显著的差异。
2.顺反异构体:顺反异构体是指分子在空间中可以通过旋转键来相互转化的异构体。
例如,环状化合物的立体异构体可以通过键的旋转来相互转化。
顺反异构体的存在可以影响反应速率、产物分布和反应途径的选择。
二、对映体选择性的机理和应用对映体选择性是指化学反应中针对手性物质选择性生成某个手性产物的趋势。
对映体选择性是由于反应条件、催化剂和反应物的立体特性共同作用的结果。
1.反应条件:温度、溶剂和反应物之间的相互作用可以影响反应的立体性质和对映体选择性。
例如,反应在不对称环境中进行时,产生的手性产物的对映体选择性通常会增强。
2.催化剂:催化剂在化学反应中起到非常重要的作用,可以有效地调控反应速率和对映体选择性。
手性催化剂可以通过选择性地与一对手性反应物中的一个互相作用,以产生具有高对映体选择性的产物。
3.反应物的立体特性:反应物的手性性质对于反应的对映体选择性也起着重要的影响。
对映体反应物的立体配置可以决定所生成产物的对映体选择性。
例如,具有R或S构型的手性反应物可能会导致不同对映体选择性的产物生成。
对映体选择性在药物合成和精细化学品的生产中具有重要的应用价值。
有机化学基础知识点整理立体化学的基本概念与表示方法有机化学基础知识点整理——立体化学的基本概念与表示方法立体化学是有机化学中的重要分支,研究有机化合物中分子空间结构和立体异构体的性质与反应规律。
本文将对立体化学的基本概念与表示方法进行整理与介绍。
一、立体化学的基本概念1. 立体异构体:指在化学式相同、分子式相同的情况下,分子结构排列不同而具有不同性质的化合物,称为立体异构体。
立体异构体分为构象异构体和对映异构体两大类。
2. 立体异构体的原因:分子由于碳原子的四个价键都可以自由旋转,导致构象异构体的产生。
对映异构体则由于分子内部存在不对称碳原子或手性中心,使得它们的镜像体不能重合。
3. 立体异构体的性质:立体异构体在物理性质和化学性质上有所区别,例如物理性质如熔点、沸点、密度等差异明显,化学性质如对外界的反应、催化剂的选择等也有较大差异。
二、立体化学的表示方法1. 立体表示法:主要有盘状投影式、锥面式、楔面式和Fischer式等。
a. 盘状投影式:将分子按水平投影在纸面上,使用实线表示平面内的键,棱柱形状表示键在平面之上,圆圈表示键在平面之下。
b. 锥面式:将分子沿轴线向外投影,用三角形表示键在轴线上方,用带状表示键在轴线下方。
c. 楔面式:将分子通过楔形物理模型或立体图形展示,用楔形箭头表示键在垂直于纸面的方向上,用缺口箭头表示键在纸面下方。
d. Fischer式:以垂直于纸面的轴线为支架,将分子垂直展示,左右的羰基或羟基用垂直于轴线的线条表示。
2. 立体描述法:包括立体描述词、R/S命名法、E/Z命名法和Fukui-Liontelli规则等。
a. 立体描述词:用于描述分子中的任意一个手性中心或不对称碳原子的构型,一般为S、R两个字母的组合。
b. R/S命名法:适用于手性中心为单一物种构成的有机分子,根据规定的优先级顺序(按原子序数决定),通过相互对应的方式命名为R(草莓糖)或S(山梨糖)。
c. E/Z命名法:适用于存在双键的有机分子,根据优先级顺序,通过相互对应命名为E(德恩斯烯)或Z(沙通烯)。
立体化学(一)前言1、手性手性是自然界的普遍特征。
构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。
在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。
因此,分子手性在自然界生命活动中起着极为重要的作用。
人类的生命本身就依赖于手性识别。
如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。
CHOOH CH2OHOHCHOOHOHCH2OHOHCHOHHHOOHHOHH2OHOCH2OHHHOOHHOHH2OH2D-(+)-甘油醛 D-(-)-核糖 D-(+)-葡萄糖 D-(+)- 果糖 L-氨基酸人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。
当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。
1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。
1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。
即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。
20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。
结果在欧洲导致1.2万例胎儿致残,即海豹婴。
于是1961年该药从市场上撤消。
后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。
研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。
N O ONONHOO(S)-Thalidomide(R)-Thalidomide1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。
立体化学的内容
立体化学是化学的一个分支学科,主要研究分子的三维空间排列及其对分子性质的影响。
它主要分为静态立体化学和动态立体化学两部分。
静态立体化学研究分子的构型和构象,即分子中的原子或基团在空间的排列方式和相对位置。
动态立体化学则研究分子构型的异构体及其在化学反应中的行为。
立体化学的一个重要分支是对手性分子的研究,手性分子在立体化学中占有极其重要的地位。
手性是指一个物体不能与其镜像相重合,例如人的双手,左手和右手互为镜像,但它们无法重合。
在化学中,手性分子是指具有手性特征的分子,即它们与其镜像不重合。
立体化学还涉及到有机分子和无机分子的结构和反应行为的研究,尤其是在有机化合物中,由于共价键具有方向性特征,立体化学在有机化学中占有更重要的地位。
总的来说,立体化学是从三维空间揭示分子的结构和性能的学科,它不仅对理解物质的性质和反应机制具有重要意义,也对药物设计、材料科学等领域有着广泛的应用价值。
有机化学基础知识点立体化学的基本概念立体化学是有机化学中非常重要的一个概念,它涉及到分子的空间结构和构象。
在有机化学反应中,分子的立体构型对反应的速率和产物的选择性有着重要的影响。
本文将介绍立体化学的基本概念,包括立体异构、手性分子、构象等知识点。
1. 立体异构立体异构是指化学物质的分子在空间中的排列方式不同,从而导致其化学性质与物理性质的差异。
立体异构可以分为构造异构和空间异构两种类型。
1.1 构造异构构造异构是指分子结构的连接方式不同,分为链式异构、官能团异构和位置异构三种类型。
链式异构:同分子式下,碳骨架的排列方式不同,如正丁烷和异丁烷就是一对链式异构体。
官能团异构:同分子式下,分子中的官能团位置不同,如乙醇和甲醚就是一对官能团异构体。
位置异构:同分子式下,官能团位置相对于主链排列的位置不同,如2-丁醇和3-丁醇就是一对位置异构体。
1.2 空间异构空间异构是指分子在空间中的三维排列方式不同,分为立体异构和对映异构两种类型。
立体异构:分子中存在非自由旋转的键,由于旋转受限,使得分子结构不同,如顺式-反式异构。
对映异构:对称分子具有镜像关系,不能通过旋转重叠,如手性分子。
2. 手性分子手性分子是指与其镜像物不可重叠的化合物,也称为不对称分子。
手性分子通常包含一个或多个手性中心,手性中心是一个碳原子,与四个不同的基团连接。
手性分子的最重要特征是其对映异构体的存在。
对映异构体具有相同的分子式、相同的化学键,但是无法通过旋转或平移重叠。
这种现象称为手性体。
手性分子有很多实际应用,如生物活性物质、药物、拆分光等。
同时,手性分子还涉及到光学活性、旋光度等概念。
3. 构象构象是指分子在空间中的不同取向,由于化学键的旋转、振动等运动而引起的。
构象是立体化学中的重要概念之一,它与立体异构密切相关。
分子的构象由于化学键的自由旋转而产生,通常与键长、键角、键的取代基团等因素有关。
构象的改变可能会导致分子性能的变化。