江苏省2019高考数学总复习 优编增分练:高考附加题加分练(二)矩阵与变换
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
第3讲 矩阵与变换、坐标系与参数方程[考情考向分析] 1.考查常见的平面变换与矩阵的乘法运算,二阶矩阵的逆矩阵及其求法,矩阵的特征值与特征向量的求法,属B 级要求.2.考查直线、曲线的极坐标方程、参数方程,参数方程与普通方程的互化,极坐标与直角坐标的互化,属B 级要求.热点一 二阶矩阵与平面变换例1 已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2所对应的变换T 把曲线C 变成曲线C 1:x 24+y 22=1,求曲线C 的方程.解 设曲线C 上任一点为(x ,y ), 经过变换T 变成(x 0,y 0),则⎣⎢⎡⎦⎥⎤1 00 2 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0y 0,即x 0=x ,y 0=2y . 由x 204+y 202=1,得曲线C 的方程为x 2+4y 2=4. 思维升华 解决这类问题一般是设变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′,求出原曲线在T 的变换下得到的曲线,再根据条件求相应的系数值.跟踪演练1 已知曲线C 1:x 2+y 2=1,对它先作矩阵A =⎣⎢⎡⎦⎥⎤1002对应的变换,再作矩阵B =⎣⎢⎡⎦⎥⎤0 b 10对应的变换,得到曲线C 2:x 24+y 2=1,求实数b 的值. 解 从曲线C 1变到曲线C 2的变换对应的矩阵为BA =⎣⎢⎡⎦⎥⎤0b 10 ⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 2b 1 0.在曲线C 1上任意选一点P (x 0,y 0),设它在矩阵BA 对应的变换作用下变为P ′(x ′,y ′),则有⎣⎢⎡⎦⎥⎤0 2b 1 0 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′y ′,即⎣⎢⎡⎦⎥⎤2by 0 x 0=⎣⎢⎡⎦⎥⎤x ′y ′. 故⎩⎪⎨⎪⎧2by 0=x ′x 0=y ′,解得⎩⎪⎨⎪⎧y 0=12b x ′,x 0=y ′.代入曲线C 1方程得,y ′2+⎝⎛⎭⎪⎫12b x ′2=1.即曲线C 2方程为⎝ ⎛⎭⎪⎫12b 2x 2+y 2=1.与已知的曲线C 2的方程x 24+y 2=1比较得(2b )2=4.所以b =±1.热点二 二阶矩阵的逆矩阵及其求法 例2 已知点P (3,1)在矩阵A =⎣⎢⎡⎦⎥⎤a 2b -1变换下得到点P ′(5,-1).试求矩阵A 和它的逆矩阵A -1. 解 依题意得⎣⎢⎡⎦⎥⎤a 2b -1 ⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤3a +23b -1=⎣⎢⎡⎦⎥⎤5-1,所以⎩⎪⎨⎪⎧3a +2=5,3b -1=-1,解得⎩⎪⎨⎪⎧a =1,b =0,所以A =⎣⎢⎡⎦⎥⎤1 20 -1.因为det(A )=⎪⎪⎪⎪⎪⎪1 20 -1=1×(-1)-0×2=-1,所以A -1=⎣⎢⎡⎦⎥⎤1 20 -1.思维升华 由二阶矩阵与向量的乘法及向量相等建立方程组,常用于求二阶矩阵,要注意变换的前后顺序.跟踪演练2 二阶矩阵M 对应的变换T M 将曲线x 2+x -y +1=0变为曲线2y 2-x +2=0,求M-1.解 设曲线2y 2-x +2=0上一点P (x ,y )在M -1对应变化下变成P (x ′,y ′),设M -1=⎣⎢⎡⎦⎥⎤ab cd ,所以⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy ,代入x 2+x -y +1=0得,方程(ax +by )2+(ax +by )-(cx +dy )+1=0,即b 2y 2+(a -c )x +(b -d )y +2abxy +a 2x 2+1=0,与方程y 2-x2+1=0比较得,a =0,b =1,c =12,d =1或a =0, b =-1,c =12,d =-1.所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤0 -112 -1或M -1=⎣⎢⎢⎡⎦⎥⎥⎤0 112 1. 热点三 特征值与特征向量例3 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值.解 (1)设M =⎣⎢⎡⎦⎥⎤ab cd ,M ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d , M ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4=⎣⎢⎡⎦⎥⎤-a +2b -c +2d , 则⎩⎪⎨⎪⎧ a +b =8,c +d =8,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,即M =⎣⎢⎡⎦⎥⎤6 244.(2)令特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2 -4 λ-4=(λ-6)(λ-4)-8=0,解得λ1=8,λ2=2. 故矩阵M 的另一个特征值为2. 思维升华 求矩阵M =⎣⎢⎡⎦⎥⎤a b cd 就是要求待定的字母,利用条件建立方程组,确立待定的字母的值,从而求出矩阵,待定系数法是求这类问题的通用方法. 跟踪演练3 已知矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤2 112.(1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量. 解 (1)因为矩阵A 是矩阵A -1的逆矩阵, 且|A -1|=2×2-1×1=3≠0, 所以A =13⎣⎢⎡⎦⎥⎤ 2 -1-1 2=⎣⎢⎢⎡⎦⎥⎥⎤ 23-13-13 23. (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -1 -1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1,λ2=3,所以ξ1=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎣⎢⎡⎦⎥⎤11是矩阵A -1的属于特征值λ2=3的一个特征向量.热点四 曲线的极坐标方程例4 (2018·江苏冲刺预测)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =t -1(t 为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=62+sin 2θ.(1)求曲线C 1的极坐标方程和C 2的直角坐标方程;(2)射线OP :θ=α⎝ ⎛⎭⎪⎫其中0<α<π2与C 2交于P 点,射线OQ :θ=α+π2与C 2交于Q 点,求1OP 2+1OQ 2的值.解 (1)因为曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =t -1(t 为参数),所以曲线C 1的直角坐标方程为x -2y -2=0,所以曲线C 1的极坐标方程为ρcos θ-2ρsin θ-2=0, 因为ρ=62+sin 2θ,所以ρ2(2+sin 2θ)=6,所以曲线C 2的直角坐标方程为2x 2+3y 2=6. (2)依题意得,点P 的极坐标满足⎩⎪⎨⎪⎧ρ=62+sin 2θ,θ=α,所以OP =62+sin 2α,1OP 2=2+sin 2α6, 点Q 的极坐标满足⎩⎪⎨⎪⎧ρ=62+sin 2θ,θ=α+π2,所以OQ =62+cos 2α,1OQ 2=2+cos 2α6, 所以1OP 2+1OQ 2=2+sin 2α6+2+cos 2α6=56.思维升华 解决这类问题一般有两种思路:一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.跟踪演练4 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2(a >0),C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1. 热点五 参数方程例5 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求PA +PB . 解 方法一 (1)由ρ=25sin θ,得x 2+y 2-25y =0, 即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程, 得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0. 由于Δ=(-32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1t 2=4.又直线l 过点P (3,5), 故由上式及t 的几何意义,得PA +PB =|t 1|+|t 2|=t 1+t 2=3 2. 方法二 (1)同方法一.(2)因为圆C 的圆心为(0,5),半径r =5,直线l 的普通方程为y =-x +3+ 5.由⎩⎨⎧x 2+(y -5)2=5,y =-x +3+5,得x 2-3x +2=0.解得⎩⎨⎧x =1,y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3,5).故PA +PB =8+2=3 2. 思维升华 过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是数量,即|t |表示P 0到P 的距离,t 有正负之分.使用该式时直线上任意两点P 1,P 2对应的参数分别为t 1,t 2,则P 1P 2=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).跟踪演练5 在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t , 解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.1.(2018·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2. (1)求A 的逆矩阵A -1;(2)若点P 在矩阵A 对应的变换作用下得到点P ′(3,1),求点P 的坐标.解 (1)因为A =⎣⎢⎡⎦⎥⎤2312,又det(A )=2×2-1×3=1≠0,所以A 可逆,从而A -1=⎣⎢⎡⎦⎥⎤2 -3-1 2.(2)设P (x ,y ),则⎣⎢⎡⎦⎥⎤2 31 2 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤31, 所以⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤ 3-1,因此,点P 的坐标为(3,-1).2.(2018·江苏)在极坐标系中,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长. 解 因为曲线C 的极坐标方程为ρ=4cos θ, 所以曲线C 是圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫π6-θ=2,则直线l 过点A (4,0),且倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.如图,连结OB .因为OA 为直径,从而∠OBA =π2,所以AB =4cos π6=2 3.因此,直线l 被曲线C 截得的弦长为2 3.3.(2017·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤110,B =⎣⎢⎡⎦⎥⎤1 002.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解 (1)因为A =⎣⎢⎡⎦⎥⎤110,B =⎣⎢⎡⎦⎥⎤1 002,AB =⎣⎢⎡⎦⎥⎤011 0 ⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210.(2)设Q (x 0,y 0)为曲线C 1上任意一点,它在矩阵AB 对应的变换作用下变为点P (x ,y ), 则⎣⎢⎡⎦⎥⎤0 21 0 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y , 即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,所以x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8.1.(2018·苏锡常镇四市模拟)已知矩阵M =⎣⎢⎡⎦⎥⎤214 x 的一个特征值为3,求M -1. 解 由⎪⎪⎪⎪⎪⎪λ-2 -1-4 λ-x =0,得(λ-2)(λ-x )-4=0的一个解为3,代入得x =-1,因为M =⎣⎢⎡⎦⎥⎤2 14 -1,所以M-1=⎣⎢⎢⎡⎦⎥⎥⎤16 1623 -13. 2.已知矩阵A =⎣⎢⎡⎦⎥⎤-1 2 1x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y , x ,y 为实数.若A α=B α,求x +y 的值.解 由已知,得A α=⎣⎢⎡⎦⎥⎤-1 2 1x ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤-2+2y 2+xy , B α=⎣⎢⎡⎦⎥⎤1 12 -1 ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤2+y 4-y .因为A α=B α,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy =⎣⎢⎡⎦⎥⎤2+y 4-y .故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y ,解得⎩⎪⎨⎪⎧x =-12,y =4.所以x +y =72.3.(2015·江苏)已知x ,y ∈R ,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x1y0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.解 由已知,得A α=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0 ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2, 则⎩⎪⎨⎪⎧x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎡⎦⎥⎤-11 2 0. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1. 4.在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x 29+y 2=1,x +4y -3=0,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.5.已知圆C 的极坐标方程为ρ2+22ρsin ⎝⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径. 解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为 6. 6.(2016·江苏)已知矩阵A =⎣⎡⎦⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB . 解 B =(B -1)-1=⎣⎢⎡⎦⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 140 12. ∴AB =⎣⎢⎡⎦⎥⎤1 20 -2 ⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540 -1. 7.(2016·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+12t ,y =32t (t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧ x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解 直线l 的方程化为普通方程为3x -y -3=0,椭圆C 的方程化为普通方程为x 2+y 24=1, 联立方程组得⎩⎪⎨⎪⎧ 3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧ x 1=1,y 1=0或⎩⎪⎨⎪⎧ x 2=-17,y 2=-837,∴取A (1,0),B ⎝ ⎛⎭⎪⎫-17,-837. 故AB = ⎝ ⎛⎭⎪⎫1+172+⎝ ⎛⎭⎪⎫0+8372=167. 8.(2018·扬州模拟)在直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧ x =m +22t ,y =22t (t是参数,m 是常数).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=6cos θ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于P ,Q 两点,且PQ =2,求实数m 的值.解 (1)因为直线l 的参数方程是⎩⎪⎨⎪⎧ x =m +22t ,y =22t(t 是参数),所以直线l 的普通方程为x -y -m =0.因为曲线C 的极坐标方程为ρ=6cos θ,故ρ2=6ρcos θ,所以x 2+y 2=6x ,所以曲线C 的直角坐标方程是(x -3)2+y 2=9. (2)曲线C 表示以C (3,0)为圆心,3为半径的圆,设圆心到直线l 的距离为d , 则d =32-12=22,又d =|3-m |2=22, 所以|3-m |=4,即 m =-1或m =7.。
3个附加题综合仿真练(二)(理科)1.本题包括A、B、C三个小题,请任选二个作答A.[选修4-2:矩阵与变换]已知变换T将平面上的点错误!,(0,1)分别变换为点错误!,错误!.设变换T对应的矩阵为M.(1)求矩阵M;(2)求矩阵M的特征值.解:(1)设M=错误!,则错误!错误!=错误!,错误!错误!=错误!,即错误!解得错误!则M=错误!。
(2)设矩阵M的特征多项式为f(λ),可得f(λ)=错误!=(λ-3)(λ-4)-6=λ2-7λ+6,令f(λ)=0,可得λ=1或λ=6.B.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:错误!ρsin错误!(t为参数).当圆心C到直线l的距离为2时,求=m(m∈R),圆C的参数方程为{x=1+3cos t,y=-2+3sin tm的值.解:由错误!ρsin错误!=m,得错误!ρsin θcos错误!-错误!ρcos θsin错误!=m,即x-y+m=0,即直线l的直角坐标方程为x-y+m=0,圆C的普通方程为(x-1)2+(y+2)2=9,圆心C到直线l的距离d=错误!=错误!,解得m=-1或m=-5。
C.[选修4-5:不等式选讲]已知x,y,z都是正数且xyz=8,求证:(2+x)(2+y)·(2+z)≥64.证明:因为x为正数,所以2+x≥2错误!.同理2+y≥2错误!,2+z≥2错误!.所以(2+x)( 2+y)( 2+z)≥2错误!·2错误!·2错误!=8错误!.因为xyz=8,所以(2+x)(2+y)(2+z)≥64.2.如图,在棱长为3的正方体ABCD。
A1B1C1D1中,A1E=CF=1.(1)求两条异面直线AC 1与BE 所成角的余弦值; (2)求直线BB 1与平面BED 1F 所成角的正弦值.解:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz ,如图所示,则A (3,0,0),C 1(0,3,3),B (3,3,0),E (3,0,2),AC 1,―→=(-3,3,3),错误!=(0,-3,2),所以cos 〈错误!,错误!〉=错误! =错误!=-错误!,故两条异面直线AC 1与BE 所成角的余弦值为错误!.(2)由(1)知错误!=(0,-3,2),又D 1(0,0,3),B 1(3,3,3), 所以错误!=(3,0,-1),错误!=(0,0,3). 设平面BED 1F 的法向量为n =(x ,y ,z ),则错误!即错误!令x =1,得y =2,z =3,n =(1,2,3)是平面BED 1F 的一个法向量. 设直线BB 1与平面BED 1F 所成的角为α,则 sin α=错误!=错误!=错误!,所以直线BB 1与平面BED 1F 所成角的正弦值为错误!。
2019高考数学江苏优编增分二轮复习专题8 附加题第3讲 矩阵与变换、坐标系与参数方程[考情考向分析] 1.考查常见的平面变换与矩阵的乘法运算,二阶矩阵的逆矩阵及其求法,矩阵的特征值与特征向量的求法,属B 级要求.2.考查直线、曲线的极坐标方程、参数方程,参数方程与普通方程的互化,极坐标与直角坐标的互化,属B 级要求.热点一 二阶矩阵与平面变换例1 已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2所对应的变换T 把曲线C 变成曲线C 1:x 24+y 22=1,求曲线C 的方程.解 设曲线C 上任一点为(x ,y ),经过变换T 变成(x 0,y 0),则⎣⎢⎡⎦⎥⎤1 00 2 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0y 0,即x 0=x ,y 0=2y . 由x 204+y 202=1,得曲线C 的方程为x 2+4y 2=4. 思维升华 解决这类问题一般是设变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′,求出原曲线在T 的变换下得到的曲线,再根据条件求相应的系数值.跟踪演练1 已知曲线C 1:x 2+y 2=1,对它先作矩阵A =⎣⎢⎡⎦⎥⎤100 2对应的变换,再作矩阵B =⎣⎢⎡⎦⎥⎤0 b 1 0对应的变换,得到曲线C 2:x 24+y 2=1,求实数b 的值. 解 从曲线C 1变到曲线C 2的变换对应的矩阵为BA =⎣⎢⎡⎦⎥⎤0 b 1 0 ⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 2b 1 0.在曲线C 1上任意选一点P (x 0,y 0),设它在矩阵BA 对应的变换作用下变为P ′(x ′,y ′),则有⎣⎢⎡⎦⎥⎤0 2b 1 0 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′y ′,即⎣⎢⎡⎦⎥⎤2by 0 x 0=⎣⎢⎡⎦⎥⎤x ′y ′. 故⎩⎪⎨⎪⎧ 2by 0=x ′x 0=y ′,解得⎩⎪⎨⎪⎧y 0=12b x ′,x 0=y ′.代入曲线C 1方程得,y ′2+⎝⎛⎭⎫12b x ′2=1. 即曲线C 2方程为⎝⎛⎭⎫12b 2x 2+y 2=1.与已知的曲线C 2的方程x 24+y 2=1比较得(2b )2=4. 所以b =±1.热点二 二阶矩阵的逆矩阵及其求法 例2 已知点P (3,1)在矩阵A =⎣⎢⎡⎦⎥⎤a 2b -1变换下得到点P ′(5,-1).试求矩阵A 和它的逆矩阵A -1. 解 依题意得⎣⎢⎡⎦⎥⎤a 2b -1 ⎣⎢⎡⎦⎥⎤31=⎣⎢⎢⎡⎦⎥⎥⎤3a +23b -1=⎣⎢⎡⎦⎥⎤ 5-1, 所以⎩⎪⎨⎪⎧ 3a +2=5,3b -1=-1,解得⎩⎪⎨⎪⎧a =1,b =0,所以A =⎣⎢⎡⎦⎥⎤1 20 -1. 因为det(A )=⎪⎪⎪⎪⎪⎪1 20 -1=1×(-1)-0×2=-1, 所以A -1=⎣⎢⎡⎦⎥⎤1 20 -1. 思维升华 由二阶矩阵与向量的乘法及向量相等建立方程组,常用于求二阶矩阵,要注意变换的前后顺序.跟踪演练2 二阶矩阵M 对应的变换T M 将曲线x 2+x -y +1=0变为曲线2y 2-x +2=0,求M -1. 解 设曲线2y 2-x +2=0上一点P (x ,y )在M -1对应变化下变成P (x ′,y ′),。
专题10--常见的平面变换与矩阵的运算一、基础练习1.点A (3,-6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1 -10 12对应的变换作用下得到的点的坐标是_________. 2.设⎣⎢⎡⎦⎥⎤4 -20 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 0-1,则它表示的方程组为_________.3.设a ,b ∈R ,若矩阵A =⎣⎢⎡⎦⎥⎤a 10 b 将直线l :x +y -1=0变为直线x -y -2=0,则A =__________.4.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变为点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 对应的变换作用下得到直线m :x -y -4=0,求l 的方程.5.已知矩阵⎥⎦⎤⎢⎣⎡=2112A ,求逆矩阵1-A .二、知识梳理1.线性变换与二阶矩阵在平面直角坐标系xOy 中,由⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表⎣⎢⎡⎦⎥⎤a b cd 称为________,其中a ,b ,c ,d 称为矩阵的________,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列).其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素2.二阶矩阵与平面向量的乘法①行矩阵[a 11a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则为:[a 11a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21], ②二阶矩阵⎣⎢⎡⎦⎥⎤a b c d 与列矩阵⎣⎢⎡⎦⎥⎤x y 的乘法规则为:⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +by cx +dy3.几种常见的线性变换(1)恒等变换矩阵M =⎣⎢⎡⎦⎥⎤1 00 1;(2)旋转变换R θ对应的矩阵是M =__________;(3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=________;若关于坐标原点对称,则变换对应矩阵M 3=________;(4)伸压变换对应的二阶矩阵M =⎣⎢⎡⎦⎥⎤k 1 00 k 2,表示将每个点的横坐标变为原来的________倍,纵坐标变为原来的________倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =__________; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =__________,若沿y 轴平移|kx |个单位,则对应矩阵M =⎣⎢⎡⎦⎥⎤1 0k 1.(其中k 为非零常数). 4.矩阵乘法一般地,对于矩阵M =⎥⎦⎤⎢⎣⎡22211211a a a a ,N =⎥⎦⎤⎢⎣⎡22211211b b b b ,规定乘法法则如下: MN =⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡22211211b b b b =⎥⎦⎤⎢⎣⎡++++22221221212211212212121121121111b a b a b a b a b a b a b a b a 5.矩阵乘法的运算性质(1)矩阵乘法不满足交换律对于二阶矩阵A ,B 来说,尽管AB ,BA 均有意义,但可能AB ≠BA ; (2)矩阵乘法满足结合律设A ,B ,C 为二阶矩阵,则一定有(AB )C =A (BC ) (3)矩阵乘法不满足消去律设A ,B ,C 为二阶矩阵,当AB =AC ,可能B ≠C 6.矩阵的逆矩阵(1)对于二阶矩阵A ,B ,如有 AB =BA =E ,则称矩阵A 可逆,或称矩阵A 是可逆矩阵,并且B 称为A 的逆矩阵.从几何变换的角度可以看出,逆矩阵实际上就是对应着原来变换的逆变换 ,若B 为A 的逆矩阵,则A 称为B 的逆矩阵,并且若逆矩阵存在,则一定是唯一的.并不是所有的矩阵都有逆矩阵,事实上,矩阵可逆当且仅当其对应的行列式不等于零.(2)性质1:设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的.A 的逆矩阵记为A -1.(3)性质2:设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1= B -1A -1.(4)对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc -c ad -bcaad -bc. (5)求两个矩阵乘积的逆矩阵有两种方法,即先求乘积AB ,再求逆矩阵(AB )-1.也可以利用性质(AB )-1=B -1A -1求解,但要注意顺序,不能误为A -1B -1.7.已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C . 三、例题精讲命题点一 矩阵与平面向量1.【苏州市2018届高三9月期初调研】在平面直角坐标系xOy 中,设点P (x ,5)在矩阵⎥⎦⎤⎢⎣⎡=42,31M 对应的变换下得到点Q (y -2,y ),求⎥⎦⎤⎢⎣⎡-y x M 1.命题点二 求变换后的曲线方程1.【南京市2018届高三9月期初学情调研】设二阶矩阵A =⎣⎡⎦⎤1234.(1)求A -1; (2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ':6x 2-y 2=1,求曲线C 的方程.2.【苏北四市2017届高三上第一次调研】求椭圆C :92x +42y =1在矩阵A =对应的变换作用下所得的曲线的方程.命题点三 求变换矩阵1.【扬州市2016届高三第一学期期末调研】已知直线在矩阵对应的变换作用下变为直线,求矩阵.1=+y x l :⎥⎦⎤⎢⎣⎡=10n m A 1=-'y x l :A命题点四 求逆矩阵1.【南通、扬州、泰州、淮安、宿迁、徐州六市2017届高三第二次调研】 设矩阵A 满足:A 1206⎡⎤=⎢⎥⎣⎦1203--⎡⎤⎢⎥⎣⎦,求矩阵A 的逆矩阵1-A .2.已知矩阵A =⎣⎢⎡⎦⎥⎤1 002,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.3.已知矩阵M =⎣⎢⎡⎦⎥⎤3001,N =⎣⎢⎢⎡⎦⎥⎥⎤100 12,求矩阵MN 的逆矩阵.四、巩固训练1.在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤2001对应的变换下得到曲线F ,求F 的方程.2.已知在一个二阶矩阵M 对应变换的作用下,点A (1,2)变成了点A ′(7,10),点B (2,0)变成了点B ′(2,4),求矩阵M .3.求圆C :x 2+y 2=4在矩阵A =⎣⎢⎡⎦⎥⎤2001的变换作用下的曲线方程.4.在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1 a b4对应的变换作用下得到直线m :x -y -4=0,求实数a ,b 的值.5.求曲线C :xy =1在矩阵M =⎣⎢⎡⎦⎥⎤11-11对应的变换作用下得到的曲线C 1的方程.6.设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a >0,b >0). (1)若a =2,b =3,求矩阵M 的逆矩阵M -1;(2)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值.7.【2017江苏高考】 已知矩阵0110,.1002B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A= ,B=. (1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程.8.【苏锡常镇四市2016届高三教学情况调研(二)】已知变换T 把平面上的点(34)-,,(5 0),分别变换成(21)-,,(1 2)-,,试求变换T 对应的矩阵M .参考答案一、基础练习1.答案:(9,-3)2.答案:⎩⎪⎨⎪⎧4x -2y =03y =-13.答案:⎣⎢⎡⎦⎥⎤2 10 -1解析 在直线l 上任取一点P (x ,y ),经矩阵变换后为点P ′(x ′,y ′),则由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 10 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +y by , 得⎩⎪⎨⎪⎧x ′=ax +y ,y ′=by . 所以ax +y -by -2=0,即ax +(1-b )y -2=0,于是由a 1=1-b 1=-2-1,解得a =2,b =-1,即A =⎣⎢⎡⎦⎥⎤2 10 -1 4.答案:(1)⎣⎢⎡⎦⎥⎤1 23 4 (2)x +y +2=0解析:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2. ∴⎩⎪⎨⎪⎧a -b =-1c -d =-1.① ⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2.② 由①②联立得a =1,b =2,c =3,d =4, 故M =⎣⎢⎡⎦⎥⎤1 23 4. (2)设(x ′,y ′)为l 上任意一点,在经矩阵M 变换下对应的点为(x ,y ), 则⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y ∴⎩⎪⎨⎪⎧x =x ′+2y ′y =3x ′+4y ′, 代入x -y -4=0得x ′+y ′+2=0, 即x +y +2=0.5.【解】:因为0311222112≠=⨯-⨯==||A 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=-323131322112311A 二、知识梳理1.二阶矩阵 元素3.(2)⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ (3)⎣⎢⎡⎦⎥⎤-1 0 0 1 ⎣⎢⎡⎦⎥⎤-1 0 0 -1 (4)k 1 k 2 (5)⎣⎢⎡⎦⎥⎤100 0 (6)⎣⎢⎡⎦⎥⎤1k 0 14.⎣⎢⎡⎦⎥⎤λx λy ⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2 (1)λMα Mα+Mβ三、例题精讲 命题点一1.【解】:依题意知,212345y x y -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102,320,x y x y +=-⎧⎨+=⎩解得4,8,x y =-⎧⎨=⎩ 由逆矩阵公式知,矩阵1224M ⎡⎤=⎢⎥⎣⎦的逆矩阵2113122M ---⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 所以2141613181022x y M-----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦. 命题点二2、【解】:(1)根据逆矩阵公式,可得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2132-12.(2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P '(x ',y '),则⎣⎢⎡⎦⎥⎤x 'y '=⎣⎡⎦⎤1234 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,所以⎩⎨⎧x '=x +2y ,y '=3x +4y . 因为(x ',y ')在曲线C '上,所以6x '2-y '2=1,代入6(x +2y )2-(3x +4y )2=1, 化简得8y 2-3x 2=1,所以曲线C 的方程为8y 2-3x 2=1.2.【解】:设椭圆C 上的点(x 1,y 1)在矩阵A 对应的变换作用下得到点(x ,y ), 则,则代入椭圆方程,得x 2+y 2=1,所以所求曲线的方程为x 2+y 2=1. 命题点三1、【解】:设直线上任意一点在矩阵的变换作用下,变换为点.由,得 又点在上,所以,即依题意,解得,命题点四1.【解】方法一:设矩阵a b c d ⎡⎤=⎢⎥⎣⎦A ,则1206a b c d ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦1203--⎡⎤⎢⎥⎣⎦, 所以1a =-,262a b +=-,0c =,263c d +=. 解得0b =,12d =,所以10102-⎡⎤⎢⎥=⎢⎥⎣⎦A . 根据逆矩阵公式得,矩阵11002--⎡⎤=⎢⎥⎣⎦A . 方法二:在A 1206⎡⎤=⎢⎥⎣⎦1203--⎡⎤⎢⎥⎣⎦两边同时左乘逆矩阵1-A 得, 1206⎡⎤=⎢⎥⎣⎦1-A 1203--⎡⎤⎢⎥⎣⎦. 设1-=A a b c d ⎡⎤⎢⎥⎣⎦,则1206⎡⎤=⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦1203--⎡⎤⎢⎥⎣⎦, 所以1a -=,232a b -+=,0c -=,236c d -+=.:1l x y +=(,)M x y A (,)M x y '''''01x m n x mx ny y y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦x mx nyy y'=+⎧⎨'=⎩(,)M x y '''l '1x y ''-=()1mx ny y +-=111m n =⎧⎨-=⎩12m n =⎧⎨=⎩1201A ⎡⎤∴=⎢⎥⎣⎦解得1a =-,0b =,0c =,2d =,从而11002--⎡⎤=⎢⎥⎣⎦A . 2.【解】AB =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -12 0.设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d ,则由(AB )·(AB )-1=⎣⎢⎡⎦⎥⎤1 001,得⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,解得⎩⎪⎨⎪⎧a =0,b =12,c =-1,d =0.故(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤0 12-10 3.【解】(MN )-1=N -1M -1=⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤13 00 1=⎣⎢⎢⎡⎦⎥⎥⎤13 00 2 四、巩固训练1.【解】设P (x ,y )是椭圆4x 2+y 2=1上的任意一点,点P (x ,y )在矩阵A 对应的变换下变为点P ′(x ′,y ′),则有⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2001 ⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2y =y ′.又因为点P (x ,y )在椭圆4x 2+y 2=1上, 所以4(x ′2)2+y ′2=1,即x ′2+y ′2=1.故曲线F 的方程为x 2+y 2=1.【点评】 线性变换是基本变换,解这类问题关键是由⎣⎢⎡⎦⎥⎤x ′y ′=A ⎣⎢⎡⎦⎥⎤x y 得到点P ′(x ′,y ′)与点P (x ,y )的坐标关系.2.【解】设M =⎣⎢⎡⎦⎥⎤ab c d ,则⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤710,⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤24,即⎩⎪⎨⎪⎧ a +2b =7,c +2d =10,2a =2,2c =4.解得⎩⎪⎨⎪⎧ a =1,b =3,c =2,d =4.所以M =⎣⎢⎡⎦⎥⎤1 32 4. 3.【解】设P ′(x ′,y ′)是圆C :x 2+y 2=4上的任一点, 设P (x ,y )是P ′(x ′,y ′)在矩阵A =⎣⎢⎡⎦⎥⎤2 00 1对应变换作用下新曲线上的对应点, 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 00 1 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2x ′ y ′, 即⎩⎪⎨⎪⎧ x =2x ′,y =y ′,所以⎩⎪⎨⎪⎧ x ′=x 2,y ′=y .将⎩⎪⎨⎪⎧x ′=x 2,y ′=y代入x 2+y 2=4,得x 24+y 2=4, 故方程为x 216+y 24=1.4.【解】在直线l :x +y +2=0上取两点A (-2,0),B (0,-2).A 、B 在矩阵M 对应的变换作用下分别对应于点A ′、B ′. 因为⎣⎢⎡⎦⎥⎤1a b4 ⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ -2 -2b ,所以点A ′的坐标为(-2,-2b ); ⎣⎢⎡⎦⎥⎤1 a b 4 ⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以点B ′的坐标为(-2a ,-8).由题意,点A ′、B ′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧ ---2b -4=0,-2a ---4=0.解得a =2,b =3.5.【解】设P (x 0,y 0)为曲线C :xy =1上的任意一点,它在矩阵M =⎣⎢⎡⎦⎥⎤ 11-11对应的变换作用下得到点Q (x ,y ) 由⎣⎢⎡⎦⎥⎤ 11-1 1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x 0+y 0=x ,-x 0+y 0=y .解得⎩⎨⎧x 0=x -y 2,y 0=x +y 2.因为P (x 0,y 0)在曲线C :xy =1上,所以x 0y 0=1.所以x -y 2×x +y 2=1,即x 2-y 2=4.所以所求曲线C 1的方程为x 2-y 2=46.【解】(1)设矩阵M 的逆矩阵M -1=⎥⎦⎤⎢⎣⎡2211y x y x ,则MM -1=⎥⎦⎤⎢⎣⎡1001 又M =⎥⎦⎤⎢⎣⎡3002,所以⎥⎦⎤⎢⎣⎡3002⎥⎦⎤⎢⎣⎡2211y x y x =⎥⎦⎤⎢⎣⎡1001. 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13, 故所求的逆矩阵M -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡310021 (2)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎥⎦⎤⎢⎣⎡b a 00⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡''y x ,即⎩⎪⎨⎪⎧ax =x ′,by =y ′. 又点P ′(x ′,y ′)在曲线C ′上,所以x ′24+y ′2=1. 则a 2x 24+b 2y 2=1为曲线C 的方程. 又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1. 又a >0,b >0,所以⎩⎪⎨⎪⎧a =2,b =1. 7.8、【解】:设a bc d⎡⎤=⎢⎥⎣⎦M,由题意,得35214012a bc d-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,∴342513415 2.a bac dc-=⎧⎪=-⎪⎨-=-⎪⎪=⎩,,,解得1,513,202,51120abcd⎧=-⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩. 即113520211520⎡⎤--⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M.。
江苏省各地2019届高考模拟考试数学试题分类汇编:矩阵与变换、不等式选讲一、矩阵与变换1、(南京市、盐城市2019届高三第二次模拟)已知矩阵23b a ⎡⎤=⎢⎥⎣⎦A ,1101⎡⎤=⎢⎥-⎣⎦B ,2141⎡⎤=⎢⎥⎣⎦AB . (1)求a ,b 的值;(2)求A 的逆矩阵1-A .2、(南京市2019届高三第三次模拟)已知矩阵M =⎣⎡⎦⎤ 2 1 1 2. (1)求M 2; (2)求矩阵M 的特征值和特征向量.3、(南通、如皋市2019届高三下学期语数英学科模拟(二))已知矩阵若直线l 依次经过变换T A ,T B 后得到直线l ':2x +y -2=0,求直线l 的方程。
4、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))已知矩阵=a b c d ⎡⎤⎢⎥⎣⎦M ,10=102⎡⎤⎢⎥⎢⎥⎣⎦N ,且()110402-⎡⎤⎢⎥=⎢⎥⎣⎦MN ,求矩阵M .5、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.6、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次模拟(5月))已知a b c d ∈,,,R ,矩阵20a b -⎡⎤=⎢⎥⎣⎦A 的逆矩阵111c d -⎡⎤=⎢⎥⎣⎦A .若曲线C 在矩阵A 对应的变换作用下得到曲线21y x =+,求曲线C 的方程.7、(苏锡常镇四市2019届高三教学情况调查(二))已知矩阵A = 2 10 a ⎡⎤⎢⎥⎣⎦,其逆矩阵1A -= 0 1b c ⎡⎤⎢⎥⎣⎦,求2A .8、(苏锡常镇四市2019届高三教学情况调查(一))已知x ,y ∈R ,12α⎡⎤=⎢⎥⎣⎦是矩阵A = 10 x y ⎡⎤⎢⎥⎣⎦的属于特征值﹣1的一个特征向量,求矩阵A 的另一个特征值.9、(盐城市2019届高三第三次模拟)直线032:=--y x l 在矩阵⎢⎣⎡-=41M ⎥⎦⎤10所对应的变换M T 下得到直线'l ,求'l 的方程.10、(江苏省2019年百校大联考)已知矩阵1101A ⎡⎤=⎢⎥-⎣⎦,0614B ⎡⎤=⎢⎥-⎣⎦.若矩阵C 满足AC B =,求矩阵C 的特征值和相应的特征向量.二、不等式选讲1、(南京市、盐城市2019届高三第二次模拟)解不等式:|21|2x x --≥.2、(南京市2019届高三第三次模拟)若x ,y ,z 为实数,且x 2+4y 2+9z 2=6,求x +2y +6z 的最大值.3、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月)) 已知实数a b c ,,满足222a b c ++≤1,求证:22211191114a b c +++++≥4、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤.5、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次模拟(5月))已知a ∈R ,若关于x 的方程2410x x a a ++-+=有实根,求a 的取值范围.6、(苏锡常镇四市2019届高三教学情况调查(二))已知正数a ,b ,c 满足a +b +c =2,求证:2221a b c b c c a a b++≥+++.。
(九)数学归纳法1.已知数列{a n }满足:a 1=2a -2,a n +1=aa n -1+1(n ∈N *).(1)若a =-1,求数列{a n }的通项公式;(2)若a =3,试证明:对∀n ∈N *,a n 是4的倍数.(1)解 当a =-1时,a 1=-4,a n +1=(-1)a n -1+1.令b n =a n -1,则b 1=-5,b n +1=(-1)b n .∵b 1=-5为奇数,∴当n ≥2时,b n 也是奇数且只能为-1,∴b n =⎩⎪⎨⎪⎧ -5,n =1,-1,n≥2,即a n =⎩⎪⎨⎪⎧ -4,n =1,0,n≥2.(2)证明 当a =3时,a 1=4,a n +1=3a n -1+1.下面利用数学归纳法来证明:a n 是4的倍数.当n =1时,a 1=4=4×1,命题成立;设当n =k (k ∈N *)时,命题成立,则存在t ∈N *,使得a k =4t ,∴a k +1=3a k -1+1=34t -1+1=27·(4-1)4(t -1)+1=27·(4m +1)+1=4(27m +7),其中,4m =44(t -1)-C 错误!·44t -5+…-(-1)r C 错误!·44t -4-r +…-C 错误!·4, ∴m ∈Z ,∴当n =k +1时,命题成立.由数学归纳法知,对∀n ∈N *,a n 是4的倍数成立.2.已知数列{a n }满足a n +1=12a 2n -12na n +1(n ∈N *),且a 1=3. (1)计算a 2,a 3,a 4的值,由此猜想数列{a n }的通项公式,并给出证明;(2)求证:当n ≥2时,a n ≥4n n .(1)解 a 2=4,a 3=5,a 4=6,猜想:a n =n +2(n ∈N *).①当n =1时,a 1=3,结论成立;②假设当n =k (k ≥1,k ∈N *)时,结论成立,即a k =k +2,则当n =k +1时,a k +1=12a 2k -12ka k +1=12(k +2)2-12k (k +2)+1=k +3=(k +1)+2, 即当n =k +1时,结论也成立.由①②,得数列{a n }的通项公式为a n =n +2(n ∈N *). (2)证明 原不等式等价于⎝ ⎛⎭⎪⎫1+2n n ≥4. 显然,当n =2时,等号成立.当n >2时,⎝ ⎛⎭⎪⎫1+2n n =C0n +C1n 2n +C2n ⎝ ⎛⎭⎪⎫2n 2+…+Cn n ⎝ ⎛⎭⎪⎫2n n >C0n +C1n 2n +C2n ⎝ ⎛⎭⎪⎫2n 2=5-2n >4. 综上所述,当n ≥2时,a n ≥4n n .3.已知函数f (x )=ln(2-x )+ax 在区间(0,1)上是增函数.(1)求实数a 的取值范围;(2)若数列{a n }满足a 1∈(0,1),a n +1=ln(2-a n )+a n ,n ∈N *,证明:0<a n <a n +1<1.(1)解 ∵函数f (x )=ln(2-x )+ax 在区间(0,1)上是增函数,∴f ′(x )=-12-x+a ≥0在区间(0,1)上恒成立, ∴a ≥12-x. 又g (x )=12-x在区间(0,1)上是增函数, ∴a ≥g (1)=1,即实数a 的取值范围为[1,+∞).(2)证明 先用数学归纳法证明0<a n <1.当n =1时,a 1∈(0,1)成立.假设当n =k (k ∈N *)时,0<a k <1成立.当n =k +1时,由(1)知当a =1时,函数f (x )=ln(2-x )+x 在区间(0,1)上是增函数, ∴a k +1=f (a k )=ln(2-a k )+a k ,∴0<ln 2=f (0)<f (a k )<f (1)=1,即0<a k +1<1成立,∴当n ∈N *时,0<a n <1成立.下证a n <a n +1.∵0<a n <1,∴a n +1-a n =ln(2-a n )>ln 1=0,∴a n <a n +1.综上0<a n <a n +1<1.4.设f (k )是满足不等式log 2x +log 2(3·2k -1-x )≥2k -1(k ∈N *)的正整数x 的个数.(1)求f(k)的解析式;(2)记S n=f(1)+f(2)+…+f(n),P n=n2+n-1(n∈N*),试比较S n与P n的大小.解(1)∵log2x+log2(3·2k-1-x)≥2k-1(k∈N*),∴错误!解得2k-1≤x≤2k,∴f(k)=2k-2k-1+1=2k-1+1.(2)∵S n=f(1)+f(2)+…+f(n)=1+2+22+…+2n-1+n=2n+n-1,∴S n-P n=2n-n2.当n=1时,S1-P1=2-1=1>0;当n=2时,S2-P2=4-4=0;当n=3时,S3-P3=8-9=-1<0;当n=4时,S4-P4=16-16=0;当n=5时,S5-P5=32-25=7>0;当n=6时,S6-P6=64-36=28>0.猜想:当n≥5时,S n-P n>0.证明如下:①当n=5时,由上述可知S n-P n>0.②假设当n=k(k≥5,k∈N*)时,S k-P k=2k-k2>0.当n=k+1时,S k+1-P k+1=2k+1-(k+1)2=2·2k-k2-2k-1=2(2k-k2)+k2-2k-1=2(S k-P k)+k2-2k-1>k2-2k-1=k(k-2)-1≥5×(5-2)-1=14>0.∴当n=k+1时,S k+1-P k+1>0成立.由①②可知,当n≥5时,S n-P n>0成立,即S n>P n成立.由上述分析可知,当n=1或n≥5时,S n>P n;当n=2或n=4时,S n=P n;当n=3时,S n<P n.。
高三数学附加题练习(4)1.(10分)选修4﹣1:几何证明选讲如图,△ABC是⊙O的内接三角形,若AD是△ABC的高,AE是⊙O的直径,F是的中点.求证:(1)AB•AC=AE•AD(2)∠FAE=∠FAD.2.(10分)选修4﹣2:矩阵与变换已知曲线C:y2=2x,在矩阵M=对应的变换作用下得到曲线C1,C1在矩阵N=对应的变换作用下得到曲线C2,求曲线C2的方程.3.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=2,直线l的参数方程为试在曲线C 上求一点M,使它到直线l的距离最大4.选修4﹣5:不等式选讲已知a>0,b>0,且2a+b=1,求的最大值.5.(10分)如图,已知定点R(0,﹣3),动点P,Q分别在x轴和y轴上移动,延长PQ至点M,使,且.(1)求动点M的轨迹C1;(2)圆C2:x2+(y﹣1)2=1,过点(0,1)的直线l依次交C1于A,D两点(从左到右),交C2于B,C两点(从左到右),求证:为定值.6.(10分)已知数列{a n}满足:.(1)若a=﹣1,求数列{a n}的通项公式;(2)若a=3,试证明:对∀n∈N*,a n是4的倍数.1.2.3.解:曲线C的普通方程是(2分)直线l的普通方程是(4分)设点M的坐标是的距离是(6分),d取得最大值.(8分)4.5.解答:(1)解:设M(x,y),则由,可得∴∵,∴∴x2=4y∴动点M的轨迹C1是顶点在原点,开口向上的抛物线;(2)证明:由题意,=AB•CD,圆C2:x2+(y﹣1)2=1的圆心即为抛物线C1的焦点F设A(x1,y1),D(x2,y2),则AB=FA﹣FB=y1+1﹣1=y1,同理CD=y2,设直线的方程为x=k(y﹣1)代入抛物线方程可得k2y2﹣(2k2﹣4)y+k2=0∴=AB•CD=y1y2=1.6.(1)解:a=﹣1时,令bn=an﹣1,则∵b1=﹣5为奇数,bn也是奇数且只能为﹣1∴,即;(2)证明:a=3时,①n=1时,a1=4,命题成立;②设n=k时,命题成立,则存在t∈N*,使得ak=4t∴=34t﹣1+1=27•(4﹣1)4(t﹣1)+1∵(4﹣1)4(t﹣1)=+…+4+1=4m+1,m∈Z∴=27•(4m+1)+1=4(27m+7)∴n=k+1时,命题成立由①②可知,对∀n∈N*,an是4的倍数.1.。
(二)矩阵与变换1.(2018·南京模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1 201,B =⎣⎢⎡⎦⎥⎤2 00 1.若直线l :x -y +2=0在矩阵AB 对应的变换作用下得到直线l 1,求直线l 1的方程. 解 因为A =⎣⎢⎡⎦⎥⎤1 201,B =⎣⎢⎡⎦⎥⎤2 00 1, 所以AB =⎣⎢⎡⎦⎥⎤2 20 1,设点P 0(x 0,y 0)是l 上任意一点,P 0在矩阵AB 对应的变换作用下得到P (x ,y ),因为P 0(x 0,y 0)在直线l :x -y +2=0上,所以x 0-y 0+2=0.①由AB ⎣⎢⎡⎦⎥⎤x0y0=⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤2 20 1⎣⎢⎡⎦⎥⎤x0y0=⎣⎢⎡⎦⎥⎤x y , 得⎩⎪⎨⎪⎧ 2x0+2y0=x ,y0=y ,即⎩⎪⎨⎪⎧ x0=12x -y ,y0=y.②将②代入①得x -4y +4=0,所以直线l 1的方程为x -4y +4=0.2.已知曲线C :y 2=12x ,C 在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤011 0⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤-2y′ x′, 即⎩⎪⎨⎪⎧ x =-2y′,y =x′,∴⎩⎪⎨⎪⎧ x′=y ,y′=-12x.又点P (x ′,y ′)在曲线C :y 2=12x 上, ∴⎝ ⎛⎭⎪⎫-12x 2=12y ,即x 2=2y . 3.已知矩阵M =⎣⎢⎡⎦⎥⎤122 x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量.解 矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-x =(λ-1)(λ-x )-4. 因为λ1=3是方程f (λ)=0的一根,所以x =1.由(λ-1)(λ-1)-4=0,得λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧ -2x -2y =0,-2x -2y =0,得x =-y .令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1. 4.(2018·扬州模拟)已知x ,y ∈R ,若点M (1,1)在矩阵A =⎣⎢⎡⎦⎥⎤2 x 3y 对应的变换作用下得到点N (3,5),求矩阵A 的逆矩阵A -1. 解 因为A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35, 即⎣⎢⎡⎦⎥⎤2x 3 y ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35, 即⎩⎪⎨⎪⎧ 2+x =3,3+y =5,解得⎩⎪⎨⎪⎧ x =1,y =2,所以A =⎣⎢⎡⎦⎥⎤213 2.设A -1=⎣⎢⎡⎦⎥⎤ab cd , 则AA -1=⎣⎢⎡⎦⎥⎤2 13 2⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 00 1,即⎩⎪⎨⎪⎧ 2a +c =1,3a +2c =0,2b +d =0,3b +2d =1,解得⎩⎪⎨⎪⎧ a =2,b =-1,c =-3,d =2, 所以A -1=⎣⎢⎡⎦⎥⎤ 2-1-3 2.。
专题二十二选修4系列【真题典例】22.1 矩阵与变换挖命题【考情探究】分析解读矩阵与变换是江苏卷附加题中三选二的内容之一,主要考查矩阵的变换、矩阵的乘法、逆矩阵、特征值和特征向量等,难度不大.破考点【考点集训】考点矩阵与变换1.(2019届江苏盐城一中月考)在平面直角坐标系xOy中,设点A(-1,2)在矩阵M=-对应的变换作用下得到点A',将点B(3,4)绕点A'逆时针旋转90°得到点B',求点B'的坐标.解析设B'(x,y).由--=,得A'(1,2).则=(2,2),=(x-1,y-2).记旋转矩阵N=-,则-=--,即-=--,解得-所以点B'的坐标为(-1,4).2.(2018江苏如皋中学月考)已知矩阵M=的逆矩阵M-1=--,求实数m,n的值.解析因为MM-1=--=---=,所以---解得3.(2019届江苏梅村中学月考)已知矩阵A=(c,d为实数).若矩阵A属于特征值2,3的一个特征向量分别为,,求矩阵M的逆矩阵A-1.解析由题意知==2,==3,所以解得-所以A=-,所以A-1=-.4.(2019届江苏盐城中学月考)已知二阶矩阵A=-.(1)求矩阵A的特征值和特征向量;(2)设向量β=-,求A5β.解析(1)矩阵A的特征多项式f(λ)=--=(λ-3)(λ+2).令f(λ)=0得λ1=3,λ2=-2.设λ1=3对应的一个特征向量为,则将λ1=3代入二元一次方程组得-解得y=0.所以矩阵A的属于特征值3的一个特征向量为.设λ2=-2对应的一个特征向量为,则--取x1=1,则y1=-1.所以矩阵A的属于特征值-2的一个特征向量为-.(2)由(1)可知向量β是矩阵A的属于特征值-2的一个特征向量, 所以A5β=λ5β=-.炼技法【方法集训】方法一求解逆矩阵1.(2018江苏扬州期末)已知x,y∈R,若点M(1,1)在矩阵A=对应的变换作用下得到点N(3,5),求矩阵A 的逆矩阵A-1.解析因为A=,即=,即解得所以A=.解法一(定义法):设A-1=,则AA-1==,即解得--所以A-1=--.解法二(公式法):因为A-1=--,且det A==2×2-1×3=1,所以A-1=--.2.(2019届江苏常州一中月考)已知矩阵M=,试求:(1)矩阵M的逆矩阵M-1;(2)直线y=2x在矩阵M-1对应的变换作用下的曲线方程.解析(1)因为M=,所以M-1=.(2)设点P(x,y)是直线y=2x上任意一点,在矩阵M-1对应的变换作用下得到点Q(x',y'), 则==,所以即因为点P在直线y=2x上,于是2y'=2×x',所以2y'=x',即直线y=2x在矩阵M-1对应的变换作用下的曲线方程为y=x.方法二矩阵变换应用1.(2019届江苏泰州中学月考)已知曲线C:x2+2xy+2y2=1,矩阵A=所对应的变换把曲线C变成曲线C1,求曲线C1的方程.解析设曲线C上的任意一点P(x,y),P在矩阵A=对应的变换下得到点Q(x',y'),则=,即x+2y=x',x=y',所以x=y',y=-.代入x2+2xy+2y2=1,得y'2+2y'-+2-=1,即x'2+y'2=2,所以曲线C1的方程为x2+y2=2.2.(2019届江苏宿迁中学月考)已知矩阵M=,N=,试求曲线y=sin x在矩阵MN变换下的函数解析式.解析MN==,即在矩阵MN变换下→==,所以即代入y=sin x得y'=sin 2x'.即曲线y=sin x在矩阵MN变换下的函数解析式为y=2sin 2x.过专题【五年高考】自主命题 江苏卷题组1.(2017江苏,21B,10分)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:+=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.解析本小题主要考查矩阵的乘法、线性变换等基础知识,考查运算求解能力.(1)因为A=,B=,所以AB==.(2)设Q(x0,y0)为曲线C1上的任意一点,它在矩阵AB对应的变换作用下变为P(x,y),则=,即所以因为点Q(x0,y0)在曲线C1上,则+=1,从而+=1,即x2+y2=8.因此曲线C1在矩阵AB对应的变换作用下得到曲线C2:x2+y2=8.2.(2016江苏,21B,10分)已知矩阵A=-,矩阵B的逆矩阵B-1=-,求矩阵AB. 解析设B=,则B-1B=-=,即=,故--解得所以B=.因此,AB=-=-.3.(2015江苏,21B,10分)已知x,y∈R,向量α=-是矩阵A=的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.证明由已知,得Aα=-2α,即-=-1=,则--即-所以矩阵A=-.从而矩阵A的特征多项式f(λ)=(λ+2)(λ-1),所以矩阵A的另一个特征值为1.4.(2014江苏,21B,10分)已知矩阵A=,B=,向量α=,x,y为实数,若Aα=Bα,求x+y的值.解析由已知,得Aα=-=-,Bα=-=-.因为Aα=Bα,所以-=-.故--解得-所以x+y=.教师专用题组1.(2013江苏,21B,10分,0.949)已知矩阵A=-,B=,求矩阵A-1B. 解析设矩阵A的逆矩阵为,则-=,即--=,故a=-1,b=0,c=0,d=,从而A的逆矩阵为A-1=-,所以A-1B=-=--.2.(2011江苏,21B,10分)已知矩阵A=,向量β=.求向量α,使得A2α=β. 解析A2==.设α=.由A2α=β,得=,从而解得x=-1,y=2,所以α=-.评析本题考查矩阵运算法则等基础知识,对运算能力有一定的要求,属中等难度题.3.(2012江苏,21B,10分)已知矩阵A的逆矩阵A-1=--,求矩阵A的特征值.解析因为A-1A=E,所以A=(A-1)-1.因为A-1=--,所以A=(A-1)-1=,于是矩阵A的特征多项式为f(λ)=----=λ2-3λ-4.令f(λ)=0,解得A的特征值λ1=-1,λ2=4.评析本题主要考查矩阵的基础知识,考查运算求解能力.4.(2014福建,21(1),7分)已知矩阵A的逆矩阵A-1=.(Ⅰ)求矩阵A;(Ⅱ)求矩阵A-1的特征值以及属于每个特征值的一个特征向量.解析(Ⅰ)因为矩阵A是矩阵A-1的逆矩阵,且|A-1|=2×2-1×1=3≠0,所以A==.(Ⅱ)矩阵A-1的特征多项式为f(λ)==λ2-4λ+3=(λ-1)(λ-3), 令f(λ)=0,得矩阵A-1的特征值为λ1=1或λ2=3,所以ξ1=是矩阵A-1的属于特征值λ1=1的一个特征向量,ξ2=是矩阵A-1的属于特征值λ2=3的一个特征向量.【三年模拟】解答题(共60分)1.(2019届江苏南京六校调研)设矩阵A满足A=--,求矩阵A的逆矩阵A-1. 解析A=---=---=-.因为det A=-,所以A-1=-.2.(2018江苏南京、盐城一模)已知矩阵M=,求圆x2+y2=1在矩阵M的变换下所得的曲线方程.解析设P(x0,y0)是圆x2+y2=1上任意一点,则+=1.设点P(x0,y0)在矩阵M对应的变换下所得的点为Q(x,y),则=,即解得代入+=1,得+y2=1,即为所求的曲线方程.3.(2017江苏镇江期末)已知实数a,b,矩阵A=-对应的变换将直线x-y-1=0变换为自身,求a,b的值. 解析设直线x-y-1=0上任意一点P(x,y)在变换T A的作用下变成点P'(x',y').由-=,得-因为P'(x',y')在直线x-y-1=0上,所以x'-y'-1=0,即(2-b)x+(a+1)y-1=0.又因为P(x,y)在直线x-y-1=0上,所以x-y-1=0.因此--解得a=-2,b=1.4.(2018江苏南京、盐城、连云港二模)已知α=为矩阵A=-属于实数λ的一个特征向量,求λ和A2. 解析因为-=λ,所以-解得所以A=-,所以A2=-.5.(2018江苏南京学情调研)设二阶矩阵A=.(1)求A-1;(2)若曲线C在矩阵A对应的变换作用下得到曲线C':6x2-y2=1,求曲线C的方程.解析(1)根据逆矩阵公式,可得A-1=--.(2)设曲线C上任意一点P(x,y)在矩阵A对应的变换作用下得到点P'(x',y'),则==,所以因为(x',y')在曲线C'上,所以6x'2-y'2=1,代入得6(x+2y)2-(3x+4y)2=1,化简得8y2-3x2=1,所以曲线C的方程为8y2-3x2=1.6.(2018江苏苏州高三上学期期中调研,21B)已知矩阵A=,α=,求A49α的值.解析矩阵A的特征多项式f(λ)==λ2-2λ-3.令f(λ)=0,解得矩阵A的特征值λ1=-1,λ2=3.当λ=-1时特征向量为α1=,当λ=3时特征向量为α2=,又∵α==α1+3α2,∴A49α=α1+3α2=-.方法点拨解此类题应分成以下几个步骤:一是求特征值,二是根据特征值求特征向量,三是把已知向量用特征向量表示,最后求得结果.。
(一)几何证明选讲1.如图,O 是△ABC 外接圆的圆心,∠ACB =54°,求∠ABO 的值.解 连结OA ,因为O 是圆心,所以∠AOB =2∠ACB , 所以∠ABO =12(180°-∠AOB )=12(180°-2∠ACB ) =90°-∠ACB =90°-54°=36°.2.如图,已知A ,B ,C 是圆O 上的三点,BE 切圆O 于点B ,D 是CE 与圆O 的交点,若∠BAC =60°,BE =2,BC =4,求线段CD 的长.解 因为BE 切圆O 于点B ,所以∠CBE =∠BAC =60°. 因为BE =2,BC =4,由余弦定理得EC =2 3. 又BE 2=EC ·ED ,所以DE =233, 所以CD =EC -ED =23-233=433.3.如图,已知点C 在圆O 的直径AB 的延长线上,CD 是圆O 的一条切线,D 为切点,点D 在AB 上的射影是点E ,CB =3BE .求证:(1)DB 是∠CDE 的平分线; (2)AE =2EB .证明 (1)连结AD ,∵AB 是圆O 的直径, ∴∠DAB +∠DBA =90°,∵DE ⊥AB ,∴∠BDE +∠DBA =90°, ∴∠DAB =∠BDE , ∵CD 切圆O 于点D , ∴∠CDB =∠DAB , ∴∠BDE =∠CDB , ∴DB 是∠CDE 的平分线.(2)由(1)可得DB 是∠CDE 的平分线, ∴CD DE =CB BE=3,即CD =3DE .设BE =m (m >0),DE =x (x >0),则CB =3m ,CD =3x , 在Rt△CDE 中,由勾股定理可得(3x )2=x 2+(4m )2,则x =2m , 由切割线定理得CD 2=CB ·CA ,(32m )2=3m ·CA ,CA =6m ,AB =3m ,AE =2m ,则AE =2EB .4.(2018·江苏海安中学质检)如图,在Rt△ABC 中,∠B =90°,它的内切圆分别与边BC ,CA ,AB 相切于点D ,E ,F ,连结AD ,与内切圆相交于另一点P ,连结PC ,PE ,PF ,已知PC ⊥PF ,求证:(1)PF FD =PDDC;(2)PE ∥BC . 证明 (1)连结DE , 则△BDF 是等腰直角三角形, 于是∠FPD =∠FDB =45°, 故∠DPC =45°.又∠PDC =∠PFD ,则△PFD ∽△PDC , 所以PF FD =PD DC.①(2)由∠AFP =∠ADF ,∠AEP =∠ADE , 知△AFP ∽△ADF ,△AEP ∽△ADE . 于是,EP DE =AP AE =AP AF =FPDF .故由①得EP DE =PD DC,②由∠EPD =∠EDC ,结合②得,△EPD ∽△EDC , 从而△EPD 也是等腰三角形.于是,∠PED =∠EPD =∠EDC ,所以PE ∥BC .(二)矩阵与变换1.(2018·南京模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1 201,B =⎣⎢⎡⎦⎥⎤2 001.若直线l :x -y +2=0在矩阵AB 对应的变换作用下得到直线l 1,求直线l 1的方程. 解 因为A =⎣⎢⎡⎦⎥⎤1201,B =⎣⎢⎡⎦⎥⎤2 001,所以AB =⎣⎢⎡⎦⎥⎤2201,设点P 0(x 0,y 0)是l 上任意一点,P 0在矩阵AB 对应的变换作用下得到P (x ,y ),因为P 0(x 0,y 0)在直线l :x -y +2=0上, 所以x 0-y 0+2=0.①由AB ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤2 201 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y , 得⎩⎪⎨⎪⎧2x 0+2y 0=x ,y 0=y ,即⎩⎪⎨⎪⎧x 0=12x -y ,y 0=y .②将②代入①得x -4y +4=0, 所以直线l 1的方程为x -4y +4=0.2.已知曲线C :y 2=12x ,C 在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N=⎣⎢⎡⎦⎥⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程. 解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 110 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′,即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝ ⎛⎭⎪⎫-12x 2=12y ,即x 2=2y . 3.已知矩阵M =⎣⎢⎡⎦⎥⎤122x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量.解 矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y .令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤1-1. 4.(2018·扬州模拟)已知x ,y ∈R ,若点M (1,1)在矩阵A =⎣⎢⎡⎦⎥⎤2x 3y 对应的变换作用下得到点N (3,5),求矩阵A 的逆矩阵A -1.解 因为A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎣⎢⎡⎦⎥⎤2 x 3y ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35, 即⎩⎪⎨⎪⎧2+x =3,3+y =5,解得⎩⎪⎨⎪⎧x =1,y =2,所以A =⎣⎢⎡⎦⎥⎤2132.设A -1=⎣⎢⎡⎦⎥⎤a b c d , 则AA -1=⎣⎢⎡⎦⎥⎤2 132 ⎣⎢⎡⎦⎥⎤a b cd =⎣⎢⎡⎦⎥⎤1 001,即⎩⎪⎨⎪⎧2a +c =1,3a +2c =0,2b +d =0,3b +2d =1,解得⎩⎪⎨⎪⎧a =2,b =-1,c =-3,d =2,所以A -1=⎣⎢⎡⎦⎥⎤2 -1-3 2.(三)坐标系与参数方程1.(2018·南京六校联考)在平面直角坐标系xOy 中,以O 为极点,Ox 为极轴建立极坐标系,曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =1-t(t 为参数).求直线l 被曲线C 截得的弦长.解 曲线C 的直角坐标方程是x 2+(y -1)2=1, 直线l 的普通方程是x +2y -3=0, 圆心C (0,1)到直线l 的距离d =|2-3|12+22=55, 所以直线l 被曲线C 截得的弦长为 212-⎝⎛⎭⎪⎫552=455. 2.(2018·江苏南京外国语学校月考)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =m +2cos α,y =2sin α(α为参数,m 为常数).以原点O 为极点,以x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4= 2.若直线l 与圆C 有两个不同的公共点,求实数m 的取值范围.解 圆C 的普通方程为(x -m )2+y 2=4. 直线l 的极坐标方程化为ρ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=2,即22x +22y =2,化简得x +y -2=0. 因为圆C 的圆心为C (m,0),半径为2,圆心C 到直线l 的距离d =|m -2|2,直线l 与圆C 有两个不同的公共点,所以d =|m -2|2<2,解得2-22<m <2+22,即实数m 的取值范围是(2-22,2+22).3.(2018·江苏南京师大附中模拟)在极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=π4(ρ∈R )相交于A ,B 两点,求线段AB 的长. 解 圆C :ρ=22cos θ的直角坐标方程为x 2+y 2-22x =0,即(x -2)2+y 2=2.直线l :θ=π4(ρ∈R )的直角坐标方程为y =x .圆心C 到直线l 的距离d =|2-0|2=1.所以AB =2.4.(2018·江苏泰州中学月考)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知点P 的极坐标为⎝⎛⎭⎪⎫2,π2,曲线C 的极坐标方程为ρcosθ-ρsinθ=1,曲线D 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).曲线C 和曲线D 相交于A ,B 两点. (1)求点P 的直角坐标;(2)求曲线C 的直角坐标方程和曲线D 的普通方程; (3)求△PAB 的面枳S ,解 (1)设点P 的直角坐标为(x ,y ), 则x =2cos π2=0,y =2sin π2=2,∴点P 的直角坐标为()0,2.(2)将ρcos θ=x ,ρsin θ=y 代入ρcos θ-ρsin θ=1, 得x -y =1,∴曲线C 的直角坐标方程为x -y -1=0.消去方程⎩⎪⎨⎪⎧x =1+cos α,y =sin α 中的参数α,得(x -1)2+y 2=1,∴曲线D 的普通方程为(x -1)2+y 2=1.(3)因为直线C :x -y -1=0过圆D :(x -1)2+y 2=1的圆心, ∴AB 为圆D 的直径, ∴AB =2.又点P (0,2)到直线C :x -y -1=0的距离为d =32=322,∴S △PAB =12AB ·d =12×2×322=322.(四)不等式选讲1.已知正数x ,y 满足x 2+y 2=2,求证:x +y ≥2xy . 证明 ∵x >0,y >0,∴要证x +y ≥2xy ,只要证(x +y )2≥4x 2y 2, 即证x 2+y 2+2xy ≥4x 2y 2.∵x 2+y 2=2,∴只要证2+2xy ≥4x 2y 2,即证2(xy )2-xy -1≤0,即证(2xy +1)(xy -1)≤0. ∵2xy +1>0,∴只要证xy ≤1. ∵2xy ≤x 2+y 2=2,∴xy ≤1成立, 当且仅当x =y =1时取等号. ∴x +y ≥2xy .2.已知a ,b ,c 都是正数且abc =1,求证:(2+a )(2+b )(2+c )≥27. 证明 由算术-几何平均不等式可得 2+a =1+1+a ≥33a , 2+b =1+1+b ≥33b , 2+c =1+1+c ≥33c . 不等式两边分别相乘可得,(2+a )(2+b )(2+c )≥33a ×33b ×33c =273abc =27, 当且仅当a =b =c =1时等号成立.3.已知函数f (x )=2|x -2|+3|x +3|.若函数f (x )的最小值为m ,正实数a ,b 满足4a +25b =m ,求1a +1b的最小值,并求出此时a ,b 的值.解 依题意知,f (x )=⎩⎪⎨⎪⎧-5x -5,x <-3,x +13,-3≤x ≤2,5x +5,x >2,当x =-3时,函数f (x )有最小值10,故4a +25b =10,故1a +1b =110⎝ ⎛⎭⎪⎫1a +1b ()4a +25b =110⎝⎛⎭⎪⎫29+25b a +4a b ≥110⎝ ⎛⎭⎪⎫29+225b a ·4a b =4910, 当且仅当25b a =4ab时等号成立,此时a =57,b =27.4.(2018·镇江调研)已知函数f (x )=|x -a |+|x +a |,若对任意x ∈R ,不等式f (x )>a 2-3恒成立,求实数a 的取值范围.解 ∵对任意x ∈R ,不等式f (x )>a 2-3恒成立, ∴f (x )min >a 2-3,又∵|x -a |+|x +a |≥ |x -a -(x +a )|=|2a |, ∴|2a |>a 2-3, 即|a |2-2|a |-3<0, 解得-1<|a |<3. ∴-3<a <3.(五)空间向量与立体几何1.(2018·盐城模拟)如图,已知四棱锥P -ABCD 的底面是正方形,PA ⊥平面ABCD ,且PA =AD =2,点M ,N 分别在PD ,PC 上,PN →=12NC →,PM =MD .(1)求证:PC ⊥平面AMN ; (2)求二面角B -AN -M 的余弦值.(1)证明 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.又∵PA =AD =2, ∴P (0,0,2),D (0,2,0),B (2,0,0),∴M (0,1,1),C (2,2,0).∴PC →=(2,2,-2),AM →=(0,1,1). ∵PC →·AM →=0+2-2=0, ∴PC ⊥AM .设N (x ,y ,z ),∵PN →=12NC →,求得N ⎝ ⎛⎭⎪⎫23,23,43. ∵PC →·AN →=43+43-83=0,∴AN ⊥PC .又AM ∩AN =A ,AM ,AN ⊂平面AMN , ∴PC ⊥平面AMN .(2)解 设平面BAN 的法向量为n =(x ,y ,z ), ∵⎩⎪⎨⎪⎧n ·AB →=0,n ·AN →=0,即⎩⎪⎨⎪⎧2x =0,23x +23y +43z =0,令z =-1,∴n =(0,2,-1).∵PC →=(2,2,-2)是平面AMN 的法向量, ∴cos〈n ,PC →〉=n ·PC →|n ||PC →|=155.由图知二面角B -AN -M 为钝二面角, ∴二面角B -AN -M 的余弦值为-155. 2.如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1),∴co s 〈EB →,AC →〉=-25,又异面直线所成的角为锐角或直角, ∴异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2),平面BEC 的法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值的绝对值为23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53. 3.三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3).设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1). 设直线DB 1与平面A 1C 1D 所成的角为θ,则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265,sin α=3765=345565.所以二面角B 1-A 1D -C 1的正弦值为345565.4.如图,在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小. 解 连结OB ,由题意得OS ,OB ,OC 两两垂直.以O 为坐标原点,分别以OB ,OC ,OS 所在直线为x ,y ,z 轴建立空间直角坐标系.由题意知∠SBO =45°,SO =3.所以O (0,0,0),C (0,3,0),A (0,-3,0),S (0,0,3),B (3,0,0).(1)设BD →=λBS →(0≤λ≤1),连结OD ,则OD →=(1-λ)OB →+λOS →=(3(1-λ),0,3λ), 所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故当SD DB =12时,CD ⊥AB .(2)平面ACB 的法向量为n 1=(0,0,1). 设平面SBC 的法向量n 2=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 2·SB →=0,n 2·SC →=0,得⎩⎨⎧3x -3z =0,3y -3z =0,解得⎩⎨⎧x =z ,y =3z ,取z =1,则n 2=(1,3,1),所以cos 〈n 1,n 2〉=1×0+3×0+1×112+12+(3)2=15, 显然所求二面角的平面角为锐角, 故所求二面角的余弦值的大小为55. (六)曲线与方程、抛物线1.如图,过抛物线y 2=4x 的焦点F 作抛物线的两条弦AB ,CD ,设直线AC 与BD 的交点为P ,直线AC ,BD 分别与y 轴交于M ,N 两点.(1)求证:点P 恒在抛物线的准线上; (2)求证:四边形PMFN 是平行四边形.证明 (1)由题意知F (1,0),不妨设A (a 2,2a ),D (b 2,2b ),a >0,b <0,B (x B ,y B ). 直线AB 的方程为2ax +(1-a 2)y -2a =0,由⎩⎪⎨⎪⎧y 2=4x ,2ax +(1-a 2)y -2a =0,得ay 2+2(1-a 2)y -4a =0, 由2ay B =-4,得y B =-2a,代入抛物线方程y 2=4x , 得x B =1a 2,即B ⎝ ⎛⎭⎪⎫1a 2,-2a ,同理得C ⎝ ⎛⎭⎪⎫1b 2,-2b ,则直线AC 的方程为y =2b ab -1x -2aab -1, 直线BD 的方程为y =2a ab -1x -2bab -1, 则M ⎝⎛⎭⎪⎫0,-2a ab -1,N ⎝ ⎛⎭⎪⎫0,-2b ab -1. 联立直线AC ,BD 的方程⎩⎪⎨⎪⎧y =2b ab -1x -2aab -1,y =2a ab -1x -2bab -1,可得点P 的横坐标为定值-1, 即点P 恒在抛物线的准线上.(2)因为k FN =0-⎝ ⎛⎭⎪⎫-2b ab -11-0=2b ab -1=k AC ,k FM =0-⎝ ⎛⎭⎪⎫-2a ab -11-0=2a ab -1=k BD ,所以四边形PMFN 是平行四边形.2.如图,已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点,点A 关于y 轴的对称点为A ′,连结A ′B .(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 解 (1)将点(2,1)代入抛物线C 的方程,得p =2, 所以抛物线C 的标准方程为x 2=4y . (2)设直线l 的方程为y =kx -1,又设A (x 1,y 1),B (x 2,y 2),则A ′(-x 1,y 1),由⎩⎪⎨⎪⎧y =x 24,y =kx -1,得x 2-4kx +4=0,则Δ=16k 2-16>0,x 1,2=4k ±16k 2-162,x 1x 2=4,x 1+x 2=4k ,所以k A ′B =y 2-y 1x 2-(-x 1)=x 224-x 214x 1+x 2=x 2-x 14,于是直线A ′B 的方程为y -x 224=x 2-x 14(x -x 2),所以y =x 2-x 14(x -x 2)+x 224=x 2-x 14x +1,当x =0时,y =1,所以直线A ′B 过定点(0,1).3.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ 至点M ,使PQ →=12QM →,且PR →·PM →=0.(1)求动点M 的轨迹C 1;(2)圆C 2:x 2+(y -1)2=1,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB →·CD →为定值.(1)解 方法一 设M (x ,y ),P (x 1,0),Q (0,y 2), 则由PR →·PM →=0,PQ →=12QM →及R (0,-3),得⎩⎪⎨⎪⎧-x 1(x -x 1)+(-3)y =0,-x 1=12x ,y 2=12y -12y 2,化简得x 2=4y .所以动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. 方法二 设M (x ,y ).由PQ →=12QM →,得P ⎝ ⎛⎭⎪⎫-x 2,0,Q ⎝ ⎛⎭⎪⎫0,y 3.所以PR →=⎝ ⎛⎭⎪⎫x 2,-3,PM →=⎝ ⎛⎭⎪⎫3x 2,y . 由PR →·PM →=0,得⎝ ⎛⎭⎪⎫x 2,-3·⎝ ⎛⎭⎪⎫3x 2,y =0,即34x 2-3y =0,化简得x 2=4y . 所以动点M 的轨迹C 1是顶点在原点,开口向上的抛物线.(2)证明 由题意,得AB →·CD →=AB ·CD ,⊙C 2的圆心即为抛物线C 1的焦点F . 设A (x 1,y 1),D (x 2,y 2),则AB =FA -FB =y 1+1-1=y 1. 同理CD =y 2.直线l 的斜率显然存在,设直线l 的方程为y =kx +1, 联立⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0,所以x 1,2=4k ±16k 2+162,所以x 1+x 2=4k ,x 1·x 2=-4, 所以AB →·CD →=AB ·CD =y 1y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1 =-4k 2+4k 2+1=1, 所以AB →·CD →为定值1.4.如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA →·TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解 (1)因为抛物线y 2=4x 的焦点为F (1,0),T (-1,0),当l ⊥x 轴时,A (1,2),B (1,-2), 此时TA →·TB →=0,与TA →·TB →=1矛盾, 所以可设直线l 的方程为y =k (x -1), 代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, x 1,2=2k 2+4±(2k 2+4)2-4k 42k 2, 则x 1+x 2=2k 2+4k2,x 1x 2=1,①故y 21y 22=16x 1x 2=16,y 1y 2=-4.②因为TA →·TB →=1,所以(x 1+1)(x 2+1)+y 1y 2=1, 将①②代入并整理,得k 2=4,所以k =±2. (2)因为y 1>0, 所以tan∠ATF =y 1x 1+1=y 1y 214+1=1y 14+1y 1≤1, 当且仅当y 14=1y 1,即y 1=2时取等号,因为点A 在第一象限, 所以∠ATF 的最大值为π4.(七)计数原理1.已知等式(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10,其中a i (i =0,1,2,…,10)为实常数.求:(1)∑n =110a n 的值;(2)∑n =110na n 的值.解 (1)在(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10中, 令x =-1,得a 0=1.令x =0,得a 0+a 1+a 2+…+a 9+a 10=25=32.所以∑n =110a n =a 1+a 2+…+a 10=31.(2)等式(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10两边对x 求导, 得5(x 2+2x +2)4·(2x +2)=a 1+2a 2(x +1)+…+9a 9(x +1)8+10a 10(x +1)9. 在5(x 2+2x +2)4·(2x +2)=a 1+2a 2(x +1)+…+9a 9(x +1)8+10a 10(x +1)9中,令x =0,整理得∑n =110na n =a 1+2a 2+…+9a 9+10a 10=5·25=160.2.设等差数列{a n }的首项为1,公差为d (d ∈N *),m 为数列{a n }中的项. (1)若d =3,试判断⎝⎛⎭⎪⎫x +1x m的展开式中是否含有常数项?并说明理由;(2)证明:存在无穷多个d ,使得对每一个m ,⎝⎛⎭⎪⎫x +1x m的展开式中均不含常数项.(1)解 因为{a n }是首项为1,公差为3的等差数列, 所以a n =3n -2. 假设⎝⎛⎭⎪⎫x +1x m的展开式中第r +1项为常数项(r ∈N ),T r +1=C r mx m -r⎝ ⎛⎭⎪⎫1x r =32C m r rm x -,于是m -32r =0.设m =3n -2(n ∈N *),则有3n -2=32r ,即r =2n -43,这与r ∈N 矛盾.所以假设不成立,即⎝⎛⎭⎪⎫x +1x m的展开式中不含常数项.(2)证明 由题设知a n =1+(n -1)d , 设m =1+(n -1)d ,由(1)知,要使对于每一个m ,⎝⎛⎭⎪⎫x +1x m的展开式中均不含常数项,必须有:对于n ∈N *,满足1+(n -1)d -32r =0的r 无自然数解,即r =2d 3(n -1)+23∉N .当d =3k (k ∈N *)时,r =2d 3(n -1)+23=2k (n -1)+23∉N .故存在无穷多个d ,满足对每一个m ,⎝⎛⎭⎪⎫x +1x m的展开式中均不含常数项.3.已知f (x )=(2+x )n ,其中n ∈N *.(1)若展开式中含x 3项的系数为14,求n 的值;(2)当x =3时,求证:f (x )必可表示成s +s -1(s ∈N *)的形式. (1)解 因为T r +1=C r n2n -rx 2r ,当r2=3时,r =6,故x 3项的系数为C 6n 2n -6=14,解得n =7.(2)证明 由二项式定理可知, (2+3)n=C 0n 2n(3)0+C 1n 2n -1(3)1+C 2n 2n -2(3)2+…+C n n 20(3)n,设(2+3)n =p +3q =p 2+3q 2,p ,q ∈N *, 而若有(2+3)n =a +b ,a ,b ∈N *, 则(2-3)n =a -b ,a ,b ∈N *.∵(a +b )·(a -b )=(2+3)n ·(2-3)n=1, ∴a -b =1,令a =s ,s ∈N *,得b =s -1,∴(2+3)n 必可表示成s +s -1的形式,其中s ∈N *. 4.设n ∈N *,n ≥3,k ∈N *. (1)求值:①k C k n -n C k -1n -1;②k 2C kn -n (n -1)C k -2n -2-n C k -1n -1(k ≥2);(2)化简:12C 0n +22C 1n +32C 2n +…+(k +1)2C kn +…+(n +1)2C nn . 解 (1)①k C kn -n C k -1n -1=k ×n !k !(n -k )!-n ×(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!-n !(k -1)!(n -k )!=0. ②k 2C kn -n (n -1)C k -2n -2-n C k -1n -1 =k 2×n !k !(n -k )!-n (n -1)×(n -2)!(k -2)!(n -k )!-n ×(n -1)!(k -1)!(n -k )!=k ×n !(k -1)!(n -k )!-n !(k -2)!(n -k )!-n !(k -1)!(n -k )!=n !(k -2)!(n -k )!⎝ ⎛⎭⎪⎫k k -1-1-1k -1=0.(2)由(1)可知当k ≥2时,(k +1)2C kn =(k 2+2k +1)C k n =k 2C k n +2k C k n +C kn =[n (n -1)C k -2n -2+n C k -1n -1]+2n C k -1n -1+C kn =n (n -1)C k -2n -2+3n C k -1n -1+C kn .故12C 0n +22C 1n +32C 2n +…+(k +1)2C kn +…+(n +1)2C nn=(12C 0n +22C 1n )+n (n -1)(C 0n -2+C 1n -2+…+C n -2n -2)+3n (C 1n -1+C 2n -1+…+C n -1n -1)+(C 2n +C 3n +…+C nn )=(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n-1-n )=2n -2(n 2+5n +4).(八)随机变量及其概率分布1.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望E (X ).解 (1)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为C 2nC 29,由题意知C 2n C 29=512,化简得n 2-n -30=0,解得n =6或n =-5(舍去),故袋中原有白球的个数为6. (2)由题意,X 的可能取值为1,2,3,4.P (X =1)=69=23,P (X =2)=3×69×8=14, P (X =3)=3×2×69×8×7=114,P (X =4)=3×2×1×69×8×7×6=184.所以取球次数X 的概率分布为所求数学期望E (X )=1×23+2×14+3×114+4×184=107.2.某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比武活动中每人射击两发子弹则完成一次检测.在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率;(2)在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值范围.解 (1)所求概率P =⎝⎛⎭⎪⎫C 12·23·13⎝ ⎛⎭⎪⎫C 12·12·12+⎝ ⎛⎭⎪⎫23·23⎝ ⎛⎭⎪⎫12·12=13.(2)该小组在一次检测中荣获“先进和谐组”的概率为P =⎝⎛⎭⎪⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝⎛⎭⎪⎫23·23P 22=89P 2-49P 22. 而ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝ ⎛⎭⎪⎫89P 2-49P 22·12≥5,解得34≤P 2≤54.又0≤P 2≤1,∴34≤P 2≤1.3.(2018·南通调研)从集合{1,2,3,4,5}的所有非空子集中,等可能地取出m 个. (1)若m =1,求所取子集的元素既有奇数又有偶数的概率;(2)若m =2,记所取子集的元素个数之差的绝对值为ξ,求ξ的概率分布及数学期望E (ξ). 解 (1)当m =1时,记事件A :“所取子集的元素既有奇数又有偶数”.则集合{1,2,3,4,5}的非空子集数为25-1=31,其中非空子集的元素全为奇数的子集数为23-1=7,全为偶数的子集数为22-1=3, 所以P (A )=31-(7+3)31=2131.(2)当m =2时,ξ的所有可能取值为0,1,2,3,4, 则P (ξ=0)=C 2C 15+C 2C 25+C 2C 35+C 2C 45C 231=110465=2293, P (ξ=1)=C 15C 25+C 25C 35+C 35C 45+C 45C 55C 231=205465=4193, P (ξ=2)=C 15C 35+C 25C 45+C 35C 55C 231=110465=2293,P (ξ=3)=C 15C 45+C 25C 55C 231=35465=793, P (ξ=4)=C 15C 55C 231=5465=193,所以ξ的概率分布为所以ξ的数学期望E (ξ)=0×2293+1×4193+2×2293+3×793+4×193=11093.4.(2018·启东模拟)如图,已知正六棱锥S -ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ).解 (1)从7个顶点中随机选取3个点构成三角形,共有C 37=35(种)取法.其中X =3的三角形如△ABF ,这类三角形共有6个. 因此P (X =3)=6C 37=635.(2)由题意知,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935,P (X =6)=635,P (X =23)=1235,P (X =33)=235.所以随机变量X 的概率分布为所求数学期望E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835. (九)数学归纳法1.已知数列{a n }满足:a 1=2a -2,a n +1=aa n -1+1(n ∈N *). (1)若a =-1,求数列{a n }的通项公式;(2)若a =3,试证明:对∀n ∈N *,a n 是4的倍数. (1)解 当a =-1时,a 1=-4,a n +1=(-1)a n -1+1. 令b n =a n -1,则b 1=-5,b n +1=(-1)b n . ∵b 1=-5为奇数,∴当n ≥2时,b n 也是奇数且只能为-1,∴b n =⎩⎪⎨⎪⎧-5,n =1,-1,n ≥2,即a n =⎩⎪⎨⎪⎧-4,n =1,0,n ≥2.(2)证明 当a =3时,a 1=4,a n +1=3a n -1+1. 下面利用数学归纳法来证明:a n 是4的倍数. 当n =1时,a 1=4=4×1,命题成立; 设当n =k (k ∈N *)时,命题成立, 则存在t ∈N *,使得a k =4t , ∴a k +1=3a k -1+1=34t -1+1=27·(4-1)4(t -1)+1=27·(4m +1)+1=4(27m +7), 其中,4m =44(t -1)-C 14(t -1)·44t -5+…-(-1)r C r 4(t -1)·44t -4-r+…-C 4t -54(t -1)·4,∴m ∈Z ,∴当n =k +1时,命题成立.由数学归纳法知,对∀n ∈N *,a n 是4的倍数成立. 2.已知数列{a n }满足a n +1=12a 2n -12na n +1(n ∈N *),且a 1=3.(1)计算a 2,a 3,a 4的值,由此猜想数列{a n }的通项公式,并给出证明; (2)求证:当n ≥2时,a n n ≥4n n.(1)解 a 2=4,a 3=5,a 4=6,猜想:a n =n +2(n ∈N *). ①当n =1时,a 1=3,结论成立;②假设当n =k (k ≥1,k ∈N *)时,结论成立,即a k =k +2,则当n =k +1时,a k +1=12a 2k -12ka k +1=12(k +2)2-12k (k +2)+1=k +3=(k +1)+2,即当n =k +1时,结论也成立.由①②,得数列{a n }的通项公式为a n =n +2(n ∈N *).(2)证明 原不等式等价于⎝⎛⎭⎪⎫1+2n n≥4.显然,当n =2时,等号成立.当n >2时,⎝ ⎛⎭⎪⎫1+2n n =C 0n +C 1n 2n+C 2n ⎝ ⎛⎭⎪⎫2n 2+…+C n n ⎝ ⎛⎭⎪⎫2n n >C 0n +C 1n 2n+C 2n ⎝ ⎛⎭⎪⎫2n 2=5-2n>4.综上所述,当n ≥2时,a n n ≥4n n.3.已知函数f (x )=ln(2-x )+ax 在区间(0,1)上是增函数. (1)求实数a 的取值范围;(2)若数列{a n }满足a 1∈(0,1),a n +1=ln(2-a n )+a n ,n ∈N *,证明:0<a n <a n +1<1. (1)解 ∵函数f (x )=ln(2-x )+ax 在区间(0,1)上是增函数, ∴f ′(x )=-12-x +a ≥0在区间(0,1)上恒成立,∴a ≥12-x.又g (x )=12-x在区间(0,1)上是增函数,∴a ≥g (1)=1,即实数a 的取值范围为[1,+∞). (2)证明 先用数学归纳法证明0<a n <1. 当n =1时,a 1∈(0,1)成立. 假设当n =k (k ∈N *)时,0<a k <1成立.当n =k +1时,由(1)知当a =1时,函数f (x )=ln(2-x )+x 在区间(0,1)上是增函数, ∴a k +1=f (a k )=ln(2-a k )+a k , ∴0<ln 2=f (0)<f (a k )<f (1)=1, 即0<a k +1<1成立,∴当n ∈N *时,0<a n <1成立. 下证a n <a n +1.∵0<a n <1,∴a n +1-a n =ln(2-a n )>ln 1=0, ∴a n <a n +1. 综上0<a n <a n +1<1.4.设f (k )是满足不等式log 2x +log 2(3·2k -1-x )≥2k -1(k ∈N *)的正整数x 的个数.(1)求f (k )的解析式;(2)记S n =f (1)+f (2)+…+f (n ),P n =n 2+n -1(n ∈N *),试比较S n 与P n 的大小.解 (1)∵log 2x +log 2(3·2k -1-x )≥2k -1(k ∈N *),∴⎩⎪⎨⎪⎧x >0,3·2k -1-x >0,x (3·2k -1-x )≥22k -1,解得2k -1≤x ≤2k,∴f (k )=2k -2k -1+1=2k -1+1.(2)∵S n =f (1)+f (2)+…+f (n ) =1+2+22+…+2n -1+n =2n+n -1,∴S n -P n =2n -n 2.当n =1时,S 1-P 1=2-1=1>0; 当n =2时,S 2-P 2=4-4=0; 当n =3时,S 3-P 3=8-9=-1<0; 当n =4时,S 4-P 4=16-16=0; 当n =5时,S 5-P 5=32-25=7>0; 当n =6时,S 6-P 6=64-36=28>0. 猜想:当n ≥5时,S n -P n >0. 证明如下:①当n =5时,由上述可知S n -P n >0.②假设当n =k (k ≥5,k ∈N *)时,S k -P k =2k -k 2>0. 当n =k +1时,S k +1-P k +1=2k +1-(k +1)2=2·2k-k 2-2k -1=2(2k-k 2)+k 2-2k -1 =2(S k -P k )+k 2-2k -1>k 2-2k -1 =k (k -2)-1≥5×(5-2)-1=14>0. ∴当n =k +1时,S k +1-P k +1>0成立.由①②可知,当n ≥5时,S n -P n >0成立,即S n >P n 成立.由上述分析可知,当n =1或n ≥5时,S n >P n ;当n =2或n =4时,S n =P n ;当n =3时,S n <P n .。
附加题专项训练 (矩阵)1. 矩阵A= ⎥⎦⎤⎢⎣⎡2312的逆矩阵。
2. 用逆矩阵知识解方程组⎩⎨⎧=-+=-+0320132y x y x 。
3. 已知2141,4331M N --⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,求二阶方阵X ,使MX=N 。
4. 已知矩阵⎥⎦⎤⎢⎣⎡=1232M ,求矩阵M 的特征值和对应的一个特征向量。
5. 设a ,b ∈R ,若矩阵A=⎥⎦⎤⎢⎣⎡-b a 01把直线l :2x +y –7=0变换为另一直线l ':9x +y –91=0,试求a ,b 的值.6. 给定矩阵M=⎥⎥⎥⎥⎦⎤-⎢⎢⎢⎢⎣⎡-32313132,N=⎥⎦⎤⎢⎣⎡2112及向量1e =⎥⎦⎤⎢⎣⎡11,2e =⎥⎦⎤⎢⎣⎡-11。
(1)证明M 和N 互为逆矩阵; (2)证明1e 和2e 都是M 的特征向量.7. 已知二阶矩阵A 有特征值31=λ及其对应的一个特征向量⎥⎦⎤⎢⎣⎡=111α,特征值12-=λ及其对应的一个特征向量⎥⎦⎤⎢⎣⎡-=112α,求矩阵A 的逆矩阵1A -.8. 若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.9. 求圆C :224x y +=在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的曲线方程,并判断曲线的类型.10. 设矩阵M 对应的变换是把坐标平面上的点的横坐标伸长3倍,再将纵坐标伸长2倍的两个伸压变换的复合,求其逆矩阵1M -以及圆221x y +=在1M-的作用下的新曲线的方程.11. 如图所示, 四边形ABCD 和四边形AB C D ''分别是矩形和平行四边形,其中点的坐标分别为A (-1,2),B (3,2),C (3,-2),D (-1,-2),B '(3,7),C '(3,3).求将四边形ABCD 变成四边形AB C D ''的变换矩阵M .12.已知二阶矩阵M 的特征值是11λ=,22λ=,属于1λ的一个特征向量是111⎡⎤=⎢⎥⎣⎦e ,属于2λ的一个特征向量是12-⎡⎤=⎢⎥⎣⎦2e ,点A 对应的列向量是14⎡⎤=⎢⎥⎣⎦a 。
江苏高考数学3个附加题综合仿真训练(1)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 11 3,B =⎣⎢⎡⎦⎥⎤1 10 -1.求矩阵C ,使得AC =B .B .[选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心在极轴上,且过极点和点⎝⎛⎭⎫32,π4,求圆C 的极坐标方程.C .[选修4-5:不等式选讲]已知x ,y ,z 为不全相等的正数.求证:x yz +y zx +z xy >1x +1y +1z.2.在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S ,且OP ―→·ST ―→=0.设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M ,直线l 与x 轴的交点为N .求证:向量SM ―→与NQ ―→共线.3.一条直路上依次有2n +1棵树,分别为T 1,T 2,…,T 2n +1(n 为给定的正整数),一个醉汉从中间位置的树T n +1出发,并按以下规律在这些树之间随机游走n 分钟:当他某一分钟末在树T i (2≤i ≤2n )位置时,下一分钟末他分别有14,12,14的概率到达T i -1,T i ,T i +1的位置.(1)求该醉汉第n 分钟末处在树T i (1≤i ≤2n +1)位置的概率; (2)设相邻2棵树之间的距离为1个单位长度,试求该醉汉第n 分钟末所在位置与起始位置(即树T n +1)之间的距离的数学期望(用关于n 的最简形式表示).江苏高考数学3个附加题综合仿真训练(1)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 11 3,B =⎣⎢⎡⎦⎥⎤1 10 -1.求矩阵C ,使得AC =B . 解:因为⎪⎪⎪⎪⎪⎪2 11 3=2×3-1×1=5, 所以A -1=⎣⎢⎡⎦⎥⎤35 -15-15 25,又AC =B ,所以C =A -1B =⎣⎢⎡⎦⎥⎤ 35 -15-15 25⎣⎢⎡⎦⎥⎤1 10 -1=⎣⎢⎡⎦⎥⎤35 45-15-35.B .[选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心在极轴上,且过极点和点⎝⎛⎭⎫32,π4,求圆C 的极坐标方程. 解:法一:因为圆心C 在极轴上且过极点, 所以设圆C 的极坐标方程为ρ=a cos θ,又因为点⎝⎛⎭⎫32,π4在圆C 上, 所以32=a cos π4,解得a =6.所以圆C 的极坐标方程为ρ=6cos θ.法二:点⎝⎛⎭⎫32,π4的直角坐标为(3,3), 因为圆C 过点(0,0),(3,3),所以圆心C 在直线为x +y -3=0上. 又圆心C 在极轴上,所以圆C 的直角坐标方程为(x -3)2+y 2=9. 所以圆C 的极坐标方程为ρ=6cos θ. C .[选修4-5:不等式选讲]已知x ,y ,z 为不全相等的正数.求证:x yz +y zx +z xy >1x +1y +1z.证明:因为x ,y ,z 都是正数,所以x yz +y zx =1z ⎝⎛⎭⎫x y +y x ≥2z. 同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y ,将上述三个不等式两边分别相加,并除以2,得x yz +y zx +z xy ≥1x +1y +1z. 由于x ,y ,z 不全相等,因此上述三个不等式中等号至少有一个取不到,所以x yz +y zx +z xy >1x +1y +1z.2.在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S ,且OP ―→·ST ―→=0.设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M ,直线l 与x 轴的交点为N .求证:向量SM ―→与NQ ―→共线. 解:(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ).因为T (3,0),所以OP ―→=(x ,y ),ST ―→=(4,-y ).因为OP ―→·ST ―→=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x .(2)证明:因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1,P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.所以y 1+y 2=4m ,y 1y 2=-4.因为M 为线段PQ 的中点,所以M 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,即M (2m 2+1,2m ). 又因为S (-1,y 1),N (-1,0),所以SM ―→=(2m 2+2,2m -y 1),NQ ―→=(x 2+1,y 2)=(my 2+2,y 2).因为(2m 2+2)y 2-(2m -y 1)(my 2+2)=(2m 2+2)y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0.所以向量SM ―→与NQ ―→共线.3.一条直路上依次有2n +1棵树,分别为T 1,T 2,…,T 2n +1(n 为给定的正整数),一个醉汉从中间位置的树T n +1出发,并按以下规律在这些树之间随机游走n 分钟:当他某一分钟末在树T i (2≤i ≤2n )位置时,下一分钟末他分别有14,12,14的概率到达T i -1,T i ,T i +1的位置.(1)求该醉汉第n 分钟末处在树T i (1≤i ≤2n +1)位置的概率; (2)设相邻2棵树之间的距离为1个单位长度,试求该醉汉第n 分钟末所在位置与起始位置(即树T n +1)之间的距离的数学期望(用关于n 的最简形式表示).解:(1)不妨假设2n +1棵树T 1,T 2,…,T 2n +1从左向右排列,每2棵树的间距为1个单位长度.因为该醉汉下一分钟末分别有14,12,14的概率到达T i -1,T i ,T i +1的位置,所以该醉汉将以12的概率向左或向右走.我们规定,事件“以12的概率向左或向右走0.5个单位长度”为一次“随机游走”,故原问题等价于求该醉汉从树T n +1位置出发,经过2n 次随机游走后处在树T i 位置的概率为P i .对某个i (1≤i ≤2n +1),设从T n +1出发,经过2n 次随机游走到达T i 的全过程中,向右走0.5个单位长度和向左走0.5个单位长度分别有k 次和2n -k 次,则n +1+k -(2n -k )2=i ,解得k =i -1,即在2n 次中有i -1次向右游走,2n -(i -1)次向左游走,而这样的情形共C i -12n 种,故所求的概率P i =C i -12n 22n (1≤i ≤2n +1).(2)对i =1,2,…,2n +1,树T i 与T n +1相距|n +1-i |个单位长度,而该醉汉到树T i 的概率为P i ,故所求的数学期望E =∑i =12n +1|n +1-i |C i -12n 22n .而∑i =12n +1|n +1-i |C i -12n =∑j =02n|n -j |C j 2n=2∑j =0n(n -j )C j 2n =2∑j =0n n C j2n -2∑j =0nj C j 2n =2n ∑j =0nC j 2n -2∑j =1n2n C j -12n -1=2n ×12(C n 2n +∑j =02n C j2n )-4n ∑j =0n -1C j 2n -1=n (C n 2n +22n)-4n ×12∑j =02n -1C j 2n -1=n (C n 2n +22n)-2n ·22n -1=n C n 2n ,因此E =n C n2n 22n .江苏高考数学3个附加题综合仿真训练(2)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知变换T 将平面上的点⎝⎛⎭⎫1,12,(0,1)分别变换为点⎝⎛⎭⎫94,-2,⎝⎛⎭⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值.B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l :2ρsin ⎝⎛⎭⎫θ-π4=m (m ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).当圆心C 到直线l 的距离为2时,求m 的值.C .[选修4-5:不等式选讲]已知x ,y ,z 都是正数且xyz =8,求证:(2+x )(2+y )·(2+z )≥64.2.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,A 1E =CF =1.(1)求两条异面直线AC 1与BE 所成角的余弦值; (2)求直线BB 1与平面BED 1F 所成角的正弦值.3.对于给定的大于1的正整数n ,设x =a 0+a 1n +a 2n 2+…+a n n n ,其中a i ∈{0,1,2,…,n -1},i =0,1,2,…,n -1,n ,且a n ≠0,记满足条件的所有x 的和为A n . (1)求A 2;(2)设A n =n n (n -1)f (n )2,求f (n ).江苏高考数学3个附加题综合仿真训练(2)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知变换T 将平面上的点⎝⎛⎭⎫1,12,(0,1)分别变换为点⎝⎛⎭⎫94,-2,⎝⎛⎭⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值.解:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 112=⎣⎢⎢⎡⎦⎥⎥⎤94-2,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324,即⎩⎪⎨⎪⎧a +12b =94,c +12d =-2,b =-32,d =4,解得⎩⎪⎨⎪⎧a =3,b =-32,c =-4,d =4,则M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-44. (2)设矩阵M 的特征多项式为f (λ),可得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 324 λ-4=(λ-3)(λ-4)-6=λ2-7λ+6, 令f (λ)=0,可得λ=1或λ=6.B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l :2ρsin ⎝⎛⎭⎫θ-π4=m (m ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).当圆心C 到直线l 的距离为2时,求m 的值.解:由2ρsin ⎝⎛⎭⎫θ-π4=m , 得2ρsin θcos π4-2ρcos θsin π4=m ,即x -y +m =0,即直线l 的直角坐标方程为x -y +m =0, 圆C 的普通方程为(x -1)2+(y +2)2=9,圆心C 到直线l 的距离d =|1-(-2)+m |2=2,解得m =-1或m =-5.C .[选修4-5:不等式选讲]已知x ,y ,z 都是正数且xyz =8,求证:(2+x )(2+y )·(2+z )≥64. 证明:因为x 为正数,所以2+x ≥22x . 同理2+y ≥22y ,2+z ≥22z . 所以(2+x )( 2+y )( 2+z )≥22x ·22y ·22z =88xyz . 因为xyz =8,所以(2+x )(2+y )(2+z )≥64. 2.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,A 1E =CF =1.(1)求两条异面直线AC 1与BE 所成角的余弦值; (2)求直线BB 1与平面BED 1F 所成角的正弦值.解:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz ,如图所示,则A (3,0,0),C 1(0,3,3),B (3,3,0),E (3,0,2),AC 1―→=(-3,3,3),BE ―→=(0,-3,2),所以cos 〈AC 1―→,BE ―→〉=AC 1―→·BE ―→|AC 1―→||BE ―→|=-9+633×13=-3939,故两条异面直线AC 1与BE 所成角的余弦值为3939. (2)由(1)知BE ―→=(0,-3,2),又D 1(0,0,3),B 1(3,3,3),所以D 1E ―→=(3,0,-1),BB 1―→=(0,0,3). 设平面BED 1F 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·BE ―→=0,即⎩⎪⎨⎪⎧3x -z =0,-3y +2z =0,令x =1,得y =2,z =3,n =(1,2,3)是平面BED 1F 的一个法向量.设直线BB 1与平面BED 1F 所成的角为α,则sin α=||cos 〈BB 1―→,n 〉=93×14=31414,所以直线BB 1与平面BED 1F 所成角的正弦值为31414.3.对于给定的大于1的正整数n ,设x =a 0+a 1n +a 2n 2+…+a n n n ,其中a i ∈{0,1,2,…,n -1},i =0,1,2,…,n -1,n ,且a n ≠0,记满足条件的所有x 的和为A n . (1)求A 2;(2)设A n =n n (n -1)f (n )2,求f (n ).解:(1)当n =2时,x =a 0+2a 1+4a 2,a 0∈{0,1},a 1∈{0,1},a 2=1, 故满足条件的x 共有4个,分别为x =0+0+4,x =0+2+4,x =1+0+4,x =1+2+4,它们的和是22,所以A 2=22. (2)由题意得,a 0,a 1,a 2,…,a n -1各有n 种取法;a n 有n -1种取法, 由分步计数原理可得a 0,a 1,a 2…,a n -1,a n 的不同取法共有n ·n ·…·n ·(n -1)=n n (n -1), 即满足条件的x 共有n n (n -1)个,当a 0分别取0,1,2,…,n -1时,a 1,a 2,…,a n -1各有n 种取法,a n 有n -1种取法,故A n 中所有含a 0项的和为(0+1+2+…+n -1)·n n -1(n -1)=n n (n -1)22;同理,A n 中所有含a 1项的和为(0+1+2+…+n -1)·n n -1(n -1)·n =n n (n -1)22·n ;A n 中所有含a 2项的和为(0+1+2+…+n -1)·n n -1(n -1)·n 2=n n (n -1)22·n 2;A n 中所有含a n -1项的和为(0+1+2+…+n -1)·n n -1(n -1)·n n -1=n n (n -1)22·n n -1;当a n 分别取i =1,2,…,n -1时,a 0,a 1,a 2,…,a n -1各有n 种取法,故A n 中所有含a n 项的和为(1+2+…+n -1)n n ·n n =n n +1(n -1)2·n n . 所以A n =n n (n -1)22(1+n +n 2+…+n n -1)+n n +1(n -1)2·n n=n n (n -1)22·n n -1n -1+n n +1(n -1)2·n n=n n (n -1)2(n n +1+n n -1),故f (n )=n n +1+n n -1.江苏高考数学3个附加题综合仿真训练(3)1.本题包括A 、B 、C 三个小题,请任选二个作答A .[选修4-2:矩阵与变换]设a ,b ∈R .若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0.求实数a ,b 的值.∴实数a ,b 的值分别为2,13.B .[选修4-4:坐标系与参数方程]以坐标原点为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线l :⎩⎪⎨⎪⎧x =1+2t ,y =1-2t (t 为参数)与圆C :ρ2+2ρcos θ-2ρsin θ=0的位置关系. 解:把直线l 的参数方程化为普通方程为x +y =2.C .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a >a b .2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望.3.设P (n ,m )= k =0n (-1)k C k n m m +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *. (1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.江苏高考数学3个附加题综合仿真训练(3)1.本题包括A 、B 、C 三个小题,请任选二个作答A .[选修4-2:矩阵与变换]设a ,b ∈R .若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b (7-a )-1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧ 7b -91=0,27+b (7-a )-1-91=0,解得⎩⎪⎨⎪⎧ a =2,b =13, ∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′), 则⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧ x ′=3x ,y ′=-x +by , 由Q (x ′,y ′)在直线l ′:9x +y -91=0上,∴27x +(-x +by )-91=0,即26x +by -91=0,∵点P 在ax +y -7=0上,∴26a =b 1=-91-7, 解得a =2,b =13.∴实数a ,b 的值分别为2,13.B .[选修4-4:坐标系与参数方程]以坐标原点为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线l :⎩⎪⎨⎪⎧x =1+2t ,y =1-2t (t 为参数)与圆C :ρ2+2ρcos θ-2ρsin θ=0的位置关系. 解:把直线l 的参数方程化为普通方程为x +y =2.将圆C 的极坐标方程ρ2+2ρcos θ-2ρsin θ=0化为直角坐标方程为x 2+2x +y 2-2y =0, 即(x +1)2+(y -1)2=2.所以圆心C (-1,1)到直线l 的距离d =22=2, 所以直线l 与圆C 相切.C .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a >a b .证明:∵b a >0,a b >0,∴要证b a >a b ,只要证a ln b >b ln a,只要证ln b b >ln a a, 构造函数f (x )=ln x x,x ∈(e ,+∞). 则f ′(x )=1-ln x x 2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立, 所以函数f (x )在x ∈(e ,+∞)上是单调递减的,所以当a >b >e 时,有f (b )>f (a ),即ln b b >ln a a,故b a >a b 得证. 2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望.解:(1)记“X 是奇数”为事件A ,能组成的三位数的个数是4×4×3=48.X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712. 故X 是奇数的概率为712. (2)X 的可能取值为3,4,5,6,7,8,9.当X =3时,组成的三位数是由0,1,2三个数字组成,所以P (X =3)=448=112; 当X =4时,组成的三位数是由0,1,3三个数字组成,所以P (X =4)=448=112; 当X =5时,组成的三位数是由0,1,4或0,2,3组成,所以P (X =5)=848=16; 当X =6时,组成的三位数是由0,2,4或1,2,3组成,所以P (X =6)=1048=524; 当X =7时,组成的三位数是由0,3,4或1,2,4组成,所以P (X =7)=1048=524; 当X =8时,组成的三位数是由1,3,4三个数字组成,所以P (X =8)=648=18; 当X =9时,组成的三位数是由2,3,4三个数字组成,所以P (X =9)=648=18. 所以X 故E (X )=3×112+4×112+5×16+6×524+7×524+8×18+9×18=254. 3.设P (n ,m )=∑k =0n (-1)k C k n m m +k ,Q (n ,m )=C n n +m ,其中m ,n ∈N *. (1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)k C k n 11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明:P (n ,m )=∑k =0n(-1)k C k n m m +k =1+∑k =1n -1 (-1)k (C k n -1+C k -1n -1)m m +k +(-1)n m m +n =1+∑k =1n -1 (-1)k C k n -1m m +k +∑k =1n (-1)k C k -1n -1m m +k =P (n -1,m )+∑k =1n (-1)k C k -1n -1m m +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ) 即P (n ,m )=n m +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !(n +m )!P (0,m )=1C n n +m, 又Q (n ,m )=C n n +m ,所以P (n ,m )·Q (n ,m )=1.江苏高考数学3个附加题综合仿真训练(4)1.本题包括A 、B 、C 三个小题,请任选二个作答A .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 x y 2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R . (1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧ x =1-22t ,y =2+22t (t 为参数),以坐标原点O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,C .[选修4-5:不等式选讲]已知a ,b ,c ∈R ,a 2+b 2+c 2=1,若|x -1|+|x +1|≥(a -b +c )2对任意的实数a ,b ,c 恒成立,求实数x 的取值范围.2.如图,在直三棱柱ABC-AB1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是线段BC的中点.(1)求直线DB1与平面A1C1D所成角的正弦值;3.已知集合X={1,2,3},Y n={1,2,3,…,n}(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,b∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.江苏高考数学3个附加题综合仿真训练(4)1.本题包括A 、B 、C 三个小题,请任选二个作答A .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 x y 2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R . (1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1. 解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y . 因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2, 解得x =3,y =0.(2)由(1)知A =⎣⎢⎡⎦⎥⎤2 30 2 ,又B =⎣⎢⎡⎦⎥⎤1 -10 2 , 所以AB =⎣⎢⎡⎦⎥⎤2 30 2⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 40 4 . 设(AB )-1= ⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 00 1. 所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14, 即 (AB )-1= ⎣⎢⎡⎦⎥⎤12 -12 0 14 . B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧ x =1-22t ,y =2+22t (t 为参数),以坐标原点O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x . 将直线l 的参数方程⎩⎨⎧ x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.C .[选修4-5:不等式选讲]已知a ,b ,c ∈R ,a 2+b 2+c 2=1,若|x -1|+|x +1|≥(a -b +c )2对任意的实数a ,b ,c 恒成立,求实数x 的取值范围.解:因为a ,b ,c ∈R ,a 2+b 2+c 2=1,所以由柯西不等式得(a -b +c )2≤(a 2+b 2+c 2)·[12+(-1)2+12]=3,因为|x -1|+|x +1|≥(a -b +c )2对任意的实数a ,b ,c 恒成立,所以|x -1|+|x +1|≥3.当x <-1时,-2x ≥3,即x ≤-32; 当-1≤x ≤1时,2≥3不成立;当x >1时,2x ≥3,即x ≥32. 综上,实数x 的取值范围为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.2.如图,在直三棱柱ABC -A1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值;(2)求二面角B 1-A 1D -C 1的余弦值.解:因为在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC ,AA 1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),因为D 是BC 的中点,所以D (1,2,0),(1)因为A 1C 1―→=(0,4,0),A 1D ―→=(1,2,-3),设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·A 1C 1―→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0, 取⎩⎪⎨⎪⎧ x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535, 所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535. (2) A 1B 1―→=(2,0,0),DB 1―→=(1,-2,3),设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n 2·A 1B 1―→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065, 故结合图象知二面角B 1-A 1D -C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6. 所以f (6)=13.(2)当n ≥6时, f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧ n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明: ①当n =6时,f (6)=6+2+62+63=13,结论成立. ②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3 =(k +1)+2+k +12+k +13,结论成立; b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1 =(k +1)+2+(k +1)-12+(k +1)-13,结论成立; c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2 =(k +1)+2+k +12+(k +1)-23,结论成立; d .若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.江苏高考数学3个附加题综合仿真训练(5)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.C .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.2.如图,在三棱柱ABC -A 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n=⎝⎛⎭⎫a +b 2n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.江苏高考数学3个附加题综合仿真训练(5)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量,所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1. B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x .将直线⎩⎨⎧ x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42,所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝⎛⎭⎫92-122+(6-2)2=4 2. C .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x )=3x +6+14-x =3×x +2+1×14-x ,由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在三棱柱ABC -A 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.解:(1)以A 为坐标原点,AC ,AB 所在直线为x 轴,y 轴,过A 平行于A 1B 的直线为z 轴,建立如图所示的空间直角坐标系,则C (2,0,0),B (0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1―→=(0,2,2),BC ―→=B 1C 1―→=(2,-2,0).所以cos 〈AA 1―→,BC ―→〉=AA 1―→·BC ―→|AA 1―→|·|BC ―→|=-48×8=-12,故棱AA 1与BC 所成的角是π3.(2)设B 1P ―→=λB 1C 1―→=(2λ,-2λ,0),则P (2λ,4-2λ,2). 设平面P AB 的一个法向量为n 1=(x ,y ,z ), 又AP ―→=(2λ,4-2λ,2),AB ―→=(0,2,0),则⎩⎪⎨⎪⎧n 1·AP ―→=0,n 1·AB ―→=0即⎩⎪⎨⎪⎧2λx +(4-2λ)y +2z =0,2y =0,令x =1,得平面P AB 的一个法向量n 1=(1,0,-λ). 易知平面ABA 1的一个法向量是n 2=(1,0,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=11+λ2=255,解得λ=12,即P 为棱B 1C 1的中点,其坐标为P (1,3,2)时,二面角P -AB -A 1的平面角的余弦值为255.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n=⎝⎛⎭⎫a +b 2n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝⎛⎭⎫a +b 22=112(a -b )2>0.(2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-bn +1a -b,B n =⎝⎛⎭⎫a +b 2n , 令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝⎛⎭⎫x +y 2n +1-⎝⎛⎭⎫x -y 2n +1y =12n +1(n +1)y[(x +y )n +1-(x -y )n +1],B n=⎝⎛⎭⎫x 2n , 因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x n y +2C 3n +1·x n -2y 3+…)≥2C 1n +1x ny ,所以A n ≥12n +1(n +1)y ·2C 1n +1x ny =x n 2n =⎝⎛⎭⎫x 2n =B n .江苏高考数学3个附加题综合仿真训练(6)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.C .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8.2.如图,在直三棱柱ABC A 1B 1C 1中,AB ⊥AC ,AB =AC =AA 1=2,D 为CC 1上任意一点(含端点).(1)若D 为CC 1的中点,求异面直线BA 1与AD 所成角的余弦值; (2)当点D 与点C 1重合时,求二面角A 1BD A 的正弦值.3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 43 (其中e 是自然对数的底数).江苏高考数学3个附加题综合仿真训练(6)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解:(1)因为A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 00 2, 所以AB =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 21 0.(2)设Q (x 0,y 0)为曲线C 1上的任意一点,它在矩阵AB 对应的变换作用下变为P (x ,y ),则⎣⎢⎡⎦⎥⎤0 21 0⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x 2. 因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. B .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切,所以d =|2|1+k 2=1,得到k =±3,故直线l 的极坐标方程θ=π3或θ=2π3.C .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.2.如图,在直三棱柱ABC A 1B 1C 1中,AB ⊥AC ,AB =AC =AA 1=2,D 为CC 1上任意一点(含端点).(1)若D 为CC 1的中点,求异面直线BA 1与AD 所成角的余弦值; (2)当点D 与点C 1重合时,求二面角A 1BD A 的正弦值. 解:建立如图所示的空间直角坐标系,易知A (0,0,0),B (0,-2,0),A 1(0,0,2),C 1(2,0,2),所以AB ―→=(0,-2,0),BA 1―→=(0,2,2).(1)若D 为CC 1的中点,则AD ―→=(2,0,1), 设直线BA 1与直线AD 的夹角为θ,则cos θ=BA 1―→·AD ―→|BA 1―→|·|AD ―→|=222×5=1010,因此异面直线BA 1与AD 所成角的余弦值为1010. (2)当点D 与点C 1重合时,易知D (2,0,2),则BD ―→=(2,2,2), 设平面A 1BD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧BD ―→·m =0,BA 1―→·m =0,即⎩⎪⎨⎪⎧2x +2y +2z =0,2y +2z =0,取y =1,解得x =0,z =-1,即平面A 1BD 的一个法向量为m =(0,1,-1), 同理,可得平面ABD 的一个法向量为n =(-1,0,1). 设二面角A 1BD A 的大小为α,则|cos α|=|m ·n ||m |·|n |=12·2=12,因为α∈[0,π],所以sin α=1-cos 2α=32,因此二面角A 1BD A 的正弦值为32.3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 43 (其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝⎛⎭⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立. ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k (k +1)a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n ≤⎝⎛⎭⎫1+1n 2+n +12n +1a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得ln a n +1≤ln ⎝⎛⎭⎫1+1n 2+n +12n +1+ln a n <ln a n +1n 2+n +12n +1,故ln a n +1-ln a n <1n 2+n +12n 1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1(n -1)n +123+124+…+12n =⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34, 即a n <2e 43 (n ≥2),而a 1=1<2e 43,所以对任意正整数n ,有a n <2e 43.。
(二)矩阵与变换
1.(2018·南京模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1 20
1,B =⎣⎢⎡⎦⎥⎤2 00 1.若直线l :x -y +2=0在矩阵AB 对应的变换作用下得到直线l 1,求直线l 1的方程. 解 因为A =⎣⎢⎡⎦⎥⎤1
20
1,B =⎣⎢⎡⎦⎥⎤2 00 1, 所以AB =⎣⎢⎡⎦⎥⎤
2 20 1,
设点P 0(x 0,y 0)是l 上任意一点,
P 0在矩阵AB 对应的变换作用下得到P (x ,y ),
因为P 0(x 0,y 0)在直线l :x -y +2=0上,
所以x 0-y 0+2=0.①
由AB ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦
⎥⎤x y , 即⎣⎢⎡⎦⎥⎤2 20 1 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦
⎥⎤x y , 得⎩⎪⎨⎪⎧
2x 0+2y 0=x ,y 0=y ,即⎩⎪⎨⎪⎧ x 0=12x -y ,y 0=y .② 将②代入①得x -4y +4=0, 所以直线l 1的方程为x -4y +4=0. 2.已知曲线C :y 2=12x ,C 在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =
⎣⎢⎡⎦⎥⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程.
解 设A =NM ,则A =⎣⎢
⎡⎦⎥⎤0
11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦
⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧ x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧ x ′=y ,y ′=-12x .
又点P (x ′,y ′)在曲线C :y 2=12
x 上, ∴⎝ ⎛⎭⎪⎫-12x 2=12
y ,即x 2=2y . 3.已知矩阵M =⎣⎢⎡⎦⎥⎤1
22 x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量.
解 矩阵M 的特征多项式为
f (λ)=⎪⎪⎪⎪
⎪⎪λ-1 -2-2 λ-x =(λ-1)(λ-x )-4. 因为λ1=3是方程f (λ)=0的一根,所以x =1.
由(λ-1)(λ-1)-4=0,得λ2=-1.
设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦
⎥⎤x y , 则⎩⎪⎨⎪⎧ -2x -2y =0,-2x -2y =0,得x =-y .
令x =1,则y =-1,
所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦
⎥⎤ 1-1. 4.(2018·扬州模拟)已知x ,y ∈R ,若点M (1,1)在矩阵A =⎣⎢⎡⎦⎥⎤2 x 3
y 对应的变换作用下得到点
N (3,5),求矩阵A 的逆矩阵A -1. 解 因为A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦
⎥⎤35, 即⎣⎢⎡⎦⎥⎤2 x 3 y ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦
⎥⎤35,
即⎩⎪⎨⎪⎧ 2+x =3,3+y =5,解得⎩⎪⎨⎪⎧ x =1,y =2, 所以A =⎣⎢⎡⎦⎥⎤
2 1
3 2.
设A -1=⎣⎢⎡⎦⎥⎤
a b c d ,
则AA -1=⎣⎢⎡⎦⎥⎤2 13 2 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡
⎦⎥⎤
1
00 1,
即⎩⎪⎨⎪⎧ 2a +c =1,
3a +2c =0,2b +d =0,
3b +2d =1,解得⎩⎪⎨⎪⎧ a =2,b =-1,c =-3,
d =2,
所以A -1=⎣⎢⎡⎦⎥⎤
2 -1-
3 2.。